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cut-and-project sets

model sets

cut-and-project scheme: Fibonacci chain as 1d quasicrystal

b
a

G

H

G physical space, H internal space, lattice in G × H

window W ⊂ H defines strip, chain =̂ lattice points inside strip

projection onto G yields intervals of lengths τ = 1+
√
5

2 , 1 for a, b

chain abaababa . . . also via substitution rule: a→ ab, b → a

Beatty sequences Λα with irrational slope α and W = [0, 1) 2 / 28
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model sets

model sets (Meyer 72)

cut-and-project scheme with star map ()? : L→ L?

πG πH
G ←− G × H −→ H

∪ ∪ ∪
1–1 dense

L ←− lattice L −→ L?

projection set via window W ⊂ H

f(W ) = {x ∈ L | x? ∈W }

weak model set: W relatively cpct
model set: in addition W̊ 6= ∅
generic : L? ∩ ∂W = ∅
regular model set: model set with vol(∂W ) = 0

assumptions: G ,H σ-cpct LCA groups, H metrisable
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cut-and-project sets

model sets

properties of weak model sets

every lattice Λ ⊂ G is

uniformly discrete: ∃U nbhd ∀t ∈ G : |tU ∩ Λ| ≤ 1

relatively dense: ∃K cpct: K Λ = G

periodic

“pure point diffractive”

weak model sets generalise lattices:

W relatively cpct =⇒ f(W ) uniformly discrete

W̊ 6= ∅ =⇒ f(W ) relatively dense

W generic =⇒ f(W ) repetitive

vol(∂W ) = 0 =⇒ f(W ) pure point diffractive
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model sets

weak model sets are uniformly discrete

note ({e} ×W−1W ) ∩ L = {e} since πG |L one-to-one

as L discrete and W rel cpct, we find small unit nbhd U with

(U ×W−1W ) ∩ L = {e}

hence {e} = U ∩f(W−1W ) = U ∩f(W )−1f(W )

now assume y ∈ xU for x , y ∈f(W )

then x−1y ∈ U ∩f(W )−1f(W )

hence x = y
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cut-and-project sets

model sets

fundamental domains for cp schemes

lattice projects densely into H

hence we have “arbitarily thin” fundamental domains

Lemma

Let (G ,H,L) be a cut-and-project scheme. Then for any
non-empty open U ⊂ H there exists compact F ⊂ G satisfying

(F × U)L = G × H.
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model sets

thin fundamental domains

Let F be some relatively cpct fundamental domain of L.

For non-empty open U ⊂ H, use F to find cpct F ⊂ G such
that

(F × U)L = G × H

Since πH(F) is compact and πH(L) is dense in H, there exist
`1, . . . , `n ∈ πG (L) such that

F ⊂ πG (F)× πH(F) ⊂ πG (F)×
n⋃

i=1

`?i U

statement follows with F :=
⋃n

i=1 `
−1
i πG (F)
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model sets

model sets are relatively dense

since W̊ 6= ∅, we can apply the previous lemma

there is cpct F ⊂ G such that

(F ×W−1)L = G × H

In fact Ff(W ) = G :

shift (x , e) to fundamental domain:

(y ,w−1)(`, `?) = (x , e)

for some y ∈ F , w ∈W , (`, `?) ∈ L
hence `? = w and ` ∈f(W ), which means

x = y` ∈ Ff(W )
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model sets

repetition of patterns in model sets

For nonempty Λ and compact K such that Λ ∩ K 6= ∅ consider

TK (Λ) = {t ∈ G : Λ ∩ K = t−1Λ ∩ K},

the set of K -periods of Λ

Proposition

Λ non-empty weak model set =⇒ TK (Λ) non-empty weak model
set
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model sets

remember

TK (Λ) = {t ∈ G : Λ ∩ K = t−1Λ ∩ K} ⊂ ΛΛ−1

for a model set Λ = f(W ) we have

TK (f(W )) = {`K ∈ L : f(W ) ∩ K = f(`?K
−1W ) ∩ K}

hence `K ∈ TK (f(W )) iff

`?K ∈ `?
−1W ∀` ∈f(W ) ∩ K

`?K /∈ `?−1W ∀` ∈f(W c) ∩ K

hence TK (f(W )) = f(WK ) with

WK =
⋂

`∈f(W )∩K

`?−1W \
⋃

`∈f(W c )∩K

`?−1W

WK rel cpct since W rel cpct and f(W ) ∩ K nonempty
finite
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model sets

Proposition

Let f(W ) be a (non-empty weak) model set with generic window

L? ∩ ∂W = ∅.

Then f(W ) is repetitive, i.e., TK (f(W )) rel dense for all cpct K .

In that case the above WK is a unit neighborhood:

L? ∩ ∂W = ∅ implies e ∈ int(`?−1W ) for all ` ∈f(W )
L? ∩ ∂W = ∅ implies e ∈ int(`?−1W c) for all ` ∈f(W c)
hence W ′ =

⋂
`∈f(W )∩K `

?−1W rel cpct unit neighborhood

But W ′ intersects only finitely many `?−1W where ` ∈ L ∩ K .
(note W ′ ∩ `?−1W 6= ∅ implies ` ∈f(WW ′−1) uniformly discrete)

Hence WK unit neighborhood due to

WK = W ′ \
⋃

`∈f(W )∩K

`?−1W = W ′ ∩
⋂

`∈f(W c )∩K

`?−1W c
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model sets

Proposition

If W is any window, then there exists c such that cW is generic.

S is nowhere dense if S̊ = ∅.
M is meagre if it is a countable union of nowhere dense sets.

Lemma (Baire)

Any meagre set has nonempty interiour.

Proof of Proposition.

∂W nowhere dense, L? countable, hence L?∂W meagre.
Baire: L?∂W has nonempty interiour, in particular L?∂W 6= H.
Hence c−1 /∈ L?∂W , hence c∂W ∩ L? = ∅
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model sets

holes in weak model sets

“weak model sets may have arbitrarily large holes”

Λ ⊂ G is hole-repetitive if for every compact set K ⊂ G the set

{t ∈ G | t−1K ∩ Λ = ∅}

is relatively dense in G .

Proposition (R–Huck 14)

Let (G ,H,L) be a cut-and-project scheme. If W is nowhere dense,

i.e., W̊ = ∅, then f(W ) is hole-repetitive.

Example: If W cpct and W̊ = ∅, then W = ∂W is nowhere dense.
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model sets

proof of hole-repetitivity

Baire: since L? is countable, there is c ∈ H such that

L? ∩ cW = ∅⇐⇒ (G × cW ) ∩ L = ∅

hence (K × cW ) ∩ L = ∅ for any compact K ⊂ G

take small unit nbhd U such that still (K × UcW ) ∩ L = ∅
for any ` from the relatively dense f(Uc) we have

∅ = (K × `?W ) ∩ L = (`−1K ×W ) ∩ L

hence `−1K ∩f(W ) = ∅
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cut-and-project sets

model sets

density formula (Meyer 72, Schlottmann 98, Moody 02)

count points within balls or van Hove sequence (Br )r∈N:

Λ lattice:

|Λ ∩ Br | = dens(Λ) · vol(Br ) + o(vol(Br ))

f(W ) regular model set with measurable W :

G

H

|f(W ) ∩ Br | = dens(L) · vol(W )vol(Br ) + o(vol(Br ))

(convergence uniform in shifts of W and center of balls) 15 / 28



cut-and-project sets

model sets

density formula for weak model sets

consider relative point frequencies

fr =
1

vol(Br )
|f(W ) ∩ Br |

average with “van Hove sequences” (Br )r∈N:
compact sets of positive volume such that for all compact K

lim
n→∞

vol(∂KAn)

vol(An)
= 0,

with the (generalised) van Hove boundary

∂UW = (UW ∩W c) ∪ (UW c ∩W ).

e.g. balls, rectangles of diverging inradius, Følner sequences
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model sets

density formula for weak model sets

Lemma (density formula for weak model sets)

f(W ) weak model set, (Br )r∈N van Hove sequence. Then

dens(L) vol(W̊ ) ≤ lim inf
r→∞

fr ≤ lim sup
r→∞

fr = dens(L) vol(W ).

regular model sets with measurable W : fr → dens(L) vol(W )

later: proof for regular model sets via harmonic analysis

general case by approximation with regular model sets
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a number theory quasicrystal

visible lattice points

arbitrarily large holes, positive pattern entropy, pp diffraction!
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cut-and-project sets

a number theory quasicrystal

visible lattice points V = Z2 \
⋃

p pZ2

(r , s) visible ⇔ (r , s) 6= p(r ′, s ′) for all primes

⇔ (r , s) mod pZ2 6= 0 for all primes

cut-and-project scheme (Sing 05)

number-theoretic sieve H =
∏

p Z2/pZ2

star map x? = (x mod pZ2)p

window W =
∏

p(Z2/pZ2) \ {0}
W = W since every component is closed

W̊ = ∅ since no component is maximal

hence W = ∂W
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a number theory quasicrystal

visible lattice points

hence volume of the window is

vol(W ) =
∏
p

(
1− 1

p2

)
=

1

ζ(2)

for a sequence (Br )r of balls about 0 one computes

dens(V ) = vol(W )

V is a weak model set. For the above averaging sequence, it
has maximal density!

This is similar to regular model sets, which have maximal
density for every van Hove sequence.
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pattern entropy

count point configurations in translates of B ⊂ R2

N∗B(V ) =
∣∣{x−1V ∩ B | x ∈ V }

∣∣
configurational entropy

h∗(V ) = lim sup
r→∞

1

vol(Br )
log N∗Br

(V )

alternatively, V may be viewed as a 01-colouring of Z2

N∗B(V ,Z2) = |{1x−1V∩B | x ∈ V }|

for a sequence (Br )r of balls about 0 one calculates

h∗(V ,Z2) = vol(∂W ) log 2!
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pattern entropy

pattern entropy of weak model sets

Theorem (R-Huck 14)

Let f(W ) be a weak model set, and let f(W ) ⊂ Λ0 for some
regular model set Λ0. Then

h∗(f(W )) ≤ h∗(f(W ),Λ0) ≤ dens(L) · vol(∂W ) · log 2

conjectured by Moody–Pleasants 06

geometric proof with standard estimate

also for non-commutative cp-schemes with L normal in G ×H

note:

regular model sets have 0 entropy

visible lattice points have maximal entropy
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proof

step 1: lift centered patterns to G × H

we bound

N∗B(f(W )) =
∣∣{x−1f(W ) ∩ B | x ∈f(W ) }

∣∣
(proof for N∗B(f(W ),Λ0) analogous)

bound number of G -inequivalent centered patterns in G

xB ∩f(W ), x ∈f(W )

bound no of (G × H)-inequivalent centered patterns in G × H

(xB ×W ) ∩ L = π−1G (xB ∩f(W )), x ∈f(W )
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proof

step 2: shift pattern centers to fundamental domain

fundamental domain F
choose cpct F × U such that (F × U)L = G × H

F × U contains fundamental domain F of L

shift (x , e) to fundamental domain F
`(x , e) = (y , u) for some (y , u) ∈ F and ` ∈ L
pattern center (x , x?) ∈ (G ×W ) ∩ L gets shifted to

`(x , x?) = (y , ux?) ∈ (F × UW ) ∩ L

shifted patterns

F compact, hence only finitely many values y = y(x)

shifted patterns with same y = y(x) are similar:

xB ∩f(W ) shifted to some subset of yB ∩f(UW )
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proof

step 2: shift pattern centers to fundamental domain

all such patterns differ only “near the boundary” of W , i.e., on

yB ∩f(∂UW )

hence a standard estimate yields

N∗B(f(W )) ≤ |(F × UW ) ∩ L| · 2|FB∩f(∂UW )|

for r →∞ the density formula yields

h∗(f(W )) ≤ lim sup
r→∞

1

vol(Br )

∣∣∣FBr ∩f(∂UW )
∣∣∣ · log 2

≤ dens(L) · vol(∂UW ) · log 2
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proof

step 3: choose arbitrarily thin fundamental domains

remember: as πH(L) is dense in H, we have

Lemma

Let (G ,H,L) be a cut-and-project scheme. Then for any
non-empty open U ⊂ H there exists compact F ⊂ G satisfying

(F × U)L = G × H.

as H is metrisable, we can use dominated convergence to infer

lim
U→{e}

vol(∂UW )→ vol(∂{e}W ) = vol(∂W ),

and the entropy estimate follows.
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outlook

observations:

visible lattice points are hereditary systems:
every subset of a pattern is a translated pattern

visible lattice points have maximal density

pattern entropy h∗(V ,Z2) equals topological entropy of the
hull XV = {tV | t ∈ R2} of V

hence:

study hereditary systems!

study weak model sets of maximal density!

study relation to topological entropy of Xf(W )
!
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