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diffraction and harmonic analysis

— motivation

harmonic analysis?

m harmonic analysis of LCA groups

m heavy machinery, but quick proofs of fundamental results
(density formula, pure point diffraction of regular model sets)

m standard tool for cut-and-project sets and Meyer sets

2/30



diffraction and harmonic analysis

— motivation

diffraction experiments

e I | s N K
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u laser or X-ray beam hits specimen (green)
» atoms emit diffraction waves (red)

= waves interfer and produce diffraction picture (purple)
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diffraction and harmonic analysis

— motivation

Fraunhofer diffraction

optics: Kirchhoff’s approximation

= atom in x emits diffraction wave, modelled by =27k

= waves interfer additively (structure factor)

m observed intensity on screen at position k is absolute square
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diffraction and harmonic analysis

— motivation

diffraction of the Fibonacci chain

Diffraktion fir N=10

Intensitat
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Wellenzahl
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diffraction and harmonic analysis

— motivation

diffraction of the Fibonacci chain

Diffraktion fir N=25
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Wellenzahl
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diffraction and harmonic analysis

— motivation

diffraction of the Fibonacci chain

Diffraktion fir N=100

Intensitat
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Wellenzahl
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diffraction and harmonic analysis

— motivation

diffraction of the Fibonacci chain

Diffraktion fir N=100

Intensitat
1/2
|

Wellenzahl

pure point diffractive?
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks

Diffraktion fir N=100

Intensitat
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m position of peak (0,1) = 0.723606. ..
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks

Diffraktion fir N=100

Intensitat
1/2
1

Wellenzahl

m positions of peaks: (0,1)/(1,0) = 1.618034...=: 7
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks

Diffraktion fir N=100

Intensitéat
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— (1,0

= peak positions: (m,n) = 1. (m+ nr) where c = 2.23606 ...
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks
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= peak positions: (m,n) = 1. (m+ nr) where c = 2.23606 ...
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks

Diffraktion fir N=100
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= peak positions: (m,n) = 1. (m+ nr) where c = 2.23606 ...
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diffraction and harmonic analysis

— motivation

Fibonacci chain diffraction: indexing Bragg peaks

Diffraktion fir N=100

(1.2)
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= peak positions: (m,n) = 1. (m+ nr) where c = 2.23606 ...
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diffraction and harmonic analysis

— motivation

mathematical diffraction theory

Let A uniformly discrete such that even AA~! is uniformly discrete
® w=>,cp0p Dirac comb of A
» infer diffraction of A from finite samples w, = w|g,
m convolution theorem yields Wiener diagram

E3 ~~
Wp ——— Wp * Wy

7| |

-2 o~ =
Wp —> Wh*Wh

&(f) = w(f) with F(x) = F(x 1)

identify Bragg peaks and continous components from the
Lebesgue decomposition of the limiting measure of &, - w,
m Fourier analysis of unbounded measures!
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diffraction and harmonic analysis

— motivation

mathematical diffraction theory

2

Wy —> Wy - Wy
m Assume that the autocorrelation v of w exists as a vague limit

v = lim ——wp * W,

n—c 0(B)

m Since 7 is positive definite, it is transformable, and by
continuity of the Fourier transform we have

. 1 ~ . 1 ~ : 1 =
7 (s g+ ) = 7 (agagen ) = i g
= We work with the autocorrelation as & may not be a measure.

m This is in contrast to the case A a lattice. -



diffraction and harmonic analysis

L Fourier analysis

Fourier analysis on LCA groups: setup

m g—compact LCA group G with Haar measure g

= inverse function: f(x) = f(x 1)
= convolution: for f, g € L}(G) define f + g € L}(G) by

Feg(x) = [ Fy)ely x) doc(y)

» character x : G — U(1) continuous group homomorphism
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diffraction and harmonic analysis

L Fourier analysis

Pontryagin dual G and Fourier transform

= G set of all characters with topology induced by
N(K,e)={xeG|VkeK:|x(k)—1] <&}

for non-empty compact K < G and £ > 0
u G LCA group with Haar measure 0

= Fourier transforms f,f : G — C of f € L}(G)

P = [ Foxmdoa, ) = [ FGox(e doia(x
= Normalise «9& such that Plancherel’'s formula

112 = [I1]2
is satisfied for all f € L1(G) n L?(G).
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diffraction and harmonic analysis

L Fourier analysis

Fourier analysis of unbounded measures

M(G) set of Borel measures on G

Definition (cf. Argabright—-de Lamadrid 74)

p € M(G) is transformable if there exists [i € M(a ) such that for
all f € C.(G) such that f € L*(G) we have

fel'(p), <uf) =ty

m Poisson summation formula

= /1 uniquely determined by p
= [i translation bounded, i.e., for every compact K < G

sup{|ul(tK) [t € G} < oo,

with |u| € M(G) the total variation measure of 4
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diffraction and harmonic analysis

L Fourier analysis

examples of transformable measures

® u positive definite, i.e., for all f € C.(G)

f fx F(x)du(x) =0

G

m for example: dp Dirac comb of a lattice A = G
Sp = dens(A) - dpo

with dual lattice A = {y € G| x(p) = 1Vp € A}

classical examples

» finite measures, positive definite fctns, LP-fctns for p € [1, 2]
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diffraction and harmonic analysis

L Fourier analysis

The function space KL(G)

KL(G) := {f e C.(G)|f e L}(G)}

Such functions are not rare:

u If f,g € L2(G) have compact support, then f * g € KL(G).
m example: 1y * 17\/ for relatively cpct measurable W < G.
» In fact KL(G) is dense in C.(G).
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diffraction and harmonic analysis

L Transformability and averages

character averages

Lemma

Let x € G. Then for every van Hove sequence (An)nen in G

, 1
nILmOO Ay f X(x) dO(x) = dy.e.

n

This is obvious for y = e. Consider x # e for the following proof.
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diffraction and harmonic analysis
LTransformability and averages

m By left invariance of the Haar measure and x(xy) = x(x)x(y)

f x(y) do(y) = L 14, ()X (xy) dB(y) = x(x) f x(y) do(y)

-14,

Due to the van Hove property of (A,)pen, we have

[ x01000) =~ [ )00t < 00024180 = of6(4,)

n

m Combining the above properties yields

1301 g [ 1010 = o)

n

» Lemma follows with x € G such that x(x) # 1. O
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diffraction and harmonic analysis
LTransformability and averages

The discrete part of i can be computed by averaging over p:

Proposition

Let yu € M(G) be transformable and translation bounded and
consider x € G. Then for every van Hove sequence (Ap)nen in G
we have

~ . 1 _
() = fim, s Ln R0 da(x)

history
= Argabright—de Lamadrid 90 for /i transformable
m Hof 95 for euclidean G

m Lenz 09 for u the autocorrelation measure
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diffraction and harmonic analysis
LTransformability and averages

= w.lo.g. for x = esince fi({x}) = (0,1 * 1)({e}) = u({e})
m smoothing of characteristic functions:

1

fn =——-1 ’ fn = fna
G(An) An ( )90 SO *

where o = 1) # ¢ with ¢ € C.(G) and {¢ = 1.
u Then (f;), € KL(G) by the above lemma, and PSF yields

ul(F)e) = i ((F),)
m Consider the limit n — o0 on the rhs: Since
(Fo(0) = by || = 11|
we can use dominated convergence to infer
lim 7 ((R)5) = Axe) = fil{e})
m Indeed by the previous lemma for y # e we have

200] < llells -

< I¢l,

Y| = 18001 f(0)| — 0
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diffraction and harmonic analysis
LTransformability and averages

Consider the limit n — o0 on the lhs of

ul(F)e) = i ((F),)

u f, and (f,), differ only near the boundary of A,, i.e.,
fo(x) # (fa)p(x) = x € KA,

where K = supp(y)

m Hence by a standard estimate

1l(0%An)
() = ((Fa))] < N1 = plloe - =572

m rhs vanishes by translation boundedness of 1 and by the van
Hove property of (Ap)nen- O
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diffraction and harmonic analysis

—model sets

reminder: model sets

assumptions: G, H o-cpct LCA groups, H metrisable
cut-and-project scheme with star map ()* : L — L*

G && GoxH ™ p

v () V)

1-1 . dense
L <«—— lattice L — L*

projection set via window W < H

A(W) ={xel|x*e W}
regular model set: W relatively cpct measurable, vol(0W) =0
(W +# 2)

We normalise Haar measure of H such that dens(£) = 1.
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diffraction and harmonic analysis

—model sets

dual cut-and-project schemes

duality theory for LCA groups leads to dual cut-and-project scheme

Theorem (dual cut-and-project scheme)

Let (G,H, L) be a cut-and-project scheme and let £0¢ G x H be

the lattice dual to L. Then (G H ,L£9) is also a cut-and-project
scheme.

m diffraction is described within the dual cut-and-project scheme
m for euclidean groups G~Gand H~ H
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diffraction and harmonic analysis

—model sets

weighted model sets and transformability

for cp scheme (G, H, L) and h: H — C define weighted model set

wh = Y h(x*)dx

xeL

Theorem (R-Strungaru)

Let (G, H, L) be a cut-and-project scheme and let h € KL(H).
Then wy, is a transformable measure with

—~

whp = wy,

Here wy, is the weighted model set of the dual cut-and-project
scheme (G, H, £°) with weight function h € L*(H).
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diffraction and harmonic analysis

—model sets

proof of transformability

for arbitrary g € KL(G) we have

(whig) = (Or. 8- hy = (0po - Ty = (wp. &)

first equation: 7G|, one-to-one
second equation: PSF and g - he KL(G x H).

third equation: 7ra|£0 one-to-one

equations also imply wj, € M(G) and g € L'(w;)

hence W, = wy by definition
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diffraction and harmonic analysis

Ldensity formula

weighted model sets and density formula

Theorem (density formula)

Let he C.(H). Then for every van Hove sequence (Ap)nen

. Wh(An) . x x
i S0~ L h(x)d6 ().

history

» Meyer 70's for euclidean G, H via PSF
(see also Matei-Meyer 10, Lev—Orlevskii 13)

m Schlottmann 98, geometric proof
m Moody 02 via dynamical systems
» Lenz-R 07 for “admissible” he L}_(H) via dynamical systems
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diffraction and harmonic analysis

Ldensity formula

weighted model sets and density formula

an immediate consequence:

Corollary

The density formula also holds for h = 1y where W < H is
relatively cpct measurable with almost no boundary 6 (0W) = 0.

Consider arbitrary € > 0.
m Since h is Riemann integrable, we find ¢, € C.(H) such that

pshsi | 000 = pl0)n(x) < 2/2
m The density formula yields for sufficiently large n the estimate

wy (An) wh(An) W (An)
—esear [u-ghgn < [npton <ep o peRn <
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diffraction and harmonic analysis

Ldensity formula

proof for he C.(H)

first step: proof for h € KL(H) by PSF
u Assume that he KL(H). Then & = wy and

h —~ . wp(Ap)
JH h(x)dp(x) = h(e) = wi({e}) = @a(fe}) = lim s

second step: extension to C.(H) by approximation
m Use that KL(H) is dense in C.(H).
» consider the uniformly discrete A = supp(wp) S G and note

_ 1

dens(A) = limsup ———

N =P s (A

» Take he C.(H), write K = supp(h) and fix some compact
unit neighborhood U in H.

N Ap| <0
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diffraction and harmonic analysis
Ldensity formula

For any g € KL(H) such that supp(g) < KU we then have for n
sufficiently large the estimate

wh(A,,)
L ) (x) - SO0 < L h(x)d0p(x) — L g(x)d0n ()| +
3 wg(An) wg(An) B wh(Ap)
+ |J, 800000 - GEG| + 9G(A ) B6(Ay)
<||h — gl (OH(KU) + 2 - dens(A U x)dfy(x) :52?:3‘

» Since KL(H) is dense in C.(H) we find g € KL(H) (of support
contained in KU) such that the first term in the above
estimate does not exceed ¢/2.

» by the density formula for KL(H) the second term is also
smaller than /2 if n is sufficiently large.

26 /30



diffraction and harmonic analysis

L diffraction

regular model sets are pure point diffractive

Theorem

Let (G, H, L) be a cut-and-project scheme, and let h = 1y for
W < H relatively cpct measurable and 0 (0W) = 0. Then the
weighted model set wy, has autocorrelation ~ and diffraction 5
given by

7= Whahe N = “ikp2

history
» Hof 95 via harmonic analysis (euclidean G, H)
m Schlottmann 00 via dynamical systems
m Baake—-Moody 04 via almost periodic measures
m R-Strungaru via PSF
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diffraction a

nd harmonic analysis

L diffraction

proof

m autocorrelation vy of wy, vague limit of finite ac measures

1
Yn = m Wh|B,, wh|B,, Znn

zel

where |4, denotes restriction w.r.t. any van Hove (Ap)qen and

Na(z) = I Z h(x*)h(x* — z*)

N xe AN(WA(W+2*))nA,

~—

# liMp_oo 7n(2) = h % h(z*) for all z € L by density formula

= as supp(y) uniformly discrete, y, converges to w, »

= since hx he KL(H), transform follows from PSF

28/30



diffraction and harmonic analysis

L diffraction

diffraction of the Fibonacci chain

w Zlt)={m+4+nt|mneZ}=1L

m peaks dense in G =R!

w star map: (m+ n7)* = m—n/T

= note that & does not exist as a measure since sin(x)/x is not
an L! function.
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diffraction and harmonic analysis

L diffraction
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