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cut-and-project scheme: Fibonacci chain as 1d quasicrystal

G physical space, H internal space, lattice in G x H

window W C H defines strip, chain = lattice points inside strip

m projection onto G yields intervals of lengths 7 = ”Tﬁ 1 fora, b

chain abaababa. .. also via substitution rule: a — ab, b — a

Beatty sequences A, with irrational slope o and W = [0,1) 2/28
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model sets (Meyer 72)

cut-and-project scheme with star map ()* : L — L*

¢ & G6xH ™M o py
@]

U U

1-1 dense
L <+— lattice L — L*

projection set via window W C H
AW)={xel|x* e W}
m weak model set: W relatively cpct
» model set: in addition W # &

m generic: L*NOW =g
u regular model set: model set with vol(OW) =0

assumptions: G, H o-cpct LCA groups, H metrisable -
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properties of weak model sets

every lattice A C G is
» uniformly discrete: 3U nbhd Vt € G : [tUNA| <1
m relatively dense: 3K cpct: KA =G
m periodic

m “pure point diffractive”

weak model sets generalise lattices:

» W relatively cpct = A (W) uniformly discrete
= W # @ = A(W) relatively dense

n W generic = A (W) repetitive

» vol(OW) =0 = A (W) pure point diffractive
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weak model sets are uniformly discrete

note ({e} x WIW)N L = {e} since 7¢|, one-to-one
as L discrete and W rel cpct, we find small unit nbhd U with

(Ux WIW)N £ = {e}

hence {e} = UN A(W~IW) = Un A(W) L A(W)
now assume y € xU for x,y € A(W)
then x 1y e UN A (W)L A (W)

hence x =y
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fundamental domains for cp schemes

m lattice projects densely into H

m hence we have “arbitarily thin" fundamental domains

Let (G, H, L) be a cut-and-project scheme. Then for any
non-empty open U C H there exists compact F C G satisfying

(FxU)L=GxH.
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thin fundamental domains

m Let F be some relatively cpct fundamental domain of L.

m For non-empty open U C H, use F to find cpct F C G such
that
(FxU)L=GxH

m Since mH(F) is compact and m(L) is dense in H, there exist
l1,...,0n € TG(L) such that
F Cmg(F) x my(F) C mg(F) x Ufo
i=1

= statement follows with F := {J7_, ¢; '76(F)
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model sets are relatively dense

since W =% &, we can apply the previous lemma
m there is cpct F C G such that

(FxWHL=GxH

In fact FA(W) = G:
» shift (x, e) to fundamental domain:

(v, w™ (€, 6) = (x, )

forsomey e F,we W, ((,0*) e L
» hence (* = w and £ € A (W), which means

x =yl e FA(W)
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repetition of patterns in model sets

For nonempty A and compact K such that AN K # & consider
Tk(N)={tc G:ANK=t"ANK},

the set of K-periods of A

Proposition

A non-empty weak model set => Ty () non-empty weak model
set
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= remember
Tk(N)={tc G:AnK=tAnK}CA\!
u for a model set A = A (W) we have
Tk(AW)) ={lk el : A(W)NK = Al *W)N K}

m hence ¢k € Tx(A(W)) iff

Ceel'Ww Ve A(W)NK

v W Wle A(W)NK
m hence Tk (A(W)) = A(Wk) with

Wy = ﬂ etwo U rtw
e A (W)NK te A (We)nK

m Wy rel cpct since W rel cpct and A (W) N K nonempty

finite O
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Let A (W) be a (non-empty weak) model set with generic window

L*Now = @.

Then A (W) is repetitive, i.e., Tx(A(W)) rel dense for all cpct K.
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Let A (W) be a (non-empty weak) model set with generic window

L*Now = @.

Then A (W) is repetitive, i.e., Tx(A(W)) rel dense for all cpct K.

In that case the above Wy is a unit neighborhood:
w [*NOW = & implies e € int(£* W) for all £ € A (W)
w [*NOW = @ implies e € int(¢* W) for all £ € A(W°)
» hence W' = neeA(W)mK LW rel cpct unit neighborhood
w But W intersects only finitely many ¢*~1W where £ € LN K.
(note W N £* W # & implies £ € A (WW’'~1) uniformly discrete)
m Hence Wy unit neighborhood due to
Wi =W\ et w=wn () etwe [

te A (W)nK te A (We)nk o
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If W is any window, then there exists ¢ such that cW is generic.
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Proposition

If W is any window, then there exists ¢ such that cW is generic.

S is nowhere dense if S = @.
M is meagre if it is a countable union of nowhere dense sets.

Lemma (Baire)

Any meagre set has nonempty interiour.
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Proposition

If W is any window, then there exists ¢ such that cW is generic.

S is nowhere dense if S = @.
M is meagre if it is a countable union of nowhere dense sets.

Lemma (Baire)

Any meagre set has nonempty interiour.

Proof of Proposition.

OW nowhere dense, L* countable, hence L*OW meagre.
Baire: L*OW has nonempty interiour, in particular L*OW # H.
Hence ¢! ¢ L*OW, hence cOWNL* = @ O
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holes in weak model sets

“weak model sets may have arbitrarily large holes”
N C G is hole-repetitive if for every compact set K C G the set
{teG|tT'KNA=g}

is relatively dense in G.

Proposition (R-Huck 14)

Let (G, H, L) be a cut-and-project scheme. If W is nowhere dense,
iie., W =g, then \(W) is hole-repetitive.

Example: If W cpct and W = &, then W = W is nowhere dense.
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proof of hole-repetitivity

m Baire: since L* is countable, there is ¢ € H such that

'NncW =g« (GxcW)NL=g

hence (K x cW)N L = & for any compact K C G
take small unit nbhd U such that still (K x UcW)N L =@

for any ¢ from the relatively dense A (Uc) we have

F=(KxOW)NL={KxW)NL

hence (KN A (W) =2
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density formula (Meyer 72, Schlottmann 98, Moody 02)

count points within balls or van Hove sequence (B;)en:
= A lattice:

AN By| = dens(A) - vol(B,) + o(vol(By))
» A (W) regular model set with measurable W:

| A (W) N B,| =dens(L) - vol(W)vol(B,) + o(vol(B,))

(convergence uniform in shifts of W and center of balls) 15/28
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density formula for weak model sets

m consider relative point frequencies
1
fr = vol(B )IJ\(W)NBI

= average with “van Hove sequences” (B,),en:
compact sets of positive volume such that for all compact K

im vol(0KA,) 0
n—soo vol(A,)

» with the (generalised) van Hove boundary
YW = (UW N We) U (UW< N W).

m e.g. balls, rectangles of diverging inradius, Fglner sequences
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density formula for weak model sets

Lemma (density formula for weak model sets)

A (W) weak model set, (B,),en van Hove sequence. Then

dens(£) vol(W) < liminf f, < limsup f, = dens(£) vol(W).
r—oo r—o00

» regular model sets with measurable W: f, — dens(L) vol(W)
m later: proof for regular model sets via harmonic analysis

m general case by approximation with regular model sets
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a number theory quasicrystal

visible lattice points

arbitrarily large holes, positive pattern entropy, pp diffraction!
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visible lattice points V = 72\ |, pZ?

(r,s) visible < (r,s) # p(r',s") for all primes
& (r,s) mod pZ2 # 0 for all primes

cut-and-project scheme (Sing 05)
= number-theoretic sieve H =[], 72| p7?

® star map x* = (x mod pZ?),

window W = [T ,(2%/pZ?) \ {0}
u W = W since every component is closed

m W = @ since no component is maximal
m hence W = oW
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visible lattice points

hence volume of the window is

vol(W):H(l—%) :ﬁ

p

» for a sequence (B,), of balls about 0 one computes
dens(V) = vol(W)

m V is a weak model set. For the above averaging sequence, it
has maximal density!

m This is similar to regular model sets, which have maximal
density for every van Hove sequence.
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pattern entropy

m count point configurations in translates of B C R?
Ng(V)=|{x"'VNnB|xe V}

m configurational entropy

h*(V) = limsu
(V) = limsup 1B, 1(B)

log Ng, (V)

= alternatively, V may be viewed as a 01-colouring of Z?
N5(V,Z%) = {Lc-1vnp | x € V}|

» for a sequence (B,), of balls about 0 one calculates

h*(V,Z?) = vol(OW) log 2!
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pattern entropy of weak model sets

Theorem (R-Huck 14)

Let A(W) be a weak model set, and let A (W) C g for some
regular model set Ny. Then

h (A (W) < h* (A (W), Ng) < dens(L) - vol(OW) - log 2

m conjectured by Moody—Pleasants 06
m geometric proof with standard estimate
m also for non-commutative cp-schemes with £ normal in G x H

note:
m regular model sets have O entropy

m visible lattice points have maximal entropy
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step 1: lift centered patterns to G x H

= we bound
Ng(A(W)) = }{x’lk(W)ﬂ Blx e A(W)}]

(proof for Nj( A (W), o) analogous)

m bound number of G-inequivalent centered patterns in G
xB N A (W), x € A(W)
» bound no of (G x H)-inequivalent centered patterns in G x H

(xBx W)NL=r(xBN A(W)), xe A(W)
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step 2: shift pattern centers to fundamental domain

fundamental domain F
m choose cpct F x U such that (F x U)L =G x H
m F x U contains fundamental domain F of £

shift (x, e) to fundamental domain F

m {(x,e) = (y,u) for some (y,u) € Fand L € L
m pattern center (x,x*) € (G x W) N L gets shifted to

Ux,x*) = (y,ux*) e (Fx UW)N L
shifted patterns

» F compact, hence only finitely many values y = y(x)
» shifted patterns with same y = y(x) are similar:

xB N A (W) shifted to some subset of yB N A(UW)
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step 2: shift pattern centers to fundamental domain

m all such patterns differ only “near the boundary” of W, i.e., on

yBn A(0YW)
m hence a standard estimate yields
N5(A(W)) < |(F x UW) N £] - 2l FBnA@W)

m for r — oo the density formula yields

h(A(W)) < I|£15;p 1(18 ]

< dens(£L) - vol(dY W) - log 2

FB, N A(8YW)] - log2
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step 3: choose arbitrarily thin fundamental domains

remember: as my(L) is dense in H, we have

Lemma

Let (G, H, L) be a cut-and-project scheme. Then for any
non-empty open U C H there exists compact F C G satisfying

(FxU)L=G xH.

as H is metrisable, we can use dominated convergence to infer

lim vol(8V W) — vol(81} W) = vol(aW),

U—{e}
and the entropy estimate follows. [
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outlook

observations:

m visible lattice points are hereditary systems:
every subset of a pattern is a translated pattern

m visible lattice points have maximal density

= pattern entropy h*(V/,Z?) equals topological entropy of the
hull Xy = {tV [t € R2} of V

hence:
m study hereditary systems!
m study weak model sets of maximal density!

m study relation to topological entropy of XA(W)!
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