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diffraction and harmonic analysis

motivation

harmonic analysis?

harmonic analysis of LCA groups

heavy machinery, but quick proofs of fundamental results
(density formula, pure point diffraction of regular model sets)

standard tool for cut-and-project sets and Meyer sets
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diffraction and harmonic analysis

motivation

diffraction experiments

L A S E R

Box 1 Experimental setup for optical diffraction
The laser beam is widened by an arrangement of lenses and orthogonally
illuminates the object located at the green plane. The light that emanates
from the object plane then interferes, and the diffraction pattern is given
by the distribution of light that one would observe at an infinite distance
from the object. By another lens, this pattern is mapped onto the pink
plane. Whereas for a picture of the object, as for instance in a camera,
light rays emanating from one point of the object ideally are focused again
into a single point of the picture, the situation is different in diffraction
— light emanating from different regions within the object make up a
single point of the diffraction pattern, as schematically indicated by the
red lines in the right part of the figure. Therefore the diffraction pattern
carries information about the entire illuminated part of the object. It
provides some kind of measure of the correlations, and thus an account
of the degree of order, in the structure of the object.

2 Planar tilings

A very instructive and also very attractive way to get a feeling for the ideas
involved is to look at two-dimensional tiling models. The two rhombi (the so-
called proto-tiles) shown in Box 2 are clearly capable of periodic stacking and so of
lattice symmetry, the symmetry lattice being generated by the two translational
shifts shown. Another possibility is shown below, which gives a tiling that is
periodic in one direction and arbitrary (in particular, possibly aperiodic) in the
other. On the other hand, the rhombi can also be used to tile the plane in the
form of the famous Penrose tiling, see Box 3.

3

laser or X -ray beam hits specimen (green)

atoms emit diffraction waves (red)

waves interfer and produce diffraction picture (purple)
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diffraction and harmonic analysis

motivation

Fraunhofer diffraction

optics: Kirchhoff’s approximation

atom in x emits diffraction wave, modelled by e´2π 9ı k¨x

waves interfer additively (structure factor)

observed intensity on screen at position k is absolute square
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motivation

diffraction of the Fibonacci chain
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diffraction of the Fibonacci chain

−1 0 1 2 3 4 5 6

Diffraktion für N=25

Wellenzahl

In
te

ns
itä

t

0
1/

2
1

5 / 30



diffraction and harmonic analysis

motivation

diffraction of the Fibonacci chain
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motivation

diffraction of the Fibonacci chain
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motivation

Fibonacci chain diffraction: indexing Bragg peaks
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Fibonacci chain diffraction: indexing Bragg peaks

−1 0 1 2 3 4 5 6

Diffraktion für N=100

Wellenzahl

In
te

ns
itä

t

0
1/

2
1

(0
,1

)
(1

,0
)

(1
,1

)

peak positions: pm, nq p“ 1
c ¨ pm ` nτq where c “ 2.23606 . . .

6 / 30



diffraction and harmonic analysis

motivation

Fibonacci chain diffraction: indexing Bragg peaks

−1 0 1 2 3 4 5 6

Diffraktion für N=100

Wellenzahl

In
te

ns
itä

t

0
1/

2
1

(0
,1

)
(1

,0
)

(1
,1

)

(1
,2

)

peak positions: pm, nq p“ 1
c ¨ pm ` nτq where c “ 2.23606 . . .

6 / 30



diffraction and harmonic analysis

motivation

Fibonacci chain diffraction: indexing Bragg peaks

−1 0 1 2 3 4 5 6

Diffraktion für N=100

Wellenzahl

In
te

ns
itä

t

0
1/

2
1

(0
,1

)
(1

,0
)

(1
,1

)

(1
,2

)

(2
,3

)

peak positions: pm, nq p“ 1
c ¨ pm ` nτq where c “ 2.23606 . . .

6 / 30



diffraction and harmonic analysis

motivation

Fibonacci chain diffraction: indexing Bragg peaks

−1 0 1 2 3 4 5 6

Diffraktion für N=100

Wellenzahl

In
te

ns
itä

t

0
1/

2
1

(0
,1

)
(1

,0
)

(1
,1

)

(1
,2

)

(2
,3

)
(1

,3
)

peak positions: pm, nq p“ 1
c ¨ pm ` nτq where c “ 2.23606 . . .

6 / 30



diffraction and harmonic analysis

motivation

mathematical diffraction theory

Let Λ uniformly discrete such that even ΛΛ´1 is uniformly discrete

ω “
ř

pPΛ δp Dirac comb of Λ

infer diffraction of Λ from finite samples ωn “ ω|Bn

convolution theorem yields Wiener diagram

ωn
˚

ÝÝÝÝÑ ωn ˚Ăωn

F
§

§

đ

§

§

đ
F

xωn
|¨|2

ÝÝÝÝÑ xωn ¨xωn

rωpf q “ ωprf q with rf pxq “ f px´1q

identify Bragg peaks and continous components from the
Lebesgue decomposition of the limiting measure of xωn ¨xωn

Fourier analysis of unbounded measures!
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diffraction and harmonic analysis

motivation

mathematical diffraction theory

ωn
˚

ÝÝÝÝÑ ωn ˚Ăωn

F
§

§

đ

§

§

đ
F

xωn
|¨|

2

ÝÝÝÝÑ xωn ¨xωn

Assume that the autocorrelation γ of ω exists as a vague limit

γ “ lim
nÑ8

1

θpBnq
ωn ˚Ăωn

Since γ is positive definite, it is transformable, and by
continuity of the Fourier transform we have

F
ˆ

lim
nÑ8

1

θpBnq
ωn ˚Ăωn

˙

“ lim
nÑ8

F
ˆ

1

θpBnq
ωn ˚Ăωn

˙

“ lim
nÑ8

1

θpBnq
xωn¨xωn

We work with the autocorrelation as pω may not be a measure.
This is in contrast to the case Λ a lattice.
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Fourier analysis

Fourier analysis on LCA groups: setup

σ–compact LCA group G with Haar measure θG

inverse function: rf pxq “ f px´1q

convolution: for f , g P L1pG q define f ˚ g P L1pG q by

f ˚ gpxq “

ż

f pyqgpy´1xqdθG pyq

character χ : G Ñ Up1q continuous group homomorphism
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diffraction and harmonic analysis

Fourier analysis

Pontryagin dual pG and Fourier transform

pG set of all characters with topology induced by

NpK , εq “ tχ P pG | @k P K : |χpkq ´ 1| ă εu

for non-empty compact K Ă G and ε ą 0
pG LCA group with Haar measure θ

pG

Fourier transforms pf ,qf : pG Ñ C of f P L1pG q

pf pχq “

ż

G
f pxqχpxqdθG pxq, qf pχq “

ż

G
f pxqχpxq dθG pxq

Normalise θ
pG

such that Plancherel’s formula

||f ||2 “ ||pf ||2

is satisfied for all f P L1pG q X L2pG q.
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Fourier analysis

Fourier analysis of unbounded measures

MpG q set of Borel measures on G

Definition (cf. Argabright–de Lamadrid 74)

µ PMpG q is transformable if there exists pµ PMppG q such that for
all f P CcpG q such that qf P L1ppG q we have

qf P L1ppµq, xµ, f y “ xpµ,qf y .

Poisson summation formula
pµ uniquely determined by µ
pµ translation bounded, i.e., for every compact K Ă G

supt|µ|ptK q | t P Gu ă 8,

with |µ| PMpG q the total variation measure of µ
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diffraction and harmonic analysis

Fourier analysis

examples of transformable measures

µ positive definite, i.e., for all f P CcpG q

ż

G
f ˚ rf pxq dµpxq ě 0

for example: δΛ Dirac comb of a lattice Λ Ă G

pδΛ “ denspΛq ¨ δΛ0

with dual lattice Λ0 “ tχ P pG |χppq “ 1@p P Λu

classical examples

finite measures, positive definite fctns, Lp-fctns for p P r1, 2s
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diffraction and harmonic analysis

Fourier analysis

The function space KLpG q

KLpG q :“ tf P CcpG q |pf P L1ppG qu

Such functions are not rare:

If f , g P L2pG q have compact support, then f ˚ g P KLpG q.

example: 1W ˚ Ă1W for relatively cpct measurable W Ă G .

In fact KLpG q is dense in CcpG q.
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diffraction and harmonic analysis

Transformability and averages

character averages

Lemma

Let χ P pG . Then for every van Hove sequence pAnqnPN in G

lim
nÑ8

1

θpAnq

ż

An

χpxqdθpxq “ δχ,e .

This is obvious for χ “ e. Consider χ ‰ e for the following proof.
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diffraction and harmonic analysis

Transformability and averages

By left invariance of the Haar measure and χpxyq “ χpxqχpyq

ż

An

χpyq dθpyq “

ż

G
1Anpxyqχpxyq dθpyq “ χpxq

ż

x´1An

χpyqdθpyq

Due to the van Hove property of pAnqnPN, we have

ˇ

ˇ

ˇ

ˇ

ż

x´1An

χpyqdθpyq ´

ż

An

χpyq dθpyq

ˇ

ˇ

ˇ

ˇ

ď θppx´1Anq∆Anq “ opθpAnqq

Combining the above properties yields

|1´ χpxq| ¨

ˇ

ˇ

ˇ

ˇ

1

θpAnq

ż

An

χpyq dθpyq

ˇ

ˇ

ˇ

ˇ

“ op1q

Lemma follows with x P G such that χpxq ‰ 1.
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Transformability and averages

The discrete part of pµ can be computed by averaging over µ:

Proposition

Let µ PMpG q be transformable and translation bounded and
consider χ P pG . Then for every van Hove sequence pAnqnPN in G
we have

pµptχuq “ lim
nÑ8

1

θpAnq

ż

An

χpxqdµpxq

history

Argabright–de Lamadrid 90 for pµ transformable

Hof 95 for euclidean G

Lenz 09 for µ the autocorrelation measure
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diffraction and harmonic analysis

Transformability and averages

w.l.o.g. for χ “ e since pµptχuq “ pδχ´1 ˚ pµqpteuq “ xχµpteuq
smoothing of characteristic functions:

fn “
1

θpAnq
¨ 1An , pfnqϕ “ ϕ ˚ fn,

where ϕ “ ψ ˚ rψ with ψ P CcpG q and
ş

ψ “ 1.
Then pfnqϕ P KLpG q by the above lemma, and PSF yields

µppfnqϕq “ pµ
´

~pfnqϕ

¯

Consider the limit n Ñ8 on the rhs: Since

~pfnqϕpχq Ñ δχ,e ,
ˇ

ˇ

ˇ

~pfnqϕ

ˇ

ˇ

ˇ
“ |qϕ| ¨

ˇ

ˇ

ˇ

qfn

ˇ

ˇ

ˇ
ď |qϕ|,

we can use dominated convergence to infer

lim
nÑ8

pµ
´

~pfnqϕ

¯

“ pµpδχ,eq “ pµpteuq

Indeed by the previous lemma for χ ‰ e we have
ˇ

ˇ

ˇ

~pfnqϕpχq
ˇ

ˇ

ˇ
“ |qϕpχq| ¨

ˇ

ˇ

ˇ

qfnpχq
ˇ

ˇ

ˇ
ď ||ϕ||1 ¨

ˇ

ˇ

ˇ

qfnpχq
ˇ

ˇ

ˇ
Ñ 0
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Transformability and averages

Consider the limit n Ñ8 on the lhs of

µppfnqϕq “ pµ
´

~pfnqϕ

¯

fn and pfnqϕ differ only near the boundary of An, i.e.,

fnpxq ‰ pfnqϕpxq ùñ x P BKAn

where K “ supppϕq

Hence by a standard estimate

|µpfnq ´ µppfnqϕq| ď ||1´ ϕ||8 ¨
|µ|pBKAnq

θpAnq

rhs vanishes by translation boundedness of µ and by the van
Hove property of pAnqnPN.
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diffraction and harmonic analysis

model sets

reminder: model sets

assumptions: G ,H σ-cpct LCA groups, H metrisable

cut-and-project scheme with star map pq‹ : L Ñ L‹

πG πH
G ÐÝ G ˆ H ÝÑ H

Y Y Y

1–1 dense
L ÐÝ lattice L ÝÑ L‹

projection set via window W Ă H

NpW q “ tx P L | x‹ P W u

regular model set: W relatively cpct measurable, volpBW q “ 0
(W̊ ‰ ∅)

We normalise Haar measure of H such that denspLq “ 1.
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diffraction and harmonic analysis

model sets

dual cut-and-project schemes

duality theory for LCA groups leads to dual cut-and-project scheme

Theorem (dual cut-and-project scheme)

Let pG ,H,Lq be a cut-and-project scheme and let L0 P pG ˆ pH be
the lattice dual to L. Then ppG , pH,L0q is also a cut-and-project
scheme.

diffraction is described within the dual cut-and-project scheme

for euclidean groups pG » G and pH » H
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model sets

weighted model sets and transformability

for cp scheme pG ,H,Lq and h : H Ñ C define weighted model set

ωh “
ÿ

xPL

hpx‹qδx

Theorem (R-Strungaru)

Let pG ,H,Lq be a cut-and-project scheme and let h P KLpHq.
Then ωh is a transformable measure with

xωh “ ω
qh

Here ω
qh

is the weighted model set of the dual cut-and-project

scheme ppG , pH,L0q with weight function qh P L1ppHq.
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diffraction and harmonic analysis

model sets

proof of transformability

for arbitrary g P KLpG q we have

xωh, gy “ xδL, g ¨ hy “ xδL0 , qg ¨ qhy “ xω
qh
, qgy

first equation: πG |L one-to-one

second equation: PSF and g ¨ h P KLpG ˆ Hq.

third equation: π
pG

ˇ

ˇ

L0 one-to-one

equations also imply ωh PMpG q and qg P L1pω
qh
q

hence xωh “ ω
qh

by definition
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density formula

weighted model sets and density formula

Theorem (density formula)

Let h P CcpHq. Then for every van Hove sequence pAnqnPN

lim
nÑ8

ωhpAnq

θG pAnq
“

ż

H
hpxqdθHpxq.

history

Meyer 70’s for euclidean G ,H via PSF
(see also Matei–Meyer 10, Lev–Orlevskii 13)

Schlottmann 98, geometric proof

Moody 02 via dynamical systems

Lenz–R 07 for “admissible” h P L1
bcpHq via dynamical systems
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diffraction and harmonic analysis

density formula

weighted model sets and density formula

an immediate consequence:

Corollary

The density formula also holds for h “ 1W where W Ă H is
relatively cpct measurable with almost no boundary θHpBW q “ 0.

Consider arbitrary ε ą 0.

Since h is Riemann integrable, we find ϕ,ψ P CcpHq such that

ϕ ď h ď ψ,

ż

H
pψpxq ´ ϕpxqqdθHpxq ď ε{2

The density formula yields for sufficiently large n the estimate

´ε ď ´ε{2`

ż

ψ´
ωψpAnq

θG pAnq
ď

ż

h´
ωhpAnq

θG pAnq
ď ε{2`

ż

ϕ´
ωϕpAnq

θG pAnq
ď ε
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density formula

proof for h P CcpHq

first step: proof for h P KLpHq by PSF

Assume that h P KLpHq. Then pωh “ ω
qh

and

ż

H
hpxqdθHpxq “ qhpeq “ ω

qh
pteuq “ xωhpteuq “ lim

nÑ8

ωhpAnq

θpAnq

second step: extension to CcpHq by approximation

Use that KLpHq is dense in CcpHq.

consider the uniformly discrete Λ “ supppωhq Ď G and note

denspΛq “ lim sup
nÑ8

1

θG pAnq
|ΛX An| ă 8

Take h P CcpHq, write K “ suppphq and fix some compact
unit neighborhood U in H.
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diffraction and harmonic analysis

density formula

For any g P KLpHq such that supppgq Ď KU we then have for n
sufficiently large the estimate

ˇ

ˇ

ˇ

ˇ

ż

H
hpxqdθHpxq ´

ωhpAnq

θG pAnq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

H
hpxqdθHpxq ´

ż

H
gpxqdθHpxq

ˇ

ˇ

ˇ

ˇ

`

`

ˇ

ˇ

ˇ

ˇ

ż

H
gpxqdθHpxq ´

ωg pAnq

θG pAnq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ωg pAnq

θG pAnq
´
ωhpAnq

θG pAnq

ˇ

ˇ

ˇ

ˇ

ď ||h ´ g ||8
`

θHpKUq ` 2 ¨ denspΛq
˘

`

ˇ

ˇ

ˇ

ˇ

ż

H
gpxqdθHpxq ´

ωg pAnq

θG pAnq

ˇ

ˇ

ˇ

ˇ

.

Since KLpHq is dense in CcpHq we find g P KLpHq (of support
contained in KU) such that the first term in the above
estimate does not exceed ε{2.

by the density formula for KLpHq the second term is also
smaller than ε{2 if n is sufficiently large.
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diffraction

regular model sets are pure point diffractive

Theorem

Let pG ,H,Lq be a cut-and-project scheme, and let h “ 1W for
W Ă H relatively cpct measurable and θHpBW q “ 0. Then the
weighted model set ωh has autocorrelation γ and diffraction pγ
given by

γ “ ω
h˚rh

, pγ “ ω
|qh|2

history

Hof 95 via harmonic analysis (euclidean G ,H)

Schlottmann 00 via dynamical systems

Baake–Moody 04 via almost periodic measures

R–Strungaru via PSF
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diffraction

proof

autocorrelation γ of ωh vague limit of finite ac measures

γn “
1

θpAnq
ωh|Bn

˚Čωh|Bn
“

ÿ

zPL

ηnpzqδz ,

where |An denotes restriction w.r.t. any van Hove pAnqnPN and

ηnpzq “
1

θG pAnq

ÿ

xPNpWXpW`z‹qqXAn

hpx‹qhpx‹ ´ z‹q

limnÑ8 ηnpzq “ h ˚ rhpz‹q for all z P L by density formula

as supppγq uniformly discrete, γn converges to ω
h˚rh

since h ˚ rh P KLpHq, transform follows from PSF
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diffraction

diffraction of the Fibonacci chain

pγ “
ÿ

kPZrτ s{
?

5

ˆ

τ
?

5

˙2 ˆsinpπτk‹q

πτk‹

˙2

δk

Zrτ s “ tm ` nτ |m, n P Zu “ L

peaks dense in pG “ R!

star map: pm ` nτq‹ “ m ´ n{τ

note that pω does not exist as a measure since sinpxq{x is not
an L1 function.

29 / 30



diffraction and harmonic analysis

diffraction

references

L.N. Argabright and J. Gil de Lamadrid, Fourier analysis of unbounded
measures on locally compact abelian groups, Memoirs of the Amer.
Math. Soc. 145 (1974).

C. Berg and G. Forst, Potential theory on locally compact abelian groups,
Ergebnisse der Mathematik und ihrer Grenzgebiete 87, Springer (1975).

A. Deitmar and S. Echterhoff, Principles of harmonic analysis, Springer
(2009).

R.V. Moody, Meyer sets and their duals, in: The mathematics of
long-range aperiodic order (ed R.V. Moody), NATO ASI Series C489,
Kluwer (1997), 403–441.

A. Hof, On diffraction by aperiodic structures, Comm. Math. Phys. 169
(1995), 25–43.

M. Baake and R.V. Moody, Weighted Dirac combs with pure point
diffraction, J. Reine Angew. Math. 573 (2004), 61–94.

C. Richard and N. Strungaru, Poisson summation and pure point
diffraction (2015), in preparation.

30 / 30


	motivation
	Fourier analysis
	Transformability and averages
	model sets
	density formula
	diffraction

