cut-and-project sets: diffraction and harmonic analysis

Christoph Richard, FAU Erlangen-Nürnberg Seminaire Lotharingien de Combinatoire, March 2015

harmonic analysis?

- harmonic analysis of LCA groups
- heavy machinery, but quick proofs of fundamental results (density formula, pure point diffraction of regular model sets)
- standard tool for cut-and-project sets and Meyer sets

diffraction experiments

- laser or X-ray beam hits specimen (green)
- atoms emit diffraction waves (red)
- waves interfer and produce diffraction picture (purple)

Fraunhofer diffraction

optics: Kirchhoff's approximation

- atom in x emits diffraction wave, modelled by $e^{-2\pi i k \cdot x}$
- waves interfer additively (structure factor)
- observed intensity on screen at position k is absolute square

pure point diffractive?

• position of peak $(0,1) \stackrel{\frown}{=} 0.723606...$

• positions of peaks: $(0,1)/(1,0) \stackrel{<}{=} 1.618034\ldots =: \tau$

• peak positions: $(m, n) \stackrel{\frown}{=} \frac{1}{c} \cdot (m + n\tau)$ where c = 2.23606...

• peak positions: $(m, n) \stackrel{\frown}{=} \frac{1}{c} \cdot (m + n\tau)$ where c = 2.23606...

• peak positions: $(m, n) \stackrel{\frown}{=} \frac{1}{c} \cdot (m + n\tau)$ where c = 2.23606...

6/30

• peak positions: $(m, n) \stackrel{\frown}{=} \frac{1}{c} \cdot (m + n\tau)$ where c = 2.23606...

mathematical diffraction theory

Let Λ uniformly discrete such that even $\Lambda\Lambda^{-1}$ is uniformly discrete

•
$$\omega = \sum_{p \in \Lambda} \delta_p$$
 Dirac comb of Λ

- infer diffraction of Λ from finite samples $\omega_n = \omega|_{B_n}$
- convolution theorem yields Wiener diagram

$$\widetilde{\omega}(f) = \omega(\widetilde{f})$$
 with $\widetilde{f}(x) = \overline{f(x^{-1})}$

identify Bragg peaks and continous components from the Lebesgue decomposition of the limiting measure of \$\overline{\overl

mathematical diffraction theory

Assume that the *autocorrelation* γ of ω exists as a vague limit

$$\gamma = \lim_{n \to \infty} \frac{1}{\theta(B_n)} \omega_n * \widetilde{\omega_n}$$

Since γ is positive definite, it is transformable, and by continuity of the Fourier transform we have

$$\mathcal{F}\left(\lim_{n\to\infty}\frac{1}{\theta(B_n)}\omega_n\ast\widetilde{\omega_n}\right) = \lim_{n\to\infty}\mathcal{F}\left(\frac{1}{\theta(B_n)}\omega_n\ast\widetilde{\omega_n}\right) = \lim_{n\to\infty}\frac{1}{\theta(B_n)}\widehat{\omega_n}\cdot\overline{\widetilde{\omega_n}}$$

We work with the autocorrelation as ω̂ may not be a measure.
This is in contrast to the case Λ a lattice.

Fourier analysis on LCA groups: setup

- σ -compact LCA group G with Haar measure θ_G
- inverse function: $\tilde{f}(x) = \overline{f(x^{-1})}$
- convolution: for $f, g \in L^1(G)$ define $f * g \in L^1(G)$ by

$$f * g(x) = \int f(y)g(y^{-1}x) \,\mathrm{d}\theta_G(y)$$

• character $\chi: \mathcal{G} \to \mathbb{U}(1)$ continuous group homomorphism

diffraction and harmonic analysis

Pontryagin dual \widehat{G} and Fourier transform

• \widehat{G} set of all characters with topology induced by

$$N(K,\varepsilon) = \{\chi \in \widehat{G} \mid \forall k \in K : |\chi(k) - 1| < \varepsilon\}$$

for non-empty compact $K \subset G$ and $\varepsilon > 0$ **G** LCA group with Haar measure $\theta_{\hat{c}}$

• Fourier transforms $\hat{f}, \check{f}: \hat{G} \to \mathbb{C}$ of $f \in L^1(G)$

$$\widehat{f}(\chi) = \int_{\mathcal{G}} f(x) \overline{\chi(x)} \, \mathrm{d}\theta_{\mathcal{G}}(x), \qquad \widecheck{f}(\chi) = \int_{\mathcal{G}} f(x) \chi(x) \, \mathrm{d}\theta_{\mathcal{G}}(x)$$

Normalise $\theta_{\hat{G}}$ such that Plancherel's formula

$$||f||_2 = ||\hat{f}||_2$$

is satisfied for all $f \in L^1(G) \cap L^2(G)$.

Fourier analysis of unbounded measures

 $\mathcal{M}(\mathit{G})$ set of Borel measures on G

Definition (cf. Argabright-de Lamadrid 74)

 $\mu \in \mathcal{M}(G)$ is transformable if there exists $\hat{\mu} \in \mathcal{M}(\hat{G})$ such that for all $f \in C_c(G)$ such that $\check{f} \in L^1(\hat{G})$ we have

$$\check{f} \in L^1(\widehat{\mu}), \qquad \left\langle \mu, f \right\rangle = \left\langle \widehat{\mu}, \check{f} \right\rangle.$$

- Poisson summation formula
- $\blacksquare \ \widehat{\mu}$ uniquely determined by μ
- $\hat{\mu}$ translation bounded, i.e., for every compact $K \subset G$

$$\sup\{|\mu|(tK) \mid t \in G\} < \infty,$$

with $|\mu| \in \mathcal{M}(G)$ the total variation measure of μ

examples of transformable measures

• μ positive definite, i.e., for all $f \in C_c(G)$

$$\int_{G} f * \widetilde{f}(x) \, \mathrm{d}\mu(x) \ge 0$$

• for example: δ_{Λ} Dirac comb of a lattice $\Lambda \subset G$

$$\widehat{\delta_{\Lambda}} = \operatorname{dens}(\Lambda) \cdot \delta_{\Lambda^0}$$

with dual lattice $\Lambda^0=\{\chi\in\,\widehat{G}\mid \chi(p)=1\forall p\in\Lambda\}$

classical examples

finite measures, positive definite fctns, L^p -fctns for $p \in [1, 2]$

The function space KL(G)

$$KL(G) := \{ f \in C_c(G) \mid \widehat{f} \in L^1(\widehat{G}) \}$$

Such functions are not rare:

If f, g ∈ L²(G) have compact support, then f * g ∈ KL(G).
example: 1_W * 1_W for relatively cpct measurable W ⊂ G.
In fact KL(G) is dense in C_c(G).

character averages

Lemma

Let $\chi \in \widehat{G}$. Then for every van Hove sequence $(A_n)_{n \in \mathbb{N}}$ in G

$$\lim_{n\to\infty}\frac{1}{\theta(A_n)}\int_{A_n}\chi(x)\,\mathrm{d}\theta(x)=\delta_{\chi,e}.$$

This is obvious for $\chi = e$. Consider $\chi \neq e$ for the following proof.

By left invariance of the Haar measure and $\chi(xy) = \chi(x)\chi(y)$

$$\int_{A_n} \chi(y) \, \mathrm{d}\theta(y) = \int_G \mathbf{1}_{A_n}(xy) \chi(xy) \, \mathrm{d}\theta(y) = \chi(x) \int_{x^{-1}A_n} \chi(y) \, \mathrm{d}\theta(y)$$

Due to the van Hove property of $(A_n)_{n \in \mathbb{N}}$, we have

$$\left|\int_{x^{-1}A_n}\chi(y)\,\mathrm{d}\theta(y)-\int_{A_n}\chi(y)\,\mathrm{d}\theta(y)\right|\leqslant\theta((x^{-1}A_n)\Delta A_n)=o(\theta(A_n))$$

Combining the above properties yields

$$|1 - \chi(x)| \cdot \left| \frac{1}{\theta(A_n)} \int_{A_n} \chi(y) \, \mathrm{d}\theta(y) \right| = o(1)$$

• Lemma follows with $x \in G$ such that $\chi(x) \neq 1$.

The discrete part of $\hat{\mu}$ can be computed by averaging over μ :

Proposition

Let $\mu \in \mathcal{M}(G)$ be transformable and translation bounded and consider $\chi \in \widehat{G}$. Then for every van Hove sequence $(A_n)_{n \in \mathbb{N}}$ in G we have

$$\widehat{\mu}(\{\chi\}) = \lim_{n \to \infty} \frac{1}{\theta(A_n)} \int_{A_n} \overline{\chi}(x) \mathrm{d}\mu(x)$$

history

- Argabright–de Lamadrid 90 for $\widehat{\mu}$ transformable
- Hof 95 for euclidean G
- Lenz 09 for μ the autocorrelation measure

w.l.o.g. for χ = e since μ̂({χ}) = (δ_{χ⁻¹} * μ̂)({e}) = x̄μ({e})
 smoothing of characteristic functions:

$$f_n = \frac{1}{\theta(A_n)} \cdot 1_{A_n}, \qquad (f_n)_{\varphi} = \varphi * f_n,$$

where $\varphi = \psi * \widetilde{\psi}$ with $\psi \in C_c(G)$ and $\int \psi = 1$.

• Then $(f_n)_{\varphi} \in KL(G)$ by the above lemma, and PSF yields

$$\mu((f_n)_{\varphi}) = \widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)$$

• Consider the limit $n \to \infty$ on the rhs: Since

$$\widetilde{(f_n)_{\varphi}}(\chi) \to \delta_{\chi,e}, \qquad \left| \widetilde{(f_n)_{\varphi}} \right| = |\breve{\varphi}| \cdot \left| \check{f_n} \right| \leqslant |\breve{\varphi}|,$$

we can use dominated convergence to infer

$$\lim_{n\to\infty}\widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)=\widehat{\mu}(\delta_{\chi,e})=\widehat{\mu}(\{e\})$$

Indeed by the previous lemma for $\chi \neq e$ we have

$$\left| \widecheck{(f_n)_{\varphi}}(\chi) \right| = \left| \widecheck{\varphi}(\chi) \right| \cdot \left| \widecheck{f}_n(\chi) \right| \le \left| |\varphi| |_1 \cdot \left| \widecheck{f}_n(\chi) \right| \to 0$$

Consider the limit $n \to \infty$ on the lhs of

$$\mu((f_n)_{\varphi}) = \widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)$$

• f_n and $(f_n)_{\varphi}$ differ only near the boundary of A_n , i.e.,

$$f_n(x) \neq (f_n)_{\varphi}(x) \Longrightarrow x \in \partial^K A_n$$

where $K = \operatorname{supp}(\varphi)$

Hence by a standard estimate

$$|\mu(f_n) - \mu((f_n)_{\varphi})| \leq ||1 - \varphi||_{\infty} \cdot \frac{|\mu|(\partial^{K} A_n)}{\theta(A_n)}$$

 rhs vanishes by translation boundedness of µ and by the van Hove property of (A_n)_{n∈ℕ}.

reminder: model sets

assumptions: $G, H \sigma$ -cpct LCA groups, H metrisable

cut-and-project scheme with star map $()^* : L \to L^*$

projection set via window $W \subset H$

$$\wedge(W) = \{x \in L \mid x^* \in W\}$$

regular model set: W relatively cpct measurable, $\mathrm{vol}(\partial W)=0$ ($\mathring{W}\neq\varnothing)$

We normalise Haar measure of H such that $dens(\mathcal{L}) = 1$.

dual cut-and-project schemes

duality theory for LCA groups leads to dual cut-and-project scheme

Theorem (dual cut-and-project scheme)

Let (G, H, \mathcal{L}) be a cut-and-project scheme and let $\mathcal{L}^0 \in \widehat{G} \times \widehat{H}$ be the lattice dual to \mathcal{L} . Then $(\widehat{G}, \widehat{H}, \mathcal{L}^0)$ is also a cut-and-project scheme.

diffraction is described within the dual cut-and-project scheme
 for euclidean groups G ~ G and H ~ H

weighted model sets and transformability

for cp scheme (G, H, \mathcal{L}) and $h: H \to \mathbb{C}$ define weighted model set

$$\omega_h = \sum_{\mathbf{x} \in L} h(\mathbf{x}^\star) \delta_{\mathbf{x}}$$

Theorem (R-Strungaru)

Let (G, H, \mathcal{L}) be a cut-and-project scheme and let $h \in KL(H)$. Then ω_h is a transformable measure with

$$\widehat{\omega_h} = \omega_{\widecheck{h}}$$

Here $\omega_{\check{h}}$ is the weighted model set of the dual cut-and-project scheme $(\hat{G}, \hat{H}, \mathcal{L}^0)$ with weight function $\check{h} \in L^1(\hat{H})$.

proof of transformability

for arbitrary $g \in KL(G)$ we have

$$\langle \omega_h, g \rangle = \langle \delta_{\mathcal{L}}, g \cdot h \rangle = \langle \delta_{\mathcal{L}^0}, \check{g} \cdot \check{h} \rangle = \langle \omega_{\check{h}}, \check{g} \rangle$$

- first equation: $\pi_G|_{\mathcal{L}}$ one-to-one
- second equation: PSF and $g \cdot h \in KL(G \times H)$.
- third equation: $\pi_{\hat{G}}|_{\mathcal{C}^0}$ one-to-one
- equations also imply $\omega_h \in \mathcal{M}(G)$ and $\check{g} \in L^1(\omega_{\check{h}})$

• hence
$$\widehat{\omega_h} = \omega_{\check{h}}$$
 by definition

weighted model sets and density formula

Theorem (density formula)

Let $h \in C_c(H)$. Then for every van Hove sequence $(A_n)_{n \in \mathbb{N}}$

$$\lim_{n\to\infty}\frac{\omega_h(A_n)}{\theta_G(A_n)}=\int_H h(x)\mathrm{d}\theta_H(x).$$

history

- Meyer 70's for euclidean G, H via PSF (see also Matei-Meyer 10, Lev-Orlevskii 13)
- Schlottmann 98, geometric proof
- Moody 02 via dynamical systems
- Lenz–R 07 for "admissible" $h \in L^1_{bc}(H)$ via dynamical systems

weighted model sets and density formula

an immediate consequence:

Corollary

The density formula also holds for $h = 1_W$ where $W \subset H$ is relatively cpct measurable with almost no boundary $\theta_H(\partial W) = 0$.

Consider arbitrary $\varepsilon > 0$.

Since h is Riemann integrable, we find $\varphi, \psi \in C_c(H)$ such that

$$\varphi \leq h \leq \psi, \qquad \int_{H} (\psi(x) - \varphi(x)) \mathrm{d}\theta_{H}(x) \leq \varepsilon/2$$

The density formula yields for sufficiently large *n* the estimate

$$-\varepsilon \leqslant -\varepsilon/2 + \int \psi - \frac{\omega_{\psi}(A_n)}{\theta_G(A_n)} \leqslant \int h - \frac{\omega_h(A_n)}{\theta_G(A_n)} \leqslant \varepsilon/2 + \int \varphi - \frac{\omega_{\varphi}(A_n)}{\theta_G(A_n)} \leqslant \varepsilon$$

proof for $h \in C_c(H)$

first step: proof for $h \in KL(H)$ by PSF

Assume that $h \in KL(H)$. Then $\widehat{\omega}_h = \omega_{\check{h}}$ and

$$\int_{H} h(x) \mathrm{d}\theta_{H}(x) = \check{h}(e) = \omega_{\check{h}}(\{e\}) = \widehat{\omega_{h}}(\{e\}) = \lim_{n \to \infty} \frac{\omega_{h}(A_{n})}{\theta(A_{n})}$$

second step: extension to $C_c(H)$ by approximation

- Use that KL(H) is dense in $C_c(H)$.
- consider the uniformly discrete $\Lambda = \operatorname{supp}(\omega_h) \subseteq G$ and note

$$\overline{\mathrm{dens}}(\Lambda) = \limsup_{n \to \infty} \frac{1}{\theta_G(A_n)} |\Lambda \cap A_n| < \infty$$

Take h ∈ C_c(H), write K = supp(h) and fix some compact unit neighborhood U in H. For any $g \in KL(H)$ such that $supp(g) \subseteq KU$ we then have for *n* sufficiently large the estimate

$$\begin{aligned} \left| \int_{H} h(x) \mathrm{d}\theta_{H}(x) - \frac{\omega_{h}(A_{n})}{\theta_{G}(A_{n})} \right| &\leq \left| \int_{H} h(x) \mathrm{d}\theta_{H}(x) - \int_{H} g(x) \mathrm{d}\theta_{H}(x) \right| + \\ &+ \left| \int_{H} g(x) \mathrm{d}\theta_{H}(x) - \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} \right| + \left| \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} - \frac{\omega_{h}(A_{n})}{\theta_{G}(A_{n})} \right| \\ &\leq ||h - g||_{\infty} \left(\theta_{H}(\mathcal{K}U) + 2 \cdot \overline{\mathrm{dens}}(\Lambda) \right) + \left| \int_{H} g(x) \mathrm{d}\theta_{H}(x) - \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} \right| \end{aligned}$$

- Since KL(H) is dense in C_c(H) we find g ∈ KL(H) (of support contained in KU) such that the first term in the above estimate does not exceed ε/2.
- by the density formula for KL(H) the second term is also smaller than ε/2 if n is sufficiently large.

regular model sets are pure point diffractive

Theorem

Let (G, H, \mathcal{L}) be a cut-and-project scheme, and let $h = 1_W$ for $W \subset H$ relatively cpct measurable and $\theta_H(\partial W) = 0$. Then the weighted model set ω_h has autocorrelation γ and diffraction $\hat{\gamma}$ given by

$$\gamma = \omega_{h*\widetilde{h}}, \qquad \widehat{\gamma} = \omega_{|\widecheck{h}|^2}$$

history

- Hof 95 via harmonic analysis (euclidean G, H)
- Schlottmann 00 via dynamical systems
- Baake–Moody 04 via almost periodic measures
- R–Strungaru via PSF

proof

• autocorrelation γ of ω_h vague limit of finite ac measures

$$\gamma_n = \frac{1}{\theta(A_n)} \omega_h|_{B_n} * \widetilde{\omega_h}|_{B_n} = \sum_{z \in L} \eta_n(z) \delta_z,$$

where $|_{A_n}$ denotes restriction w.r.t. any van Hove $(A_n)_{n\in\mathbb{N}}$ and

$$\eta_n(z) = \frac{1}{\theta_G(A_n)} \sum_{x \in \Lambda(W \cap (W+z^*)) \cap A_n} h(x^*) \overline{h(x^*-z^*)}$$

lim_{n→∞} η_n(z) = h * h̃(z^{*}) for all z ∈ L by density formula
as supp(γ) uniformly discrete, γ_n converges to ω_{h*h̃}
since h * h̃ ∈ KL(H), transform follows from PSF

$$\widehat{\gamma} = \sum_{k \in \mathbb{Z}[\tau]/\sqrt{5}} \left(\frac{\tau}{\sqrt{5}}\right)^2 \left(\frac{\sin(\pi\tau k^\star)}{\pi\tau k^\star}\right)^2 \delta_k$$

$$\mathbf{Z}[\tau] = \{m + n\tau \mid m, n \in \mathbb{Z}\} = L$$

- peaks dense in $\widehat{G} = \mathbb{R}!$
- star map: $(m + n\tau)^{\star} = m n/\tau$
- note that \(\hlow\) does not exist as a measure since sin(x)/x is not an L¹ function.

references

- L.N. Argabright and J. Gil de Lamadrid, Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the Amer. Math. Soc. 145 (1974).
- C. Berg and G. Forst, *Potential theory on locally compact abelian groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete 87, Springer (1975).
- A. Deitmar and S. Echterhoff, *Principles of harmonic analysis*, Springer (2009).
- R.V. Moody, Meyer sets and their duals, in: The mathematics of long-range aperiodic order (ed R.V. Moody), NATO ASI Series C489, Kluwer (1997), 403–441.
- A. Hof, On diffraction by aperiodic structures, Comm. Math. Phys. 169 (1995), 25–43.
- M. Baake and R.V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. 573 (2004), 61–94.
- C. Richard and N. Strungaru, *Poisson summation and pure point diffraction* (2015), in preparation.