Optimal embeddings of trees in the line

Uwe Schwerdtfeger (joint work with C. Helmberg and I. de Souza Rocha)

Technische Universität Chemnitz

74th Séminaire Lotharingien de Combinatoire Ellwangen, 22 - 25 March 2015

•
$$G = (N, E)$$
 simple **connected** graph, $N = \{1, \dots, n\}, E \subseteq \binom{N}{2}$

Embedding problem

minimise
$$\sum_{i=1}^{n} \|v_i\|^2 \quad \text{s.t.} \begin{cases} \|v_i - v_j\|^2 \ge 1 \ (ij \in E) \\ v_i \in \mathbb{R}^n \ (i \in N) \end{cases}$$

Where does it come from?

 Weighted Laplacian of G: For edge weights w ∈ ℝ^E, w_{ij} ≥ 0, L_w(G) ∈ ℝ^{N×N} is defined as

$$L_w(G)_{ij} = L_w(G)_{ji} = \begin{cases} -w_{ij} & \text{if } ij \in E, \\ \sum_{ik \in E} w_{ik} & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$

$$\left(\Leftrightarrow \mathcal{L}_w(\mathcal{G}) = \sum_{ij \in E} w_{ij}(e_i - e_j)(e_i - e_j)^{\mathcal{T}}
ight)$$

(日) (周) (三) (三)

Embedding problem

minimise
$$\sum_{i=1}^{n} \|v_i\|^2 \quad \text{s.t.} \begin{cases} \|v_i - v_j\|^2 \ge 1 \ (ij \in E) \\ v_i \in \mathbb{R}^n \ (i \in N) \end{cases}$$

is (almost) the Lagrangian dual of

Minimise largest eigenvalue of weighted Laplacian $L_w(G)$ (Fiedler '90)

maximise
$$\frac{1}{\lambda_n}$$
 s.t.
$$\begin{cases} \lambda_n I - L_w(G) \succeq 0, \\ \sum_{ij \in E} w_{ij} = 1, \\ w_{ij} \ge 0 \ (ij \in E), \ \lambda_n \in \mathbb{R} \end{cases}$$

- Strong duality: Both programs attain their optimal values which coincide! (Göring, Helmberg, Reiß)
- This work provides a combinatorial algorithm to compute the largest eigenvalue of $L_w(G)$ for a bipartite graph.

Embedding problem

minimise
$$\sum_{i=1}^{n} \|v_i\|^2 \quad \text{s.t.} \begin{cases} \|v_i - v_j\|^2 \ge 1 \ (ij \in E) \\ v_i \in \mathbb{R}^n \ (i \in N) \end{cases}$$

• Solvable by a compactness argument.

Existence of 1d optimal embeddings of bipartite graphs

Every optimal embedding $V^* = (v_1^*, \dots, v_n^*)$ of a bipartite $G = (N = W \cup B, E \subseteq W \times B)$ comes with an associated *optimal* one-dimensional embedding

$$v_i = \begin{cases} -\|v_i^*\|, \text{ if } i \in W, \\ \|v_i^*\|, \text{ if } i \in B. \end{cases}$$

(opt. obj. and feasible: $1 \le \|v_i^* - v_j^*\|^2 \le |\|v_i^*\| + \|v_j^*\||^2 \le |v_i - v_j|^2$)

• Every opt. embedding lives within unit ball.

イロト 不得 トイヨト イヨト 二日

Definition

Let $G = (N = W \dot{\cup} B, E \subseteq W \times B)$ connected bipartite graph and $V = [v_1, \dots, v_n] \in \mathbb{R}^{1 \times n}$ opt. sol. to $\begin{pmatrix} \min \sum_{i=1}^n \|v_i\|^2 & \text{s.t. } \begin{cases} \|v_i - v_j\|^2 \ge 1 \ (ij \in E) \\ v_i \in \mathbb{R}^n \ (i \in W \cup B) \end{cases}$ $\end{pmatrix}$. Call $G_V = (N, \{ij \in E : v_j - v_i = 1\})$ the active subgraph of G w.r.t. V.

Optimally embedded graph and active subgraph

- No isolated vertices in G_V .
- Let $C \subseteq G_V$ connected component with vertex set $W(C) \dot{\cup} B(C)$. Then $W(C) \ni i \mapsto y$ and $B(C) \ni i \mapsto y + 1$.
- C contributes $|W(C)| \cdot y^2 + |B(C)| \cdot (1+y)^2$ to objective.

• Minimal at
$$y_c = \frac{-|B(C)|}{|B(C)|+|W(C)|} \Rightarrow y = y_c$$
.

- No isolated vertices in G_V .
- Let $C \subseteq G_V$ connected component with vertex set $W(C) \dot{\cup} B(C)$. Then $W(C) \ni i \mapsto y$ and $B(C) \ni i \mapsto y + 1$.
- C contributes $|W(C)| \cdot y^2 + |B(C)| \cdot (1+y)^2$ to objective.

• Minimal at
$$y_c = \frac{-|B(C)|}{|B(C)|+|W(C)|} \Rightarrow y = y_c$$
.

Definition

For a bipartite graph $C = (W(C) \dot{\cup} B(C), E(C))$ the embedding

$$W(C) \ni i \mapsto \frac{-|B(C)|}{|B(C)| + |W(C)|} =: y_C$$
$$B(C) \ni i \mapsto \frac{|W(C)|}{|B(C)| + |W(C)|} = 1 + y_C$$

is called the *two point embedding* (2PE) of C.

(日) (周) (三) (三)

Lemma

Let $G = (W \cup B, E \subseteq W \times B)$ be a connected bipartite graph and V be an optimal 1d embedding. Then V decomposes into optimal 2PEs, i.e. there are partitions $(W_i)_{i \in \mathcal{J}}$ and $(B_i)_{i \in \mathcal{J}}$ of W resp. B such that $C_i = G[W_i \cup B_i] \rightarrow \{y_{C_i}, 1 + y_{C_i}\}$ and

 $\forall wb \in E : w \in W_i, b \in B_j \Rightarrow y_{C_i} \leq y_{C_j} (feasibility),$

2 \forall *i* the 2PE of C_i is an optimal embedding of C_i .

Conversely, any such decomposition yields an optimal embedding.

Optimality criterion for two point embeddings

The 2PE of a bipartite graph $G = (W \cup B, E)$ is optimal $\Leftrightarrow \forall Q \subseteq W : \frac{|Q|}{|N_G(Q)|} \leq \frac{|W|}{|B|} (\Leftrightarrow \forall P \subseteq B : \frac{|N_G(P)|}{|P|} \geq \frac{|W|}{|B|})$ where $N_G(Q) = \{j \in W \cup B : \exists i \in Q : ij \in E\}.$

Proof.

 $\Rightarrow: \text{Observe:}$ $y_{C} < y_{C'} \Leftrightarrow \frac{-|B(C)|}{|B(C)|+|W(C)|} < \frac{-|B(C')|}{|B(C')|+|W(C')|} \Leftrightarrow \frac{|W(C)|}{|B(C)|} < \frac{|W(C')|}{|B(C')|}$ $\text{Consider } Q \subseteq W \text{ with } \frac{|Q|}{|N_{G}(Q)|} > \frac{|W|}{|B|}, H = G [N_{G}(Q) \cup Q]. \\ \forall y > y_{G} \text{ this embedding is also} \qquad G \setminus H \rightarrow \underbrace{\bigcirc}_{y} y_{G} + 1 \\ H$

Optimality criterion for two point embeddings

The 2PE of a bipartite graph $G = (W \cup B, E)$ is optimal $\Leftrightarrow \forall Q \subseteq W : \frac{|Q|}{|N_G(Q)|} \le \frac{|W|}{|B|} (\Leftrightarrow \forall P \subseteq B : \frac{|N_G(P)|}{|P|} \ge \frac{|W|}{|B|})$ where $N_G(Q) = \{j \in W \cup B : \exists i \in Q : ij \in E\}.$

Proof.

 \Leftarrow : If not opt. consider an opt. embedding of G.

The subgraph embedded in the rightmost pair (y, 1 + y) of coordinates is of the form $Q \cup N_G(Q), Q \subseteq W$ and $\frac{|Q|}{|N_G(Q)|} > \frac{|W|}{|B|} > \frac{|W \setminus Q|}{|B \setminus N_G(Q)|}.$

イロト イヨト イヨト

Trees

Optimality criterion for two point embeddings

The 2PE of a bipartite graph $G = (W \cup B, E)$ is optimal $\Leftrightarrow \forall Q \subseteq W : \frac{|Q|}{|N_G(Q)|} \le \frac{|W|}{|B|} (\Leftrightarrow \forall P \subseteq B : \frac{|N_G(P)|}{|P|} \ge \frac{|W|}{|B|})$ where $N_G(Q) = \{j \in W \cup B : \exists i \in Q : ij \in E\}.$

That criterion is in general hard to check but simple for trees! Let $T = (W \dot{\cup} B, E \subseteq W \times B)$ be a tree. The removal of any edge $e = wb \in E$ ($w \in W, b \in B$) decomposes T into two subtrees, namely

the white subtree $T^w(e) \ni w$

the black subtree $T^b(e) \ni b$

• $T^{b}(e)$ is of the form $Q \cup N_{T}(Q)$ with $Q \subseteq W$.

Definition

Let $T = (W \dot{\cup} B, E \subseteq W \times B)$ be a tree.

For every edge e define its label c(e) as

$$c(e) = \frac{|W(T^b(e))|}{|B(T^b(e))|}.$$

T is called *balanced* if $\forall e \in E : c(e) \leq \frac{|W|}{|B|}$.

Optimality criterion for two point embeddings of trees The two point embedding of a tree $T = (W \dot{\cup} B, E)$

$$W \ni i \mapsto \frac{-|B|}{|B| + |W|} =: y_T$$
$$B \ni i \mapsto \frac{|W|}{|B| + |W|} = 1 + y_T$$

is optimal if and only if T is *balanced*.

Decompose T into balanced (=opt. 2PE) trees!

Algorithm

INPUT: $T = (W \dot{\cup} B, E)$ tree. OUTPUT: feasible decomposition into balanced trees. INITIALISATION: $\mathcal{OUT} = \emptyset$, $\mathcal{QUEUE} = \{T\}$. For $D \in \mathcal{QUEUE}$ do:

2 Compute c(e) for every $e \in E(D)$.

- **3** while $m = \max\{c(e) : e \in E(D)\} > \frac{|W(D)|}{|B(D)|}$ do
 - Choose an edge e with c(e) = m.
 - $O \leftarrow D^w(e).$

• Update edge labels in *D*. end while

- $\mathcal{OUT} \leftarrow \mathcal{OUT} \cup \{D\}.$

end for

Example: 1st round of for loop

U. Schwerdtfeger (TU Chemnitz)

Embeddings of trees

24 March 2015 13 / 17

Example: 2nd iteration of for loop

U. Schwerdtfeger (TU Chemnitz)

Embeddings of trees

24 March 2015 14 / 17

3rd iteration of for loop

U. Schwerdtfeger (TU Chemnitz)

24 March 2015 15 / 17

What's the time?

Worst case running time

For a tree $T = (W \dot{\cup} B, E)$ the algorithm makes at most $O\left(\min(|W|, |B|)^2 \cdot (|W| + |B|)\right)$ updates of edge labels.

And general bipartite graphs?

A subroutine

For a bipartite graph $G = (W \dot{\cup} B, E)$ without isolated vertices the set

$$M = \operatorname{Argmin}\left(\frac{|N_G(X)|}{|X|} \colon X \subseteq B, \, X \neq \emptyset\right)$$

contains a unique element $S(G) \subseteq B$ of maximal cardinality which can be computed in at most min $(|W|, |B|)^2 \cdot \max(|W|, |B|)$ calls of the tree algorithm.

- $G[S(G) \cup N_G(S(G))]$ is balanced (i.e. its 2PE optimal).
- Construct decomposition into balanced subgraphs: Set G₀ = G and inductively G_i = G_{i-1} \ (S(G_{i-1}) ∪ N_{G_i-1}(S(G_{i-1})))

・聞き くほき くほき 二日