Lattice paths below a line of rational slope

 74th $\operatorname{Sii} \frac{1}{2}$ minaire Lotharingien de Combinatoire (@Ellwangen)
Cyril Banderier and Michael Wallner

CNRS/Univ. Paris Nord, France

TU Wien, Austria

Knuth's AofA'14 problem \#4

"Problems that Philippe Flajolet would have loved" ${ }^{1}$ (Don Knuth)
Fourth problem: "Lattice paths of slope 2/5"

- Dyck paths, i.e. $\mathcal{S}=\{(1,0),(0,1)\}$,
- Under line of slope $2 / 5$, i.e.

$$
\frac{\text { Model } A}{y<\frac{2}{5} x+\frac{2}{5}}
$$

Model B
$y<\frac{2}{5} x+\frac{1}{5}$

[^0]
Knuth's AofA'14 problem \#4 - Original Slide 1

$$
\begin{gathered}
A[i, j]= \begin{cases}0, & \text { if } j \geq 2 i / 5+2 / 5, \\
A[i-1, j]+A[i, j-1], & \text { if } j<2 i / 5+2 / 5 ;\end{cases} \\
B[i, j]=\left\{\begin{array}{lll}
0, & \text { if } j \geq 2 i / 5+1 / 5, \\
B[i-1, j]+B[i, j-1], & \text { if } j<2 i / 5+1 / 5 ;
\end{array}\right. \\
A[i, 0]=B[i, 0]=1 . \text { When } 0 \leq i \leq 4 \text { and } 0 \leq j \leq 10 \text { we have: } \\
A=\left(\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 0 & 0 & 0 & 0 & 4 & 9 & 15 & 22 & 30 & 39 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 15 & 37 & 67 & 106 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 106
\end{array}\right) \\
B=\left(\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 0 & 0 & 0 & 0 & 3 & 7 & 12 & 18 & 25 & 33 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 18 & 43 & 76 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 76
\end{array}\right)
\end{gathered}
$$

Knuth's AofA'14 problem \#4 - Original Slide 2

Thus $A[x, y]$ enumerates lattice paths from $(0,0)$ that stay in the region $y<\frac{2}{5} x+\frac{2}{5}$, while $B[x, y]$ enumerates the paths that stay in the region $y<\frac{2}{5} x+\frac{1}{5}$.

Theorem (Nakamigawa, Tokushige, 2012):

$$
A[5 t-1,2 t-1]+B[5 t-1,2 t-1]=\frac{2}{7 t-1}\binom{7 t-1}{2 t}, \quad \text { for all } t \geq 1
$$

Empirical observation:

$$
\frac{A[5 t-1,2 t-1]}{B[5 t-1,2 t-1]}=a-\frac{b}{t}+O\left(t^{-2}\right)
$$

where $a \approx 1.63026$ and $b \approx 0.159$ (I think).

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation

$$
\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}
$$

Lattice paths below a rational slope are directed paths

Folklore proposition (bijection to directed paths)

Let $\boldsymbol{L}: \boldsymbol{y}=\frac{a}{c} \boldsymbol{x}+\frac{\boldsymbol{b}}{\boldsymbol{c}}$ be the barrier of rational slope. Assume $a, b, c \in \mathbb{N}$ s.t. $\operatorname{gcd}(a, b, c)=1$. There exists a bijection between
"lattice paths starting from the origin with North and East steps" and
"directed paths starting from $(0, b)$ with the step set $\{(1, a),(1,-c)\}$ ".
Staying below L is mapped to staying above the x-axis.

Transformation
$\binom{x}{y} \mapsto\binom{x+y}{a x-c y+b}$
works for any jumps!

Generating functions - construction

1 Bivariate generating function

$$
F(z, u)=\sum_{n, k \geq 0} \underbrace{F_{n, k}}_{\begin{array}{c}
\text { length: } n \\
\text { altitude: } k
\end{array}} z^{n} u^{k}=\sum_{n \geq 0} \underbrace{f_{n}(u)}_{\text {length: } n} z^{n}=\sum_{k \geq 0} \underbrace{F_{k}(z)}_{\text {altitude: } k} u^{n}
$$

2. Stepset $\mathcal{S}=\{-2,5\}$ gives jump polynomial

$$
P(u)=u^{-2}+u^{5}
$$

3 Recursive construction

$$
f_{0}(u) \in \mathbb{N}[u], \quad f_{n+1}(u)=\left\{u^{\geq 0}\right\}\left[P(u) f_{n}(u)\right], \text { for } n \geq 0
$$

4 One functional equation (with 3 unknowns!)

$$
(1-z P(u)) F(z, u)=f_{0}(u)-z u^{-2} F_{0}(z)-z u^{-1} F_{1}(z)
$$

5 Kernel equation

$$
1-z P(u)=0
$$

For $z \sim 0$ we get:

- 2 small roots $u_{1}(z)$ and $u_{2}(z)\left(u_{i}(z) \rightarrow 0\right.$ for $\left.z \rightarrow 0\right)$
- 5 large roots $v_{1}(z), \ldots, v_{5}(z)\left(\left|v_{j}(z)\right| \rightarrow \infty\right.$ for $\left.z \rightarrow 0\right)$

Generating functions

6 Inserting the small branches gives linear system with 2 equations:

$$
\underbrace{\left(1-z P\left(u_{i}\right)\right)}_{=0} F(z, u)=f_{0}\left(u_{i}\right)-z u_{i}^{-2} F_{0}(z)-z u_{i}^{-1} F_{1}(z), \text { for } i=1,2 .
$$

Theorem (Banderier-Wallner)

$$
F_{0}(z)=-\frac{u_{1} u_{2}\left(u_{1} f_{0}\left(u_{1}\right)-u_{2} f_{0}\left(u_{2}\right)\right)}{z\left(u_{1}-u_{2}\right)}, \quad F_{1}(z)=\frac{u_{1}^{2} f_{0}\left(u_{1}\right)-u_{2}^{2} f_{0}\left(u_{2}\right)}{z\left(u_{1}-u_{2}\right)}
$$

Generating functions

6 Inserting the small branches gives linear system with 2 equations:

$$
\underbrace{\left(1-z P\left(u_{i}\right)\right)}_{=0} F(z, u)=f_{0}\left(u_{i}\right)-z u_{i}^{-2} F_{0}(z)-z u_{i}^{-1} F_{1}(z), \text { for } i=1,2
$$

Theorem (Banderier-Wallner)

$$
F_{0}(z)=-\frac{u_{1} u_{2}\left(u_{1} f_{0}\left(u_{1}\right)-u_{2} f_{0}\left(u_{2}\right)\right)}{z\left(u_{1}-u_{2}\right)}, \quad F_{1}(z)=\frac{u_{1}^{2} f_{0}\left(u_{1}\right)-u_{2}^{2} f_{0}\left(u_{2}\right)}{z\left(u_{1}-u_{2}\right)}
$$

Model A

- Walk from $(0,4)$ to $(7 n-2,1)$
- $f_{0}(u):=u^{4}$
- $A_{1}(z):=F_{1}(z)=\frac{u_{1}^{6}-u_{2}^{6}}{z\left(u_{1}-u_{2}\right)}$
- $A[5 n-1,2 n-1]=\left[z^{7 n-2}\right] A_{1}(z)$ ($=: A_{n}$)

Model B

- Walk from $(0,3)$ to $(7 n-2,0)$
- $f_{0}(u):=u^{3}$
- $B_{0}(z):=F_{0}(z)=-\frac{u_{1} u_{2}\left(u_{1}^{4}-u_{2}^{4}\right)}{z\left(u_{1}-u_{2}\right)}$
- $B[5 n-1,2 n-1]=\left[z^{7 n-2}\right] B_{0}(z)$ ($=: B_{n}$)

Closed form for the sum of coefficients

Theorem [Nakamigawa and Tokushige (2012)]

$$
A_{n}+B_{n}=\frac{2}{7 n-1}\binom{7 n-1}{2 n}
$$

See also: [Mohanty79, Sato89]. (here, clever use of cyclic lemma/Désiré André reflection principle).
No other linear combination $r A_{n}+s B_{n}$ leads to a hypergeometric solution (investigated by Manuel Kauers)

Knuth's conjecture

$$
\frac{A_{n}}{B_{n}}=\kappa_{1}-\frac{\kappa_{2}}{n}+\mathcal{O}\left(n^{-2}\right),
$$

with

$$
\kappa_{1} \approx 1.63026 \text { and } \kappa_{2} \approx 0.159
$$

Universal square root behavior of u_{1}

Lemma (Banderier-Flajolet, 2002)

The principle small branch u_{1} of the kernel equation $1-z P(u)=0$ possess the following asymptotic expansion as a Newton-Puiseux series:

$$
u_{1}(z)=\tau-C \sqrt{1-z / \rho}+\mathcal{O}(1-z / \rho), \quad \text { for } z \rightarrow \rho^{-} .
$$

Constants

- Structural constant $\tau>0$: unique positive real root of $P^{\prime}(t)=0$
- Structural radius $\rho>0$: $\rho=\frac{1}{P(\tau)}$
- $C:=\sqrt{2 \frac{P(\tau)}{P^{\prime \prime}(\tau)}}$

Figure: Jump polynomial $P(u)$ and unique saddle point $\tau>0$

Periodic lattice paths

- Periodic Lattice paths: $\exists p \in \mathbb{N}, \exists H(u) \in \mathbb{R}[u]$ such that $P(u)=u^{b} H\left(u^{p}\right)$ with $b \in \mathbb{Z}$
- Here: period $p=7$ for $P(u)=u^{-2}+u^{5}=u^{-2} H\left(u^{7}\right)$ with $H(u)=1+u$.
- Singularity of u_{i} determined by $P^{\prime}(t)=0$, i.e. $H^{\prime}\left(u^{7}(t)\right)=0$
$\Rightarrow 7$ possible singularities of the small branches u_{1} and u_{2} at

$$
\zeta_{k}=\rho \omega^{k}, \quad \text { with } \omega=e^{2 \pi i / 7}
$$

Figure: At ρ the small root u_{1} (in green) meets the large root v_{1} (in red), with a square root behavior. (In black, we also plotted $\left|u_{2}\right|,\left|v_{2}\right|,\left|v_{3}\right|,\left|v_{4}\right|,\left|v_{5}\right|$.)

Dominant singularities

Lemma - local behavior (short) (Banderier-Wallner)
Let $\omega=e^{2 \pi i / 7}$ and $\zeta_{k}=\rho \omega^{k}$. Then at every k exactly one small branch is singular and the other one is analytic. u_{1} is singular at $k=0,2,5$ and u_{2} is singular at $k=1,3,4,6$.

Figure: Singular branches

A rotation law (Banderier-Wallner)

For all $z \in \mathbb{C}$, with $|z| \leq \rho$ and $-\pi<\arg (z)<\pi-2 \pi / 7$:

$$
\begin{aligned}
& u_{1}(\omega z)=\omega^{-3} u_{2}(z) \\
& u_{2}(\omega z)=\omega^{-3} u_{1}(z)
\end{aligned}
$$

Rotation law: proof

A rotation law (Banderier-Wallner)

For all $z \in \mathbb{C}$, with $|z| \leq \rho$ and $-\pi<\arg (z)<\pi-2 \pi / 7$:

$$
\begin{aligned}
& u_{1}(\omega z)=\omega^{-3} u_{2}(z) \\
& u_{2}(\omega z)=\omega^{-3} u_{1}(z)
\end{aligned}
$$

Define $U(z):=\omega^{3} u_{1}(\omega z)$ and consider

$$
X(z)=U^{2}-z \phi(U),
$$

where $\phi(u):=u^{2} P(u)=1+u^{7}$ from the kernel equation $1-z P(u)=0$. Next

$$
\omega X(z / \omega)=u_{1}(z)^{2}-z \phi\left(u_{1}(z)\right)=0
$$

as we recognize the entire form of the kernel equation. Thus, U is a root of the kernel. Which one?

Rotation law: proof

A rotation law (Banderier-Wallner)

For all $z \in \mathbb{C}$, with $|z| \leq \rho$ and $-\pi<\arg (z)<\pi-2 \pi / 7$:

$$
\begin{aligned}
& u_{1}(\omega z)=\omega^{-3} u_{2}(z) \\
& u_{2}(\omega z)=\omega^{-3} u_{1}(z)
\end{aligned}
$$

Define $U(z):=\omega^{3} u_{1}(\omega z)$ and consider

$$
X(z)=U^{2}-z \phi(U),
$$

where $\phi(u):=u^{2} P(u)=1+u^{7}$ from the kernel equation $1-z P(u)=0$. Next

$$
\omega X(z / \omega)=u_{1}(z)^{2}-z \phi\left(u_{1}(z)\right)=0
$$

as we recognize the entire form of the kernel equation. Thus, U is a root of the kernel. Which one?

- It must be a small one, as $U(z) \sim 0$ for $z \sim 0$.
- It is not $u_{1}(z)$ as it has a different Puiseux expansion.
- Hence, it is $u_{2}(z)$! (Analytic continuation as long as we avoid $\arg (z)=-\pi$.)

Local asymptotics: definition

Definition: Local asymptotics extractor $\left[z^{n}\right]_{\zeta_{k}}$
Let $F(z)$ be a GF with p dominant singularities $\zeta_{k}($ for $k=1, \ldots, p)$. Define

$$
\left.\left[z^{n}\right]_{\zeta_{k}} F(z):=\left[z^{n}\right] \text { (Puiseux expansion of } F(z) \text { at } z=\zeta_{k}\right)
$$

Example

Let $F(z)=\frac{1}{1-z^{2}}=\frac{1}{(1-z)(1+z)}$. We have $p=2$ dominant singularities $\zeta_{1}=1$ and $\zeta_{2}=-1$. Then we get

$$
\begin{array}{ll}
{\left[z^{n}\right]_{\zeta_{1}} F(z)=\left[z^{n}\right] \frac{1}{2(1-z)}=\frac{1}{2},} & \text { for all } n \geq 0, \\
{\left[z^{n}\right]_{\zeta_{2}} F(z)=\left[z^{n}\right] \frac{1}{2(1+z)}=\frac{(-1)^{n}}{2},} & \text { for all } n \geq 0 .
\end{array}
$$

Then it holds:

$$
\left[z^{n}\right] F(z)=\left[z^{n}\right]_{\zeta_{1}} F(z)+\left[z^{n}\right]_{\zeta_{2}} F(z)= \begin{cases}1, & \text { for } n=2 k \\ 0, & \text { otherwise }\end{cases}
$$

Local asymptotics: definition

Definition: Local asymptotics extractor $\left[z^{n}\right]_{\zeta_{k}}$
Let $F(z)$ be a GF with p dominant singularities $\zeta_{k}($ for $k=1, \ldots, p)$. Define

$$
\left.\left[z^{n}\right]_{\zeta_{k}} F(z):=\left[z^{n}\right] \text { (Puiseux expansion of } F(z) \text { at } z=\zeta_{k}\right)
$$

Example

Let $F(z)=\frac{1}{1-z^{2}}=\frac{1}{(1-z)(1+z)}$. We have $p=2$ dominant singularities $\zeta_{1}=1$ and $\zeta_{2}=-1$. Then we get

$$
\begin{array}{ll}
{\left[z^{n}\right]_{\zeta_{1}} F(z)=\left[z^{n}\right] \frac{1}{2(1-z)}=\frac{1}{2},} & \text { for all } n \geq 0, \\
{\left[z^{n}\right]_{\zeta_{2}} F(z)=\left[z^{n}\right] \frac{1}{2(1+z)}=\frac{(-1)^{n}}{2},} & \text { for all } n \geq 0 .
\end{array}
$$

Then it holds:

$$
\left[z^{n}\right] F(z)=\left[z^{n}\right]_{\zeta_{1}} F(z)+\left[z^{n}\right]_{\zeta_{2}} F(z)= \begin{cases}2\left[z^{n}\right]_{\zeta_{1}} F(z), & \text { for } n=2 k, \\ 0, & \text { otherwise }\end{cases}
$$

Local asymptotics: proposition

Definition: Local asymptotics extractor $\left[z^{n}\right]_{\zeta_{k}}$

Let $F(z)$ be a GF with p dominant singularities $\zeta_{k}($ for $k=1, \ldots, p)$. Define

$$
\left[z^{n}\right]_{\zeta_{k}} F(z):=\left[z^{n}\right] \text { (Puiseux expansion of } F(z) \text { at } z=\zeta_{k} \text {) }
$$

Proposition (Banderier-Wallner)

Let $F(z)$ be a GF with non-negative coefficients. Let ρ be the positive real dominant singularity. When additionally the function $F(z)$ satisfies a rotation law $F(\omega z)=\omega^{m} F(z)($ where $\omega=\exp (2 \pi i / p))$, then it holds that

$$
\left[z^{n}\right] F(z)= \begin{cases}\boldsymbol{p}\left[z^{n}\right]_{\rho} F(z)\left(1+o\left(\rho^{n}\right)\right), & \text { if } p \mid(n-m) \\ 0, & \text { otherwise }\end{cases}
$$

Local asymptotics: proof

Proposition

Let $F(z)$ be a GF with non-negative coefficients. Let ρ be the positive real dominant singularity. When additionally the function $F(z)$ satisfies a rotation law $F(\omega z)=\omega^{m} F(z)($ where $\omega=\exp (2 \pi i / p))$, then it holds that

$$
\left[z^{n}\right] F(z)=\boldsymbol{p} \chi_{p}(n-m)\left[z^{n}\right]_{\rho} F(z)\left(1+o\left(\rho^{n}\right)\right)
$$

where $\chi_{p}(n-m)$ is 1 if $n-m$ is a multiple of $p, 0$ elsewhere.

Due to Pringsheim's Theorem a positive real dominant sing. ρ is guaranteed. Relabel ζ_{k} such that $\zeta_{k}=\omega^{k} \rho$, then

$$
\begin{aligned}
{\left[z^{n}\right] F(z)-o\left(\rho^{n}\right) } & =\sum_{k=1}^{p}\left[z^{n}\right]_{\zeta_{k}} F(z)=\sum_{k=1}^{p}\left[z^{n}\right]_{\zeta_{k}}\left(\omega^{m}\right)^{k} F\left(\omega^{-k} z\right) \\
& =\sum_{k=1}^{p}\left(\omega^{m}\right)^{k}\left(\omega^{-k}\right)^{n}\left[z^{n}\right]_{\rho} F(z)=\left(\sum_{k=1}^{p}\left(\omega^{k}\right)^{m-n}\right)\left[z^{n}\right]_{\rho} F(z) \\
& =p \chi_{p}(n-m)\left[z^{n}\right]_{\rho} F(z)
\end{aligned}
$$

Application to Knuth's problem

From the local behavior of $u_{1}(z)$ and $u_{2}(z)$ we get the rotation law

$$
A_{1}(\omega z)=\omega^{-2} A_{1}(z), \quad B_{0}(\omega z)=\omega^{-2} B_{0}(z) .
$$

Hence, we have period $p=7$ and $m=-2$. Thus, it is sufficient to compute the singular expansion of $A_{1}(z)$ and $B_{0}(z)$ at $z=\rho$ and multiply it with 7 to get:

$$
\begin{aligned}
& A_{n}=\left[z^{7 n-2}\right] A_{1}(z)=\alpha_{1} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{3}}}+\frac{3 \alpha_{2}}{2} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{5}}}+\mathcal{O}\left(n^{-7 / 2}\right) \\
& B_{n}=\left[z^{7 n-2}\right] B_{0}(z)=\beta_{1} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{3}}}+\frac{3 \beta_{2}}{2} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{5}}}+\mathcal{O}\left(n^{-7 / 2}\right)
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are some real constants.

Application to Knuth's problem

From the local behavior of $u_{1}(z)$ and $u_{2}(z)$ we get the rotation law

$$
A_{1}(\omega z)=\omega^{-2} A_{1}(z), \quad B_{0}(\omega z)=\omega^{-2} B_{0}(z) .
$$

Hence, we have period $p=7$ and $m=-2$. Thus, it is sufficient to compute the singular expansion of $A_{1}(z)$ and $B_{0}(z)$ at $z=\rho$ and multiply it with 7 to get:

$$
\begin{aligned}
& A_{n}=\left[z^{7 n-2}\right] A_{1}(z)=\alpha_{1} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{3}}}+\frac{3 \alpha_{2}}{2} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{5}}}+\mathcal{O}\left(n^{-7 / 2}\right), \\
& B_{n}=\left[z^{7 n-2}\right] B_{0}(z)=\beta_{1} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{3}}}+\frac{3 \beta_{2}}{2} \frac{\rho^{-7 n}}{\sqrt{\pi(7 n-2)^{5}}}+\mathcal{O}\left(n^{-7 / 2}\right),
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are some real constants.
Finally we directly get

$$
\frac{A_{n}}{B_{n}}=\kappa_{1}-\frac{\kappa_{2}}{n}+\mathcal{O}\left(n^{-2}\right)=\frac{\alpha_{1}}{\beta_{1}}+\frac{3}{14}\left(\frac{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}}{\beta_{1}^{2}}\right) \frac{1}{n}+\mathcal{O}\left(n^{-2}\right) .
$$

Hence, we have shown that
$\kappa_{1} \approx 1.6302576629903501404248, \quad \kappa_{2} \approx 0.1586682269720227755147$.

Closed form Solution of Knuth's problem

Asymptotics of Knuth's problem

$$
\begin{aligned}
\frac{A_{n}}{B_{n}} & =\kappa_{1}-\frac{\kappa_{2}}{n}+\mathcal{O}\left(n^{-2}\right) \text { with } \\
\kappa_{1} & \approx 1.6302576629903501404248, \\
\kappa_{2} & \approx 0.1586682269720227755147 .
\end{aligned}
$$

- κ_{1} is the unique real root of the polynomial

$$
23 x^{5}-41 x^{4}+10 x^{3}-6 x^{2}-x-1
$$

- $(7 / 3) \kappa_{2}$ is the unique real root of the polynomial

$$
11571875 x^{5}-5363750 x^{4}+628250 x^{3}-97580 x^{2}+5180 x-142
$$

- The Galois group of each of these polynomials is S_{5} \Rightarrow No closed form formula in terms of basic operations on integers, and root of any degree.

Duchon's club

Model

Number of "histories" of couples entering a club, and exiting by 3 . What is the number of possible histories, if the club is closing empty?

(a) North-East model: Dyck paths below the line of slope $2 / 3$

(b) Banderier-Flajolet model: excursions with +2 and -3 jumps

- Duchon conjectured average area as $K n^{3 / 2}$ with $K \approx 3.43$
- $K=\frac{\sqrt{15 \pi}}{2} \approx 3.432342124$ (together with Bernhard Gittenberger).

Conclusion

■ We solved Knuth's and Duchon's conjectures :-)
■ We got a generic approach (any jumps!) to deal with enumeration and asymptotics of lattice paths below a rational slope.

- En passant, nice "closed form" formulae.
- Rigorous proof of the periodic case (more tricky).

Open (computer algebra) questions:

- a computer algebra package dealing with algebraic functions (and their asymptotics). Theory $=$ Newton-Puiseux + Flajolet-Salvy ACA algorithm. Caveat: Maple (nested) "RootOf" not able to follow the right branch.
- How to efficiently go from the differential equation to the algebraic equation, and conversely?
- Is there a way to handle irrational slopes?

[^0]: ${ }^{1}$ http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf

