cut-and-project sets: geometry and combinatorics

Christoph Richard, FAU Erlangen-Nürnberg Seminaire Lotharingien de Combinatoire, March 2015

cut-and-project scheme: Fibonacci chain as 1d quasicrystal

- G physical space, H internal space, lattice in $G \times H$
- window $W \subset H$ defines strip, chain $\hat{=}$ lattice points inside strip
- projection onto G yields intervals of lengths $au = \frac{1+\sqrt{5}}{2}$, 1 for a, b
- chain abaababa... also via substitution rule: $a \rightarrow ab$, $b \rightarrow a$
- Beatty sequences Λ_{α} with irrational slope α and W = [0, 1)

model sets (Meyer 72)

cut-and-project scheme with star map $()^*: L \to L^*$

projection set via window $W \subset H$

$$\mathcal{K}(W) = \{x \in L \,|\, x^{\star} \in W\}$$

- weak model set: W relatively cpct
- model set: in addition $\mathring{W} \neq \varnothing$
- generic: $L^* \cap \partial W = \emptyset$
- regular model set: model set with $vol(\partial W) = 0$

assumptions: $G, H \sigma$ -cpct LCA groups, H metrisable

properties of weak model sets

every lattice $\Lambda \subset G$ is

- uniformly discrete: $\exists U \text{ nbhd } \forall t \in G : |tU \cap \Lambda| \leq 1$
- relatively dense: $\exists K \text{ cpct}: K\Lambda = G$
- periodic
- "pure point diffractive"

weak model sets generalise lattices:

- W relatively cpct $\implies h(W)$ uniformly discrete
- $\mathring{W} \neq \varnothing \Longrightarrow \land (W)$ relatively dense
- W generic $\implies \bigwedge(W)$ repetitive
- $\operatorname{vol}(\partial W) = 0 \Longrightarrow \mathcal{L}(W)$ pure point diffractive

weak model sets are uniformly discrete

- note $(\{e\} \times W^{-1}W) \cap \mathcal{L} = \{e\}$ since $\pi_{\mathcal{G}}|_{\mathcal{L}}$ one-to-one
- as \mathcal{L} discrete and W rel cpct, we find small unit nbhd U with

$$(U \times W^{-1}W) \cap \mathcal{L} = \{e\}$$

- hence $\{e\} = U \cap \mathcal{A}(W^{-1}W) = U \cap \mathcal{A}(W)^{-1}\mathcal{A}(W)$
- now assume $y \in xU$ for $x, y \in \mathcal{L}(W)$
- then $x^{-1}y \in U \cap \mathcal{A}(W)^{-1}\mathcal{A}(W)$
- hence x = y

fundamental domains for cp schemes

- lattice projects densely into H
- hence we have "arbitarily thin" fundamental domains

Lemma

Let (G, H, \mathcal{L}) be a cut-and-project scheme. Then for any non-empty open $U \subset H$ there exists compact $F \subset G$ satisfying

 $(F \times U)\mathcal{L} = G \times H.$

thin fundamental domains

- Let \mathcal{F} be some relatively cpct fundamental domain of \mathcal{L} .
- For non-empty open $U \subset H$, use \mathcal{F} to find cpct $F \subset G$ such that

$$(F \times U)\mathcal{L} = G \times H$$

Since $\pi_H(\mathcal{F})$ is compact and $\pi_H(\mathcal{L})$ is dense in H, there exist $\ell_1, \ldots, \ell_n \in \pi_G(\mathcal{L})$ such that

$$\mathcal{F} \subset \pi_{\mathcal{G}}(\mathcal{F}) imes \pi_{\mathcal{H}}(\mathcal{F}) \subset \pi_{\mathcal{G}}(\mathcal{F}) imes \bigcup_{i=1}^{n} \ell_{i}^{\star} U$$

• statement follows with $F := \bigcup_{i=1}^{n} \ell_i^{-1} \pi_G(\mathcal{F})$

model sets are relatively dense

since $\mathring{W} \neq \varnothing$, we can apply the previous lemma • there is cpct $F \subset G$ such that

$$(F \times W^{-1})\mathcal{L} = G \times H$$

In fact $F \downarrow (W) = G$:

shift (x, e) to fundamental domain:

$$(y, w^{-1})(\ell, \ell^*) = (x, e)$$

for some $y \in F$, $w \in W$, $(\ell, \ell^*) \in \mathcal{L}$ hence $\ell^* = w$ and $\ell \in \mathcal{L}(W)$, which means

$$x = y\ell \in F \mathrel{\textstyle{\,\hbox{\baselineskiplimits}}} (W)$$

repetition of patterns in model sets

For nonempty Λ and compact K such that $\Lambda \cap K \neq \emptyset$ consider

$$T_{\mathcal{K}}(\Lambda) = \{t \in G : \Lambda \cap \mathcal{K} = t^{-1}\Lambda \cap \mathcal{K}\},\$$

the set of *K*-periods of Λ

Proposition

 Λ non-empty weak model set \Longrightarrow $T_{K}(\Lambda)$ non-empty weak model set

remember

$$T_{K}(\Lambda) = \{t \in G : \Lambda \cap K = t^{-1}\Lambda \cap K\} \subset \Lambda \Lambda^{-1}$$

• for a model set $\Lambda = \mathcal{K}(W)$ we have

 $T_{\mathcal{K}}(\mathcal{A}(W)) = \{\ell_{\mathcal{K}} \in L : \mathcal{A}(W) \cap \mathcal{K} = \mathcal{A}(\ell_{\mathcal{K}}^{\star^{-1}}W) \cap \mathcal{K}\}$

• hence $\ell_{\mathcal{K}} \in T_{\mathcal{K}}(\mathcal{K}(W))$ iff

$$\ell_{K}^{\star} \in \ell^{\star - 1} W \qquad \forall \ell \in \mathcal{L}(W) \cap K \\ \ell_{K}^{\star} \notin \ell^{\star - 1} W \qquad \forall \ell \in \mathcal{L}(W^{c}) \cap K$$

• hence $T_{\mathcal{K}}(\mathcal{K}(W)) = \mathcal{K}(W_{\mathcal{K}})$ with

$$W_{K} = \bigcap_{\ell \in \mathcal{J}(W) \cap K} \ell^{\star - 1} W \setminus \bigcup_{\ell \in \mathcal{J}(W^{c}) \cap K} \ell^{\star - 1} W$$

■ W_K rel cpct since W rel cpct and $\mathcal{L}(W) \cap K$ nonempty finite

Let $\lambda(W)$ be a (non-empty weak) model set with generic window $L^* \cap \partial W = \emptyset$.

Then $\mathcal{L}(W)$ is repetitive, i.e., $T_{\mathcal{K}}(\mathcal{L}(W))$ rel dense for all cpct \mathcal{K} .

In that case the above W_K is a unit neighborhood:

- $L^* \cap \partial W = \emptyset$ implies $e \in int(\ell^{*-1}W)$ for all $\ell \in \mathcal{L}(W)$
- $L^* \cap \partial W = \emptyset$ implies $e \in int(\ell^{*-1}W^c)$ for all $\ell \in \mathcal{L}(W^c)$
- hence $W' = \bigcap_{\ell \in \mathcal{K}(W) \cap K} \ell^{*-1} W$ rel cpct unit neighborhood
- But W' intersects only finitely many ℓ^{*-1}W where ℓ ∈ L ∩ K. (note W' ∩ ℓ^{*-1}W ≠ Ø implies ℓ ∈ 人(WW'⁻¹) uniformly discrete)

Hence W_K unit neighborhood due to

$$W_{\mathcal{K}} = W' \setminus \bigcup_{\ell \in \mathcal{J}(W) \cap \mathcal{K}} \ell^{\star - 1} W = W' \cap \bigcap_{\ell \in \mathcal{J}(W^c) \cap \mathcal{K}} \ell^{\star - 1} W^c \quad \Box$$

Let $\lambda(W)$ be a (non-empty weak) model set with generic window $L^* \cap \partial W = \emptyset$.

Then $\mathcal{L}(W)$ is repetitive, i.e., $T_{\mathcal{K}}(\mathcal{L}(W))$ rel dense for all cpct \mathcal{K} .

In that case the above W_K is a unit neighborhood:

- $L^* \cap \partial W = \emptyset$ implies $e \in int(\ell^{*-1}W)$ for all $\ell \in \mathcal{L}(W)$
- $L^* \cap \partial W = \emptyset$ implies $e \in int(\ell^{*-1}W^c)$ for all $\ell \in \mathcal{L}(W^c)$
- hence $W' = \bigcap_{\ell \in \mathcal{L}(W) \cap K} \ell^{\star 1} W$ rel cpct unit neighborhood
- But W' intersects only finitely many ℓ^{*-1}W where ℓ ∈ L ∩ K. (note W' ∩ ℓ^{*-1}W ≠ Ø implies ℓ ∈ 人(WW'⁻¹) uniformly discrete)

Hence W_K unit neighborhood due to

$$W_{\mathcal{K}} = W' \setminus \bigcup_{\ell \in \mathcal{J}(W) \cap \mathcal{K}} \ell^{\star - 1} W = W' \cap \bigcap_{\ell \in \mathcal{J}(W^c) \cap \mathcal{K}} \ell^{\star - 1} W^c \quad \Box$$

If W is any window, then there exists c such that cW is generic.

S is nowhere dense if $\frac{\mathring{S}}{S} = \varnothing$.

M is meagre if it is a countable union of nowhere dense sets.

_emma (Baire)

Any meagre set has nonempty interiour.

Proof of Proposition.

 ∂W nowhere dense, L^* countable, hence $L^*\partial W$ meagre. Baire: $L^*\partial W$ has nonempty interiour, in particular $L^*\partial W \neq H$. Hence $c^{-1} \notin L^*\partial W$, hence $c\partial W \cap L^* = \emptyset$

If W is any window, then there exists c such that cW is generic.

S is nowhere dense if $\frac{\mathring{S}}{S} = \varnothing$.

M is meagre if it is a countable union of nowhere dense sets.

Lemma (Baire)

Any meagre set has nonempty interiour.

Proof of Proposition.

 ∂W nowhere dense, L^* countable, hence $L^*\partial W$ meagre. Baire: $L^*\partial W$ has nonempty interiour, in particular $L^*\partial W \neq H$. Hence $c^{-1} \notin L^*\partial W$, hence $c\partial W \cap L^* = \emptyset$

If W is any window, then there exists c such that cW is generic.

S is nowhere dense if $\frac{\mathring{S}}{S} = \varnothing$.

M is meagre if it is a countable union of nowhere dense sets.

Lemma (Baire)

Any meagre set has nonempty interiour.

Proof of Proposition.

 ∂W nowhere dense, L^* countable, hence $L^*\partial W$ meagre. Baire: $L^*\partial W$ has nonempty interiour, in particular $L^*\partial W \neq H$. Hence $c^{-1} \notin L^*\partial W$, hence $c\partial W \cap L^* = \emptyset$

holes in weak model sets

"weak model sets may have arbitrarily large holes"

 $\Lambda \subset G$ is *hole-repetitive* if for every compact set $K \subset G$ the set

$$\{t\in G\,|\,t^{-1}K\cap\Lambda=\varnothing\}$$

is relatively dense in G.

Proposition (R-Huck 14)

Let (G, H, \mathcal{L}) be a cut-and-project scheme. If W is nowhere dense, i.e., $\dot{\overline{W}} = \emptyset$, then $\mathcal{L}(W)$ is hole-repetitive.

Example: If W cpct and $\mathring{W} = \emptyset$, then $W = \partial W$ is nowhere dense.

proof of hole-repetitivity

Baire: since L^* is countable, there is $c \in H$ such that

$$L^{\star} \cap cW = \varnothing \iff (G \times cW) \cap \mathcal{L} = \varnothing$$

- hence $(K \times cW) \cap \mathcal{L} = \emptyset$ for any compact $K \subset G$
- take small unit nbhd U such that still $(K \times UcW) \cap \mathcal{L} = \emptyset$
- for any ℓ from the relatively dense $\mathcal{L}(Uc)$ we have

$$\varnothing = (K \times \ell^* W) \cap \mathcal{L} = (\ell^{-1} K \times W) \cap \mathcal{L}$$

• hence $\ell^{-1}K \cap \mathcal{K}(W) = \emptyset$

density formula (Meyer 72, Schlottmann 98, Moody 02)

count points within balls or van Hove sequence $(B_r)_{r \in \mathbb{N}}$:

Λ lattice:

$$|\Lambda \cap B_r| = \operatorname{dens}(\Lambda) \cdot \operatorname{vol}(B_r) + o(\operatorname{vol}(B_r))$$

• $\mathcal{L}(W)$ regular model set with measurable W:

 $|\mathcal{L}(W) \cap B_r| = \operatorname{dens}(\mathcal{L}) \cdot \operatorname{vol}(W) \operatorname{vol}(B_r) + o(\operatorname{vol}(B_r))$ (convergence uniform in shifts of W and center of balls)

cut-and-project sets -model sets

density formula for weak model sets

consider relative point frequencies

$$f_r = \frac{1}{\operatorname{vol}(B_r)} \left| \mathcal{L}(W) \cap B_r \right|$$

■ average with "van Hove sequences" (B_r)_{r∈ℕ}: compact sets of positive volume such that for all compact K

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\partial^{K}A_{n})}{\operatorname{vol}(A_{n})}=0,$$

• with the (generalised) van Hove boundary

$$\partial^U W = (U\overline{W} \cap \overline{W^c}) \cup (U\overline{W^c} \cap \overline{W}).$$

e.g. balls, rectangles of diverging inradius, Følner sequences

density formula for weak model sets

Lemma (density formula for weak model sets)

 $\mathcal{K}(W)$ weak model set, $(B_r)_{r\in\mathbb{N}}$ van Hove sequence. Then

$$\operatorname{dens}(\mathcal{L})\operatorname{vol}(\mathring{W}) \leq \liminf_{r \to \infty} f_r \leq \limsup_{r \to \infty} f_r = \operatorname{dens}(\mathcal{L})\operatorname{vol}(\overline{W}).$$

- regular model sets with measurable $W: f_r \to \operatorname{dens}(\mathcal{L})\operatorname{vol}(W)$
- later: proof for regular model sets via harmonic analysis
- general case by approximation with regular model sets

a number theory quasicrystal

visible lattice points

arbitrarily large holes, positive pattern entropy, pp diffraction!

cut-and-project sets La number theory quasicrystal

visible lattice points $V = \mathbb{Z}^2 \setminus \bigcup_p p\mathbb{Z}^2$

$$(r, s)$$
 visible $\Leftrightarrow (r, s) \neq p(r', s')$ for all primes
 $\Leftrightarrow (r, s) \mod p\mathbb{Z}^2 \neq 0$ for all primes

• number-theoretic sieve $H = \prod_{p} \mathbb{Z}^2 / p \mathbb{Z}^2$

window $W = \prod_{p} (\mathbb{Z}^2 / p\mathbb{Z}^2) \setminus \{0\}$

- $\overline{W} = W$ since every component is closed
- $\mathring{W} = \varnothing$ since no component is maximal

• hence
$$W = \partial W$$

visible lattice points

hence volume of the window is

$$\operatorname{vol}(W) = \prod_{p} \left(1 - \frac{1}{p^2}\right) = \frac{1}{\zeta(2)}$$

• for a sequence $(B_r)_r$ of balls about 0 one computes

$$\operatorname{dens}(V) = \operatorname{vol}(W)$$

- V is a weak model set. For the above averaging sequence, it has maximal density!
- This is similar to regular model sets, which have maximal density for every van Hove sequence.

pattern entropy

• count point configurations in translates of $B \subset \mathbb{R}^2$

$$N_B^*(V) = \left| \{ x^{-1}V \cap B \, | \, x \in V \} \right|$$

configurational entropy

$$h^*(V) = \limsup_{r \to \infty} \frac{1}{\operatorname{vol}(B_r)} \log N^*_{B_r}(V)$$

- alternatively, V may be viewed as a 01-colouring of \mathbb{Z}^2

$$N^*_B(V,\mathbb{Z}^2) = |\{1_{x^{-1}V \cap B} | x \in V\}|$$

• for a sequence $(B_r)_r$ of balls about 0 one calculates

$$h^*(V,\mathbb{Z}^2) = \operatorname{vol}(\partial W) \log 2!$$

pattern entropy of weak model sets

Theorem (R-Huck 14)

Let $\lambda(W)$ be a weak model set, and let $\lambda(W) \subset \Lambda_0$ for some regular model set Λ_0 . Then

 $h^*(\mathcal{A}(W)) \leq h^*(\mathcal{A}(W), \Lambda_0) \leq \operatorname{dens}(\mathcal{L}) \cdot \operatorname{vol}(\partial W) \cdot \log 2$

- conjectured by Moody–Pleasants 06
- geometric proof with standard estimate
- also for non-commutative cp-schemes with $\mathcal L$ normal in G imes H

note:

- regular model sets have 0 entropy
- visible lattice points have maximal entropy

step 1: lift centered patterns to $G \times H$

we bound

$$N_B^*(\mathcal{L}(W)) = \left| \{ x^{-1} \mathcal{L}(W) \cap B \, | \, x \in \mathcal{L}(W) \} \right|$$

(proof for $N^*_B(\mathcal{K}(W), \Lambda_0)$ analogous)

bound number of G-inequivalent centered patterns in G

$$xB \cap \mathcal{L}(W), \qquad x \in \mathcal{L}(W)$$

bound no of $(G \times H)$ -inequivalent centered patterns in $G \times H$

$$(xB \times W) \cap \mathcal{L} = \pi_{G}^{-1}(xB \cap \mathcal{L}(W)), \qquad x \in \mathcal{L}(W)$$

step 2: shift pattern centers to fundamental domain

fundamental domain ${\cal F}$

- choose cpct $F \times U$ such that $(F \times U)\mathcal{L} = G \times H$
- $F \times U$ contains fundamental domain \mathcal{F} of \mathcal{L}

shift (x, e) to fundamental domain \mathcal{F}

- $\ell(x, e) = (y, u)$ for some $(y, u) \in \mathcal{F}$ and $\ell \in \mathcal{L}$
- pattern center $(x, x^{\star}) \in (G \times W) \cap \mathcal{L}$ gets shifted to

$$\ell(x, x^{\star}) = (y, ux^{\star}) \in (F \times UW) \cap \mathcal{L}$$

shifted patterns

- F compact, hence only finitely many values y = y(x)
- shifted patterns with same y = y(x) are similar:

 $xB \cap \mathcal{A}(W)$ shifted to some subset of $yB \cap \mathcal{A}(UW)$

step 2: shift pattern centers to fundamental domain

• all such patterns differ only "near the boundary" of W, i.e., on

 $yB \cap \mathcal{L}(\partial^U W)$

hence a standard estimate yields

$$N^*_B(igstar{}(W)) \leq |(F imes UW) \cap \mathcal{L}| \cdot 2^{|FB \cap igstar{}(\partial^U W)|}$$

• for $r \to \infty$ the density formula yields

$$egin{aligned} h^*(igstarrow(W)) &\leq \limsup_{r o \infty} rac{1}{\operatorname{vol}(B_r)} \left| FB_r \cap igstarrow(\partial^U W)
ight| \cdot \log 2 \ &\leq \operatorname{dens}(\mathcal{L}) \cdot \operatorname{vol}(\partial^U W) \cdot \log 2 \end{aligned}$$

step 3: choose arbitrarily thin fundamental domains

remember: as $\pi_H(\mathcal{L})$ is dense in H, we have

Lemma

Let (G, H, \mathcal{L}) be a cut-and-project scheme. Then for any non-empty open $U \subset H$ there exists compact $F \subset G$ satisfying

$$(F \times U)\mathcal{L} = G \times H.$$

as H is metrisable, we can use dominated convergence to infer

$$\lim_{U\to \{e\}} \operatorname{vol}(\partial^U W) \to \operatorname{vol}(\partial^{\{e\}} W) = \operatorname{vol}(\partial W),$$

and the entropy estimate follows.

outlook

observations:

- visible lattice points are *hereditary systems*: every subset of a pattern is a translated pattern
- visible lattice points have maximal density
- pattern entropy $h^*(V, \mathbb{Z}^2)$ equals topological entropy of the hull $X_V = \overline{\{tV \mid t \in \mathbb{R}^2\}}$ of V

hence:

- study hereditary systems!
- study weak model sets of maximal density!
- study relation to topological entropy of $\mathbb{X}_{\mathcal{K}(W)}$!

cut-and-project sets

references

- Y. Meyer, *Algebraic numbers and harmonic analysis*, North-Holland, Amsterdam (1972).
- J.-P. Schreiber, Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Bulletin de la S.M.F. 101 (1973), 297–332.
- R.V. Moody, Meyer sets and their duals, in: The mathematics of long-range aperiodic order (ed R.V. Moody), NATO ASI Series C489, Kluwer (1997), 403–441.
- C. Huck and C. Richard, On pattern entropy of cut-and-project sets (2014), arXiv:1142991.
- M. Baake and U. Grimm, *Aperiodic order. Vol. 1. A mathematical invitation*, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, Cambridge (2013).