cut-and-project sets: diffraction and harmonic analysis

Christoph Richard, FAU Erlangen-Nürnberg Seminaire Lotharingien de Combinatoire, March 2015

harmonic analysis?

- **harmonic analysis of LCA groups**
- **heavy machinery, but quick proofs of fundamental results** (density formula, pure point diffraction of regular model sets)
- standard tool for cut-and-project sets and Meyer sets

diffraction experiments

- T_{r} laser or Y ray beam bits speciment (green) \blacksquare laser or X -ray beam hits specimen (green)
- \blacksquare atoms emit diffraction waves (red)
- \blacksquare waves interfer and produce diffraction picture (purple) from the object. By another lens, this pattern is mapped on the pink \mathcal{L}_{max}

Fraunhofer diffraction

optics: Kirchhoff's approximation

- atom in x emits diffraction wave, modelled by $e^{-2\pi i\,k\cdot x}$
- **u** waves interfer additively (structure factor)
- observed intensity on screen at position k is absolute square

5 / 30

pure point diffractive?

position of peak $(0, 1) \hat{=} 0.723606...$

p positions of peaks: $(0, 1)/(1, 0) \approx 1.618034... = : \tau$

mathematical diffraction theory

Let Λ uniformly discrete such that even ΛΛ $^{-1}$ is uniformly discrete

$$
\blacksquare \omega = \sum_{p \in \Lambda} \delta_p \text{ Dirac comb of } \Lambda
$$

- infer diffraction of Λ from finite samples $\omega_n = \omega|_{B_n}$
- convolution theorem yields Wiener diagram

 \blacksquare identify Bragg peaks and continous components from the Lebesgue decomposition of the limiting measure of $\widehat{\omega}_n \cdot \overline{\widehat{\omega}_n}$ **Fourier analysis of unbounded measures!**

mathematical diffraction theory

Assume that the *autocorrelation* γ of ω exists as a vague limit

$$
\gamma = \lim_{n \to \infty} \frac{1}{\theta(B_n)} \omega_n * \widetilde{\omega_n}
$$

Since γ is positive definite, it is transformable, and by continuity of the Fourier transform we have

$$
\mathcal{F}\left(\lim_{n\to\infty}\frac{1}{\theta(B_n)}\omega_n*\widetilde{\omega_n}\right)=\lim_{n\to\infty}\mathcal{F}\left(\frac{1}{\theta(B_n)}\omega_n*\widetilde{\omega_n}\right)=\lim_{n\to\infty}\frac{1}{\theta(B_n)}\widetilde{\omega_n}\overline{\widetilde{\omega_n}}
$$

We work with the autocorrelation as $\hat{\omega}$ may not be a measure. This is in contrast to the case Λ a lattice.

Fourier analysis on LCA groups: setup

- \blacksquare σ -compact LCA group G with Haar measure θ_G
- inverse function: $\widetilde{f}(x) = \overline{f(x^{-1})}$
- convolution: for $f,g\in L^1(G)$ define $f*g\in L^1(G)$ by

$$
f * g(x) = \int f(y)g(y^{-1}x) d\theta_G(y)
$$

n character $\chi : G \to \mathbb{U}(1)$ continuous group homomorphism

Pontryagin dual \hat{G} and Fourier transform

 \hat{G} set of all characters with topology induced by

$$
N(K,\varepsilon)=\{\chi\in \widehat{G}\,|\,\forall k\in K:|\chi(k)-1|<\varepsilon\}
$$

for non-empty compact $K \subset G$ and $\varepsilon > 0$ G LCA group with Haar measure $\theta_{\widehat{G}}$ Fourier transforms \widehat{f} , \widehat{f} : $\widehat{G} \to \mathbb{C}$ of $f \in L^1(G)$

$$
\widehat{f}(\chi) = \int_G f(x) \overline{\chi(x)} \, d\theta_G(x), \qquad \widecheck{f}(\chi) = \int_G f(x) \chi(x) \, d\theta_G(x)
$$

Normalise $\theta_{\hat{c}}$ such that Plancherel's formula

$$
||f||_2=||\widehat{f}||_2
$$

is satisfied for all $f \in L^1(G) \cap L^2(G)$.

Fourier analysis of unbounded measures

 $\mathcal{M}(G)$ set of Borel measures on G

Definition (cf. Argabright–de Lamadrid 74)

 $\mu \in \mathcal{M}(G)$ is transformable if there exists $\widehat{\mu} \in \mathcal{M}(\widehat{G})$ such that for all $f \in C_c(G)$ such that $\breve{f} \in L^1(\widehat{G})$ we have

$$
\breve{f} \in L^1(\widehat{\mu}), \qquad \langle \mu, f \rangle = \langle \widehat{\mu}, \breve{f} \rangle.
$$

- **Poisson summation formula**
- $\hat{\mu}$ uniquely determined by μ
- \Box $\widehat{\mu}$ translation bounded, i.e., for every compact $K\subset G$

$$
\sup\{|\mu|(tK)\,|\,t\in G\}<\infty,
$$

with $|\mu| \in \mathcal{M}(G)$ the total variation measure of μ

examples of transformable measures

 μ positive definite, i.e., for all $f \in C_c(G)$

$$
\int_G f * \widetilde{f}(x) \, \mathrm{d}\mu(x) \geq 0
$$

For example: δ_{Λ} Dirac comb of a lattice $\Lambda \subset G$

$$
\widehat{\delta_\Lambda}=\mathrm{dens}(\Lambda)\cdot\delta_{\Lambda^0}
$$

with dual lattice $\Lambda^0 = \{ \chi \in \widehat{G} | \chi(p) = 1 \forall p \in \Lambda \}$

classical examples

finite measures, positive definite fctns, L^p -fctns for $p \in [1,2]$

The function space $KL(G)$

$$
\textit{KL}(\textit{G}):=\{f\in \textit{C}_c(\textit{G})\,|\, \widehat{f}\in \textit{L}^1(\widehat{G})\}
$$

Such functions are not rare:

If $f, g \in L^2(G)$ have compact support, then $f * g \in KL(G)$. **E** example: $1_W * 1_W$ for relatively cpct measurable $W \subset G$. In fact $KL(G)$ is dense in $C_c(G)$.

character averages

Lemma

Let $\chi \in \widehat{G}$. Then for every van Hove sequence $(A_n)_{n\in\mathbb{N}}$ in G

$$
\lim_{n \to \infty} \frac{1}{\theta(A_n)} \int_{A_n} \chi(x) \,d\theta(x) = \delta_{\chi,e}.
$$

This is obvious for $\chi = e$. Consider $\chi \neq e$ for the following proof.

By left invariance of the Haar measure and $\chi(xy) = \chi(x)\chi(y)$

$$
\int_{A_n} \chi(y) d\theta(y) = \int_G 1_{A_n}(xy) \chi(xy) d\theta(y) = \chi(x) \int_{x^{-1}A_n} \chi(y) d\theta(y)
$$

Due to the van Hove property of $(A_n)_{n\in\mathbb{N}}$, we have

$$
\left| \int_{x^{-1}A_n} \chi(y) \,d\theta(y) - \int_{A_n} \chi(y) \,d\theta(y) \right| \leq \theta((x^{-1}A_n)\Delta A_n) = o(\theta(A_n))
$$

■ Combining the above properties yields

$$
\left|1 - \chi(x)\right| \cdot \left|\frac{1}{\theta(A_n)} \int_{A_n} \chi(y) \,d\theta(y)\right| = o(1)
$$

Lemma follows with $x \in G$ **such that** $\chi(x) \neq 1$ **.**

The discrete part of $\hat{\mu}$ can be computed by averaging over μ :

Proposition

Let $\mu \in \mathcal{M}(G)$ be transformable and translation bounded and consider $\chi \in \widehat{G}$. Then for every van Hove sequence $(A_n)_{n\in\mathbb{N}}$ in G we have

$$
\widehat{\mu}(\{\chi\}) = \lim_{n \to \infty} \frac{1}{\theta(A_n)} \int_{A_n} \overline{\chi}(x) d\mu(x)
$$

history

- Argabright–de Lamadrid 90 for $\hat{\mu}$ transformable
- **Hof 95 for euclidean G**
- **Lenz 09 for** μ **the autocorrelation measure**

u w.l.o.g. for $\chi = e$ since $\hat{\mu}(\{\chi\}) = (\delta_{\chi^{-1}} * \hat{\mu})(\{e\}) = \hat{\overline{\chi}\mu}(\{e\})$ **shoothing of characteristic functions:**

$$
f_n = \frac{1}{\theta(A_n)} \cdot 1_{A_n}, \qquad (f_n)_{\varphi} = \varphi * f_n,
$$

where $\varphi = \psi * \widetilde{\psi}$ with $\psi \in \mathcal{C}_{\textsf{c}}(\mathcal{G})$ and $\int \psi = 1$.

Then $(f_n)_\varphi \in KL(G)$ by the above lemma, and PSF yields

$$
\mu((f_n)_{\varphi}) = \widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)
$$

Consider the limit $n \to \infty$ on the rhs: Since

$$
\widetilde{(f_n)_{\varphi}}(\chi) \to \delta_{\chi, e}, \qquad \left| \widetilde{(f_n)_{\varphi}} \right| = |\breve{\varphi}| \cdot \left| \breve{f_n} \right| \leq |\breve{\varphi}|,
$$

we can use dominated convergence to infer

$$
\lim_{n\to\infty}\widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)=\widehat{\mu}(\delta_{\chi,e})=\widehat{\mu}(\{e\})
$$

Indeed by the previous lemma for $\chi \neq e$ we have

$$
\left| \widetilde{(f_n)_{\varphi}}(\chi) \right| = \left| \check{\varphi}(\chi) \right| \cdot \left| \check{f}_n(\chi) \right| \leq ||\varphi||_1 \cdot \left| \check{f}_n(\chi) \right| \to 0 \qquad \qquad \text{as} \qquad \text{as
$$

Consider the limit $n \to \infty$ on the lhs of

$$
\mu((f_n)_{\varphi}) = \widehat{\mu}\left(\widecheck{(f_n)_{\varphi}}\right)
$$

n f_n and $(f_n)_{\varphi}$ differ only near the boundary of A_n , i.e.,

$$
f_n(x) \neq (f_n)_{\varphi}(x) \Longrightarrow x \in \partial^K A_n
$$

where $K = \text{supp}(\varphi)$

 \blacksquare Hence by a standard estimate

$$
|\mu(f_n) - \mu((f_n)_{\varphi})| \leq ||1 - \varphi||_{\infty} \cdot \frac{|\mu|(\partial^K A_n)}{\theta(A_n)}
$$

n rhs vanishes by translation boundedness of μ and by the van Hove property of $(A_n)_{n\in\mathbb{N}}$.

reminder: model sets

assumptions: G, H σ -cpct LCA groups, H metrisable

cut-and-project scheme with star map $()^* : L \rightarrow L^*$

$$
G \xrightarrow{\pi_G} G \times H \xrightarrow{\pi_H} H
$$

\n
$$
L \xleftarrow{1-1} \text{lattice } L \xrightarrow{\text{dense}} L^*
$$

projection set via window $W \subset H$

$$
\wedge (W) = \{x \in L \,|\, x^\star \in W\}
$$

regular model set: W relatively cpct measurable, $vol(\partial W) = 0$ $(W \neq \varnothing)$

We normalise Haar measure of H such that $dens(\mathcal{L}) = 1$.

dual cut-and-project schemes

duality theory for LCA groups leads to dual cut-and-project scheme

Theorem (dual cut-and-project scheme)

Let (G, H, \mathcal{L}) be a cut-and-project scheme and let $\mathcal{L}^0 \in \hat{G} \times \hat{H}$ be the lattice dual to $\mathcal L$. Then $(\widehat G,\widehat H,\mathcal L^0)$ is also a cut-and-project scheme.

diffraction is described within the dual cut-and-project scheme **F** for euclidean groups $\widehat{G} \simeq G$ and $\widehat{H} \simeq H$

weighted model sets and transformability

for cp scheme (G, H, \mathcal{L}) and $h : H \to \mathbb{C}$ define weighted model set

$$
\omega_h = \sum_{x \in L} h(x^*) \delta_x
$$

Theorem (R-Strungaru)

Let (G, H, \mathcal{L}) be a cut-and-project scheme and let $h \in KL(H)$. Then ω_h is a transformable measure with

$$
\widehat{\omega_h} = \omega_{\widecheck{h}}
$$

Here $\omega_{\tilde{h}}$ is the weighted model set of the dual cut-and-project scheme $(\widehat{G}, \widehat{H}, \mathcal{L}^0)$ with weight function $\widecheck{h} \in L^1(\widehat{H})$.

proof of transformability

for arbitrary $g \in KL(G)$ we have

$$
\big<\omega_h,g\big> = \big<\delta_{\mathcal{L}},g\cdot h\big> = \big<\delta_{\mathcal{L}^0},\breve{g}\cdot \breve{h}\big> = \big<\omega_{\breve{h}},\breve{g}\big>
$$

- first equation: $\left.\pi_{\mathcal{G}}\right|_{\mathcal{L}}$ one-to-one
- second equation: PSF and $g \cdot h \in KL(G \times H)$.
- third equation: $\pi_{\widehat{\mathsf{G}}}|_{\mathcal{L}^0}$ one-to-one
- equations also imply $\omega_h \in \mathcal{M}(G)$ and $\breve{\mathsf{g}} \in L^1(\omega_{\breve{h}})$
- **h** hence $\widehat{\omega_h} = \omega_{\widetilde{h}}$ by definition

weighted model sets and density formula

Theorem (density formula)

Let $h \in C_c(H)$. Then for every van Hove sequence $(A_n)_{n\in\mathbb{N}}$

$$
\lim_{n\to\infty}\frac{\omega_h(A_n)}{\theta_G(A_n)}=\int_H h(x)\mathrm{d}\theta_H(x).
$$

history

- **Meyer 70's for euclidean** G, H **via PSF** (see also Matei–Meyer 10, Lev–Orlevskii 13)
- Schlottmann 98, geometric proof
- **Moody 02 via dynamical systems**
- Lenz–R 07 for "admissible" $h \in L^{1}_{bc}(H)$ via dynamical systems

weighted model sets and density formula

an immediate consequence:

Corollary

The density formula also holds for $h = 1_W$ where $W \subset H$ is relatively cpct measurable with almost no boundary $\theta_H(\partial W) = 0$.

Consider arbitrary $\varepsilon > 0$.

■ Since h is Riemann integrable, we find $\varphi, \psi \in C_c(H)$ such that

$$
\varphi \leq h \leq \psi, \qquad \int_H (\psi(x) - \varphi(x)) \mathrm{d}\theta_H(x) \leq \varepsilon/2
$$

The density formula yields for sufficiently large n the estimate

$$
-\varepsilon \leq -\varepsilon/2 + \int \psi - \frac{\omega_{\psi}(A_n)}{\theta_G(A_n)} \leq \int h - \frac{\omega_h(A_n)}{\theta_G(A_n)} \leq \varepsilon/2 + \int \varphi - \frac{\omega_{\varphi}(A_n)}{\theta_G(A_n)} \leq \varepsilon
$$

proof for $h \in C_c(H)$

first step: proof for $h \in KL(H)$ by PSF

Assume that $h \in KL(H)$ **. Then** $\hat{\omega}_h = \omega_{\tilde{h}}$ **and**

$$
\int_H h(x) \mathrm{d}\theta_H(x) = \check{h}(e) = \omega_{\check{h}}(\{e\}) = \widehat{\omega_h}(\{e\}) = \lim_{n \to \infty} \frac{\omega_h(A_n)}{\theta(A_n)}
$$

second step: extension to $C_c(H)$ by approximation

- Use that $KL(H)$ is dense in $C_c(H)$.
- **n** consider the uniformly discrete $\Lambda = \text{supp}(\omega_h) \subseteq G$ and note

$$
\overline{\text{dens}}(\Lambda) = \limsup_{n \to \infty} \frac{1}{\theta_G(A_n)} |\Lambda \cap A_n| < \infty
$$

T Take $h \in C_c(H)$, write $K = \text{supp}(h)$ and fix some compact unit neighborhood U in H .

For any $g \in KL(H)$ such that $supp(g) \subseteq KU$ we then have for n sufficiently large the estimate

$$
\left| \int_{H} h(x) d\theta_{H}(x) - \frac{\omega_{h}(A_{n})}{\theta_{G}(A_{n})} \right| \leq \left| \int_{H} h(x) d\theta_{H}(x) - \int_{H} g(x) d\theta_{H}(x) \right| + + \left| \int_{H} g(x) d\theta_{H}(x) - \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} \right| + \left| \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} - \frac{\omega_{h}(A_{n})}{\theta_{G}(A_{n})} \right| \leq ||h - g||_{\infty} \left(\theta_{H}(KU) + 2 \cdot \overline{\text{dens}}(\Lambda) \right) + \left| \int_{H} g(x) d\theta_{H}(x) - \frac{\omega_{g}(A_{n})}{\theta_{G}(A_{n})} \right|
$$

- Since $KL(H)$ is dense in $C_c(H)$ we find $g \in KL(H)$ (of support contained in KU) such that the first term in the above estimate does not exceed $\varepsilon/2$.
- by the density formula for $KL(H)$ the second term is also smaller than $\varepsilon/2$ if *n* is sufficiently large.

.

regular model sets are pure point diffractive

Theorem

Let (G, H, L) be a cut-and-project scheme, and let $h = 1_W$ for $W \subset H$ relatively cpct measurable and $\theta_H(\partial W) = 0$. Then the weighted model set ω_h has autocorrelation γ and diffraction $\hat{\gamma}$ given by

$$
\gamma = \omega_{h \ast \widetilde{h}}, \qquad \widehat{\gamma} = \omega_{|\widecheck{h}|^2}
$$

history

- **Hof 95 via harmonic analysis (euclidean** G, H **)**
- Schlottmann 00 via dynamical systems
- Baake–Moody 04 via almost periodic measures
- R–Strungaru via PSF

proof

a autocorrelation γ of ω_h vague limit of finite ac measures

$$
\gamma_n = \frac{1}{\theta(A_n)} \omega_h|_{B_n} * \widetilde{\omega_h|_{B_n}} = \sum_{z \in L} \eta_n(z) \delta_z,
$$

where $|A_n|$ denotes restriction w.r.t. any van Hove $(A_n)_{n\in\mathbb{N}}$ and

$$
\eta_n(z) = \frac{1}{\theta_G(A_n)} \sum_{x \in \Lambda(W \cap (W + z^*)) \cap A_n} h(x^*) \overline{h(x^* - z^*)}
$$

 $\lim_{n\to\infty} \eta_n(z) = h * \widetilde{h}(z^\star)$ for all $z \in L$ by density formula **a** as supp (γ) uniformly discrete, γ_n converges to $\omega_{h * \tilde{h}}$ ■ since $h * \widetilde{h} \in KL(H)$, transform follows from PSF

$$
\widehat{\gamma} = \sum_{k \in \mathbb{Z}[\tau]/\sqrt{5}} \left(\frac{\tau}{\sqrt{5}}\right)^2 \left(\frac{\sin(\pi \tau k^*)}{\pi \tau k^*}\right)^2 \delta_k
$$

$$
\blacksquare \mathbb{Z}[\tau] = \{m + n\tau \mid m, n \in \mathbb{Z}\} = L
$$

peaks dense in $G = \mathbb{R}!$

$$
\blacksquare \text{ star map: } (m + n\tau)^{\star} = m - n/\tau
$$

note that $\hat{\omega}$ does not exist as a measure since $sin(x)/x$ is not an L^1 function.

references

- **L.N.** Argabright and J. Gil de Lamadrid, Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the Amer. Math. Soc. 145 (1974).
- C. Berg and G. Forst, Potential theory on locally compact abelian groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 87, Springer (1975).
- A. Deitmar and S. Echterhoff, Principles of harmonic analysis, Springer (2009).
- R.V. Moody, Meyer sets and their duals, in: The mathematics of long-range aperiodic order (ed R.V. Moody), NATO ASI Series C489, Kluwer (1997), 403–441.
- A. Hof, On diffraction by aperiodic structures, Comm. Math. Phys. 169 (1995), 25–43.
- M. Baake and R.V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. 573 (2004), 61–94.
- ■ C. Richard and N. Strungaru, Poisson summation and pure point diffraction (2015), in preparation.