# Lattice paths below a line of rational slope 74th $Si_{\dot{\ell}}^{\frac{1}{2}}$ minaire Lotharingien de Combinatoire (@Ellwangen)

Cyril Banderier and Michael Wallner



CNRS/Univ. Paris Nord, France



TU Wien, Austria









### Knuth's AofA'14 problem #4

"Problems that Philippe Flajolet would have loved" 1 (Don Knuth)



<sup>1</sup>http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf

Cyril Banderier & Michael Wallner | U. Paris Nord & TU Wien

# Knuth's AofA'14 problem #4 - Original Slide 1

# Knuth's AofA'14 problem #4 - Original Slide 2

Thus A[x, y] enumerates lattice paths from (0, 0) that stay in the region  $y < \frac{2}{5}x + \frac{2}{5}$ , while B[x, y] enumerates the paths that stay in the region  $y < \frac{2}{5}x + \frac{1}{5}$ .

Theorem (Nakamigawa, Tokushige, 2012):

$$A[5t-1,2t-1] + B[5t-1,2t-1] = \frac{2}{7t-1} \binom{7t-1}{2t}, \quad \text{for all } t \ge 1.$$

**Empirical observation:** 

$$\frac{A[5t-1,2t-1]}{B[5t-1,2t-1]} = a - \frac{b}{t} + O(t^{-2}),$$

where  $a \approx 1.63026$  and  $b \approx 0.159$  (I think).

Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$



Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".





Folklore proposition (bijection to directed paths)

Let  $L: y = \frac{a}{c}x + \frac{b}{c}$  be the barrier of rational slope. Assume  $a, b, c \in \mathbb{N}$  s.t. gcd(a, b, c) = 1. There exists a bijection between

"lattice paths starting from the origin with North and East steps" and

"directed paths starting from (0, b) with the step set  $\{(1, a), (1, -c)\}$ ".

Staying *below L* is mapped to staying *above* the *x*-axis.



#### Transformation

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ ax-cy+b \end{pmatrix}$$

works for any jumps!



### Generating functions - construction

**3** Recursive construction

 $f_0(u) \in \mathbb{N}[u], \qquad f_{n+1}(u) = \{u^{\geq 0}\} \left[ P(u) f_n(u) \right], \text{ for } n \geq 0$ 

4 One functional equation (with 3 unknowns!)

$$(1 - zP(u))F(z, u) = f_0(u) - zu^{-2}F_0(z) - zu^{-1}F_1(z)$$

**5** Kernel equation

1-zP(u)=0

For  $z \sim 0$  we get:

- 2 small roots  $u_1(z)$  and  $u_2(z)$   $(u_i(z) \rightarrow 0 \text{ for } z \rightarrow 0)$
- 5 large roots  $v_1(z), \ldots, v_5(z)$   $(|v_j(z)| \to \infty$  for  $z \to 0)$

# Generating functions

**6** Inserting the small branches gives linear system with 2 equations:  $\underbrace{(1-zP(u_i))}_{=0}F(z,u) = f_0(u_i) - zu_i^{-2}F_0(z) - zu_i^{-1}F_1(z), \text{ for } i = 1,2.$ 

Theorem (Banderier–Wallner)

$$F_0(z) = -\frac{u_1 u_2 (u_1 f_0(u_1) - u_2 f_0(u_2))}{z(u_1 - u_2)}, \qquad F_1(z) = \frac{u_1^2 f_0(u_1) - u_2^2 f_0(u_2)}{z(u_1 - u_2)}$$

# Generating functions

Inserting the small branches gives linear system with 2 equations:  $\underbrace{(1-zP(u_i))}_{=0}F(z,u) = f_0(u_i) - zu_i^{-2}F_0(z) - zu_i^{-1}F_1(z), \text{ for } i = 1,2.$ 

### Theorem (Banderier-Wallner)

$$F_0(z) = -\frac{u_1 u_2 (u_1 f_0(u_1) - u_2 f_0(u_2))}{z(u_1 - u_2)}, \qquad F_1(z) = \frac{u_1^2 f_0(u_1) - u_2^2 f_0(u_2)}{z(u_1 - u_2)}$$

### Model A

F

• Walk from (0, 4) to (7n - 2, 1)•  $f_0(u) := u^4$ •  $A_1(z) := F_1(z) = \frac{u_1^6 - u_2^6}{z(u_1 - u_2)}$ •  $A[5n - 1, 2n - 1] = [z^{7n - 2}]A_1(z)$ (=:  $A_n$ )

### Model B

• Walk from (0,3) to (7n-2,0)•  $f_0(u) := u^3$ 

• 
$$B_0(z) := F_0(z) = -\frac{u_1 u_2 (u_1^4 - u_2^4)}{z (u_1 - u_2)}$$

• 
$$B[5n-1, 2n-1] = [z^{7n-2}]B_0(z)$$
  
(=:  $B_n$ )

# Closed form for the sum of coefficients

Theorem [Nakamigawa and Tokushige (2012)]

$$A_n+B_n=\frac{2}{7n-1}\binom{7n-1}{2n}$$

See also: [Mohanty79, Sato89]. (here, clever use of cyclic lemma/Désiré André reflection principle).

No other linear combination  $rA_n + sB_n$  leads to a hypergeometric solution (investigated by Manuel Kauers)

Knuth's conjecture  $\frac{A_n}{B_n} = \kappa_1 - \frac{\kappa_2}{n} + \mathcal{O}(n^{-2}),$ with  $\kappa_1 \approx 1.63026$  and  $\kappa_2 \approx 0.159$ .

### Universal square root behavior of $u_1$

### Lemma (Banderier-Flajolet, 2002)

The principle small branch  $u_1$  of the kernel equation 1 - zP(u) = 0 possess the following asymptotic expansion as a Newton-Puiseux series:

$$u_1(z) = au - C\sqrt{1-z/
ho} + \mathcal{O}(1-z/
ho), \qquad ext{for } z o 
ho^-.$$

#### Constants

- Structural constant τ > 0: unique positive real root of P'(t) = 0
- Structural radius  $\rho > 0$ :  $\rho = \frac{1}{P(\tau)}$

• 
$$C := \sqrt{2 \frac{P(\tau)}{P''(\tau)}}$$



Figure: Jump polynomial P(u) and unique saddle point  $\tau > 0$ 

# Periodic lattice paths

- Periodic Lattice paths:  $\exists p \in \mathbb{N}, \exists H(u) \in \mathbb{R}[u]$  such that  $P(u) = u^b H(u^p)$  with  $b \in \mathbb{Z}$
- Here: period p = 7 for  $P(u) = u^{-2} + u^5 = u^{-2}H(u^7)$  with H(u) = 1 + u.
- Singularity of  $u_i$  determined by P'(t) = 0, i.e.  $H'(u^7(t)) = 0$
- $\Rightarrow$  7 possible singularities of the small branches  $u_1$  and  $u_2$  at



Figure: At  $\rho$  the small root  $u_1$  (in green) meets the large root  $v_1$  (in red), with a square root behavior. (In black, we also plotted  $|u_2|, |v_2|, |v_3|, |v_4|, |v_5|$ .)

# Dominant singularities

Lemma - local behavior (short) (Banderier–Wallner) Let  $\omega = e^{2\pi i/7}$  and  $\zeta_k = \rho \omega^k$ . Then at every k exactly one small branch is singular and the other one is analytic.  $u_1$  is singular at k = 0, 2, 5 and  $u_2$  is singular at k = 1, 3, 4, 6.



Figure: Singular branches

# A rotation law (Banderier–Wallner) For all $z \in \mathbb{C}$ , with $|z| \le \rho$ and $-\pi < \arg(z) < \pi - 2\pi/7$ : $u_1(\omega z) = \omega^{-3}u_2(z),$ $u_2(\omega z) = \omega^{-3}u_1(z).$

### Rotation law: proof

A rotation law (Banderier–Wallner) For all  $z \in \mathbb{C}$ , with  $|z| \le \rho$  and  $-\pi < \arg(z) < \pi - 2\pi/7$ :  $u_1(\omega z) = \omega^{-3}u_2(z),$  $u_2(\omega z) = \omega^{-3}u_1(z).$ 

Define  $U(z) := \omega^3 u_1(\omega z)$  and consider

 $X(z) = U^2 - z\phi(U),$ where  $\phi(u) := u^2 P(u) = 1 + u^7$  from the kernel equation 1 - zP(u) = 0. Next  $\omega X(z/\omega) = u_1(z)^2 - z\phi(u_1(z)) = 0,$ 

as we recognize the entire form of the kernel equation. Thus, U is a root of the kernel. Which one?

### Rotation law: proof

A rotation law (Banderier–Wallner) For all  $z \in \mathbb{C}$ , with  $|z| \le \rho$  and  $-\pi < \arg(z) < \pi - 2\pi/7$ :  $u_1(\omega z) = \omega^{-3}u_2(z),$  $u_2(\omega z) = \omega^{-3}u_1(z).$ 

Define  $U(z) := \omega^3 u_1(\omega z)$  and consider

 $X(z) = U^2 - z\phi(U),$ where  $\phi(u) := u^2 P(u) = 1 + u^7$  from the kernel equation 1 - zP(u) = 0. Next  $\omega X(z/\omega) = u_1(z)^2 - z\phi(u_1(z)) = 0,$ 

as we recognize the entire form of the kernel equation. Thus, U is a root of the kernel. Which one?

- It must be a small one, as  $U(z) \sim 0$  for  $z \sim 0$ .
- It is not  $u_1(z)$  as it has a different Puiseux expansion.
- Hence, it is  $u_2(z)$ ! (Analytic continuation as long as we avoid  $\arg(z) = -\pi$ .)

### Local asymptotics: definition

### Definition: Local asymptotics extractor $[z^n]_{\zeta_k}$

Let F(z) be a GF with p dominant singularities  $\zeta_k$  (for k = 1, ..., p). Define  $[z^n]_{\zeta_k}F(z) := [z^n](Puiseux expansion of F(z) at <math>z = \zeta_k)$ 

### Example

Let  $F(z) = \frac{1}{1-z^2} = \frac{1}{(1-z)(1+z)}$ . We have p = 2 dominant singularities  $\zeta_1 = 1$ and  $\zeta_2 = -1$ . Then we get  $[z^n]_{\zeta_1}F(z) = [z^n]\frac{1}{2(1-z)} = \frac{1}{2}$ , for all  $n \ge 0$ ,  $[z^n]_{\zeta_2}F(z) = [z^n]\frac{1}{2(1+z)} = \frac{(-1)^n}{2}$ , for all  $n \ge 0$ . Then it holds:  $[z^n]F(z) = [z^n]_{\zeta_1}F(z) + [z^n]_{\zeta_2}F(z) = \begin{cases} 1, & \text{for } n = 2k, \\ 0, & \text{otherwise.} \end{cases}$ 

### Local asymptotics: definition

### Definition: Local asymptotics extractor $[z^n]_{\zeta_k}$

Let F(z) be a GF with p dominant singularities  $\zeta_k$  (for k = 1, ..., p). Define  $[z^n]_{\zeta_k}F(z) := [z^n](Puiseux expansion of F(z) at <math>z = \zeta_k)$ 

### Example

Let  $F(z) = \frac{1}{1-z^2} = \frac{1}{(1-z)(1+z)}$ . We have p = 2 dominant singularities  $\zeta_1 = 1$ and  $\zeta_2 = -1$ . Then we get  $[z^n]_{\zeta_1}F(z) = [z^n]\frac{1}{2(1-z)} = \frac{1}{2}$ , for all  $n \ge 0$ ,  $[z^n]_{\zeta_2}F(z) = [z^n]\frac{1}{2(1+z)} = \frac{(-1)^n}{2}$ , for all  $n \ge 0$ . Then it holds:  $[z^n]F(z) = [z^n]_{\zeta_1}F(z) + [z^n]_{\zeta_2}F(z) = \begin{cases} 2[z^n]_{\zeta_1}F(z), & \text{for } n = 2k, \\ 0, & \text{otherwise.} \end{cases}$ 

### Local asymptotics: proposition

### Definition: Local asymptotics extractor $|z^n|_{c_i}$

Let F(z) be a GF with p dominant singularities  $\zeta_k$  (for k = 1, ..., p). Define  $[z^n]_{\zeta_k}F(z) := [z^n]$  (Puiseux expansion of F(z) at  $z = \zeta_k$ )

### Proposition (Banderier–Wallner)

Let F(z) be a GF with non-negative coefficients. Let  $\rho$  be the positive real dominant singularity. When additionally the function F(z) satisfies a rotation law  $F(\omega z) = \omega^m F(z)$  (where  $\omega = \exp(2\pi i/p)$ ), then it holds that  $[z^n]F(z) = \begin{cases} \boldsymbol{p}[z^n]_{\rho}F(z)(1+o(\rho^n)), & \text{if } p|(n-m), \\ 0, & \text{otherwise.} \end{cases}$ 

### Local asymptotics: proof

#### Proposition

Let F(z) be a GF with non-negative coefficients. Let  $\rho$  be the positive real dominant singularity. When additionally the function F(z) satisfies a rotation law  $F(\omega z) = \omega^m F(z)$  (where  $\omega = \exp(2\pi i/p)$ ), then it holds that  $[z^n]F(z) = \mathbf{p} \chi_p(n-m) [z^n]_\rho F(z)(1+o(\rho^n))$  where  $\chi_p(n-m)$  is 1 if n-m is a multiple of p, 0 elsewhere.

Due to Pringsheim's Theorem a positive real dominant sing.  $\rho$  is guaranteed. Relabel  $\zeta_k$  such that  $\zeta_k = \omega^k \rho$ , then

$$[z^{n}]F(z) - o(\rho^{n}) = \sum_{k=1}^{p} [z^{n}]_{\zeta_{k}}F(z) = \sum_{k=1}^{p} [z^{n}]_{\zeta_{k}}(\omega^{m})^{k}F(\omega^{-k}z)$$
$$= \sum_{k=1}^{p} (\omega^{m})^{k}(\omega^{-k})^{n}[z^{n}]_{\rho}F(z) = \left(\sum_{k=1}^{p} (\omega^{k})^{m-n}\right)[z^{n}]_{\rho}F(z)$$
$$= p \chi_{p}(n-m)[z^{n}]_{\rho}F(z)$$

# Application to Knuth's problem

From the local behavior of  $u_1(z)$  and  $u_2(z)$  we get the rotation law

$$A_1(\omega z) = \omega^{-2} A_1(z),$$
  $B_0(\omega z) = \omega^{-2} B_0(z).$ 

Hence, we have period p = 7 and m = -2. Thus, it is sufficient to compute the singular expansion of  $A_1(z)$  and  $B_0(z)$  at  $z = \rho$  and multiply it with 7 to get:

$$\begin{aligned} A_n &= [z^{7n-2}]A_1(z) = \alpha_1 \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^3}} + \frac{3\alpha_2}{2} \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^5}} + \mathcal{O}(n^{-7/2}), \\ B_n &= [z^{7n-2}]B_0(z) = \beta_1 \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^3}} + \frac{3\beta_2}{2} \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^5}} + \mathcal{O}(n^{-7/2}), \end{aligned}$$

where  $\alpha_1, \alpha_2, \beta_1, \beta_2$  are some real constants.

# Application to Knuth's problem

From the local behavior of  $u_1(z)$  and  $u_2(z)$  we get the rotation law

$$A_1(\omega z) = \omega^{-2} A_1(z),$$
  $B_0(\omega z) = \omega^{-2} B_0(z).$ 

Hence, we have period p = 7 and m = -2. Thus, it is sufficient to compute the singular expansion of  $A_1(z)$  and  $B_0(z)$  at  $z = \rho$  and multiply it with 7 to get:

$$\begin{aligned} A_n &= [z^{7n-2}]A_1(z) = \alpha_1 \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^3}} + \frac{3\alpha_2}{2} \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^5}} + \mathcal{O}(n^{-7/2}), \\ B_n &= [z^{7n-2}]B_0(z) = \beta_1 \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^3}} + \frac{3\beta_2}{2} \frac{\rho^{-7n}}{\sqrt{\pi(7n-2)^5}} + \mathcal{O}(n^{-7/2}), \end{aligned}$$

where  $\alpha_1,\alpha_2,\beta_1,\beta_2$  are some real constants. Finally we directly get

$$\frac{A_n}{B_n} = \kappa_1 - \frac{\kappa_2}{n} + \mathcal{O}(n^{-2}) = \frac{\alpha_1}{\beta_1} + \frac{3}{14} \left(\frac{\alpha_1\beta_2 - \alpha_2\beta_1}{\beta_1^2}\right) \frac{1}{n} + \mathcal{O}(n^{-2}).$$

Hence, we have shown that

 $\kappa_1 \approx 1.6302576629903501404248, \quad \kappa_2 \approx 0.1586682269720227755147.$ 

# Closed form Solution of Knuth's problem



•  $\kappa_1$  is the unique real root of the polynomial

$$23x^5 - 41x^4 + 10x^3 - 6x^2 - x - 1$$

# (7/3) $\kappa_2$ is the unique real root of the polynomial $11571875x^5 - 5363750x^4 + 628250x^3 - 97580x^2 + 5180x - 142$

The Galois group of each of these polynomials is S<sub>5</sub>
 ⇒ No closed form formula in terms of basic operations on integers, and root of any degree.

# Duchon's club

### Model

Number of "histories" of couples entering a club, and exiting by 3. What is the number of possible histories, if the club is closing empty?



(a) North-East model: Dyck paths below the line of slope 2/3

(b) Banderier–Flajolet model: excursions with +2 and -3 jumps

Duchon conjectured average area as Kn<sup>3/2</sup> with K ≈ 3.43
 K = <sup>√15π</sup>/<sub>2</sub> ≈ 3.432342124 (together with Bernhard Gittenberger).

# Conclusion

- We solved Knuth's and Duchon's conjectures :-)
- We got a generic approach (any jumps!) to deal with enumeration and asymptotics of lattice paths below a rational slope.
- En passant, nice "closed form" formulae.
- Rigorous proof of the periodic case (more tricky).

Open (computer algebra) questions:

- a computer algebra package dealing with algebraic functions (and their asymptotics). Theory = Newton-Puiseux + Flajolet-Salvy ACA algorithm. Caveat: Maple (nested) "RootOf" not able to follow the right branch.
- How to efficiently go from the differential equation to the algebraic equation, and conversely?
- Is there a way to handle irrational slopes?







