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Overvie

@ Monday: General presentation
@ Tuesday: Guess'n'Prove
@ Wednesday: Creative telescoping
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Part I: General presentation _
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Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

Example: & = {(1,0),(—1,0),(1,~1),(~1,1)}, po = (0,0)
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Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

A path (walk) of length 1 starting at py is a sequence (pg, p1,...,pn) of
elements in Z9 such that piy1 —p;i € 6 for all i.

Example: & = {(1,0),(—1,0),(1,-1),(—=1,1)}, po = (0,0)
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General co.

Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

A path (walk) of length 1 starting at py is a sequence (pg, p1,...,pn) of
elements in Z9 such that piy1 —p;i € 6 for all i.

Let C be a cone of R (if x € Cand r > 0 then r- x € C).

Example: & = {(1,0), (-1,0),(1,-1),(-1,1)}, po = (0,0) and C =R%

4
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General context: lattice paths co

Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

A path (walk) of length n starting at pg is a sequence (po,p1,--.,pn) of
elements in Z% such that p; . —p; € & for all i.

Let C be a cone of R (if x € Cand r > 0 then r- x € C).

Example: & = {(1,0),(—1,0),(1,—1),(-1,1)}, po = (0,0) and C =R%

Questions
o What is the number a(n) of n-step walks contained in C?
o For i € C, what is the number a(#;1) of such walks that end at i?
o What about their generating series A(t), resp. A(t;x)?

3/48
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Many discrete objects can be encoded in that way:
o discrete mathematics (permutations, trees, words, urns, ...)
e statistical physics (Ising model, ...)
e probability theory (branching processes, games of chance, ...)
e operations research (queueing theory, ...)
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Many discrete objects can be encoded in that way:

discrete mathematics (permutations, trees, words, urns, ...)
statistical physics (Ising model, ...)

probability theory (branching processes, games of chance, ...)
operations research (queueing theory, ...)

Journal of Statistical Planning and Inference 140 (2010) 2237-2254

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

l:lhl,\ IER journal www.elsevier.

A history and a survey of lattice path enumeration
Katherine Humphreys

'Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA

ARTICLE INFO ABSTRACT

Available online 21 January 2010 In celebration of the Sixth International Conference on Lattice Path Counting and
Keywords: Applications, it is befitting to review the history of lattice path enumeration and to
Lattice path survey how the topic has progressed thus far.

Reflection principle We start the history with early games of chance specifically the ruin problem which
Method of images later appears as the ballot problem. We discuss André's Reflection Principle and its

‘misnomer, its relation with the method of images and possible origins from physics and
Brownian motion, and the earliest evidence of lattice path techniques and solutions.
In the survey, we give representative articles on lattice path enumeration found in
the literature in the last 35 years by the lattice, step set, boundary, characteristics
counted, and solution method. Some of this work appears in the author’s 2005
dissertation.
© 2010 Elsevier BV. All rights reserved.
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An old topic: The ballot problem and the reflection principle

Ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: given positive integers a,b with a > b, find the
number of Dyck paths starting at the origin and consisting of a upsteps
and b downsteps “\, such that no step ends on the x-axis.

Reflection principle: Dyck paths from (1,1) to T(a + b,a — b) that touch the
x-axis = Dyck paths from (1,—-1) to T

Answer: good paths = paths from (1,1) to T that never touch the x-axis

a+b-1 _ a+b—1\ a—bfa+b
a—1 b—1 ) a+b\ a
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An old topic: Pélya’s “promenade au hasard” / “Irrfahrt”

Motro: Drunkard: “Will I ever, ever get home again?™
Polya (1921); *“You can't miss; just keep going and stay out
of 3D!™ {Adam and Delbruck, 1968)

[Pélya, 1921] The simple random walk on Z? is recurrent in dimensions
d =1,2 (“Alle Wege fuehren nach Rom”), and transient in dimension d > 3

Uber eine Aufgabe der Walrscheinlichkeitsrechnung
betreffend die Irrfahrt im Stralennetz.

XANDERSC

THE RANDOM WAI.KS OF

GEORGE POLYA




Many recent contributions:

Adan, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov,
Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel, Guttmann, Guy,
Gouyou-Beauchamps, van Hoeij, Janse van Rensburg, Johnson, Kauers,
Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden, MacMahon,
Melczer, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.
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Many recent contributions:

Adan, Banderier, Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov,
Duchon, Dulucq, Fayolle, Fisher, Flajolet, Garbit, Gessel, Guttmann, Guy,
Gouyou-Beauchamps, van Hoeij, Janse van Rensburg, Johnson, Kauers,
Koutschan, Krattenthaler, Kreweras, Kurkova, van Leeuwarden, MacMahon,
Melczer, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.

—= Systematic approach
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Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M

Modern Computer Algebra  sccondcition

Joachim von zur Gathen and Jiirgen Gerhard

Experimental
Mathematics
in Action
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Example: From the SIAM 100-Di

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

» Computer algebra conjectures and proves

-1
11 V11— 2
p(e):1_,/‘2.zpl< ?'1? 21Al6e> , with A =1+8¢>+ /1 - 16¢€2.

48
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If & C Z% is finite and C = R?, then A(t;x) is rational:
1
a(n) = |6|" & A@) =) an)t" =
s 0= Lot = =gy
More generally:
1
AN =Ty e
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Also well-

Algebraic series [Bousquet-Mélou-Petkovsek 00]

If & C Z% is finite and C is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

11/ 48
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» From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a prefixed subset & of

{\/I A’ ’\/ T/ /‘1 — \U \Jr}

» Example with n = 45,i = 14, j = 2 for:

13/ 48
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» From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a prefixed subset & of

{\/I A’ ]\/ T/ /‘1 — \U \Jr}

» Example with n = 45,i = 14, j = 2 for:

» fu;ij = number of walks of length 1 ending at (i,j).

13/ 48
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Lattice walks with

» From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a prefixed subset & of

{\/I A’ ]\/ T/ /‘1 — \U \Jr}

» Example with n = 45,i = 14, j = 2 for:

» fu;ij = number of walks of length 1 ending at (i,j).

» fu:0,0 = number of walks returning to (0,0), a.k.a. “excursions”, of length n.

13/ 48
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Lattice walks with sma

» From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a prefixed subset & of

{\/I A’ ]\/ T/ /‘1 — \NI \Jr}

» Example with n = 45,i = 14, j = 2 for:

» fu;ij = number of walks of length 1 ending at (i,j).
» fu:0,0 = number of walks returning to (0,0), a.k.a. “excursions”, of length n.
> fu = Lij>0fn;ij = number of total walks with length n.

13/ 48
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» Complete generating series:

Fbxy) =Y ( ifn,.i,jx"yf)t" € QL ][]

n=0 \i,j=0

14 /48



~ Generating series and combinatorial problems

» Complete generating series:

F9) = X (3 fuage )" € Qb
=0 \ij=0
» Special, combinatorially meaningful specializations:

o F(t0,0) counts excursions;

o F(t;1,1) = Ly>0fut" counts walks with prescribed length;

o F(t1,0) counts walks ending on the horizontal axis.

14/ 48
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Generating series and combin

» Complete generating series:

F9) = X (3 fuage )" € Qb
=0 \ij=0
» Special, combinatorially meaningful specializations:

o F(t0,0) counts excursions;

o F(t;1,1) = Ly>0fut" counts walks with prescribed length;

o F(t1,0) counts walks ending on the horizontal axis.

Combinatorial questions: Given &, what can be said about F(t; x,y),
resp. fy.; ;, and their variants?

o Properties of F: algebraic? transcendental? D-finite?

o Explicit form: of F? of f?

o Asymptotics of f?

14/ 48
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Generating series and combinatorial problems

> Complete generating series:

Foxy) = T (X fusd )" < Qleylll]
1,j=0
» Special, combinatorially meaningful specializations:
oF (t; 0,0) counts excursions;
o F(1,1) = Yo fut" counts walks with prescribed length;

o F(t1,0) counts walks ending on the horizontal axis.

Combinatorial questions: Given &, what can be said about F(t; x,y),
resp. fy.; ;, and their variants?

o Properties of F: algebraic? transcendental? D-finite?

o Explicit form: of F? of f?

o Asymptotics of f?

Our goal: Use computer algebra to give computational answers.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,
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Smallsep walls ofmerest

From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

15/ 48
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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Two important mo

6={l« 7} Fe(tx,y) = K(tx,y)

6={"/,<,—} Fslt;xy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.
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Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: E * g
Gessel: E E
Gouyou-Beauchamps: ; E

King:
Exercise: E £
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Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e., P(,5(t)) = 0.
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Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e., P(,5(t)) = 0.

D-finite: S(t) € Q[[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (£)S") (t) + - - - + co(t)S(t) = 0.
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Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e., P(,5(t)) = 0.

D-finite: S(t) € Q[[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (£)S") (t) + - - - + co(t)S(t) = 0.

Hypergeometric: §(t) = Y37 sut” such that %% € Q(n). E.g,,

t) _ oy @O @t 1) (1),

= ()n nV
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S € Q[[x,y, t]] is algebraic if it is the root of a P € Qlx, y, ¢, T.
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S € Q[[x,y, t]] is algebraic if it is the root of a P € Qlx, y, ¢, T.

S € Q|[[x,y, t]] is D-finite if the set of all partial derivatives of S spans a
finite-dimensional vector space over Q(x,y, ).
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Theorem [Kreweras 1965; 100 pages combinatorial proof!]

. B 1/3 2/3 1 3\ ad 4"(3:) 3n
K(f/OIO)—3F2< 3/2 2 \27f>—2mt

n=0

21/ 48



Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
1/3 2/3 1|5 4'C5) 3n
K(t; =3F 27t | = — 1t
(£0,0) =5 2< 3/2 2 ‘ ) L i) en 1)
Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1], ., 2 (5/6)n(1/2)n ,  ,\on
G(0,0) = 3F < 16t ) =) e 4T
32\ 5/3 2 §, (5/3)u(2)n

n=0
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 Main reslts (0 algebracity o Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
1/3 2/3 1|5 4'C5) 3n
K(t; =3F 27t | = — 1t
(£0,0) =5 2< 3/2 2 ‘ ) L i) en 1)
Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1], ., 2 (5/6)n(1/2)n ,  ,\on
G(0,0) = 3F < 16t > =) e 4T
32\ 5/3 2 §, (5/3)u(2)n

n=0

Question: What about K(f;x,y) and G(tx,y)?
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Main r

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
1/3 2/3 1|5 4"() 3n
K(t; =3F 27t | = —
(£0,0) =3 2< 3/2 2 ‘ ) n; CERICES)
Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1], ., 2 (5/6)n(1/2)n ,  ,\on
G(0,0) = 3F ( 16t > =) e 4T
32\ 5/3 2 2, (5/3)u(2)n

Question: What about K(f;x,y) and G(tx,y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(¢; x, ) is algebraic.
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Main resul

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
1/3 2/3 1|5 4"() 3n
K(t; =3F 277 ) = —
(£0,0) =3 2< 3/2 2 ‘ ) n; CERICES)
Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1], ., 2 (5/6)n(1/2)n, , om
G(£0,0) = 3F ( 16t > =) SR (4
32\ 573 2 = (5/3)u(2)n

Question: What about K(f;x,y) and G(tx,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(¢; x, ) is algebraic.

» G(t;x,y) had been conjectured to be non-D-finite.
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Main results (I): al

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
e o (173273 18\ 4'C0D
K(:0,0) —3F2< 3/2 2 ‘2” ) =L ity

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1|, .2 o (5/6)n(1/2)n 4 ,\2n
G(£:0,0) = 5F ( 16t ) _y 57O/ 2 ypym,
32\ 5/3 2 ng (5/3)u(2)n

Question: What about K(f;x,y) and G(tx,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(¢; x, ) is algebraic.
» G(t;x,y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(f; x, y) is D-finite, even algebraic.

» Computer-driven discovery and proof; no human proof yet.
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Main results (I): al

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
e o (173273 18\ 4'C0D
K(:0,0) —3F2< 3/2 2 ‘2” ) =L ity

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1|, .2 o (5/6)n(1/2)n /4 ,\2n
G(£:0,0) = 5F ( 16t ) _y 57O/ 2y,
32\ 5/3 2 ng (5/3)u(2)n

Question: What about K(;x,y) and G(tx,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(¢; x, ) is algebraic.
» G(t;x,y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(f; x, y) is D-finite, even algebraic.

» Computer-driven discovery and proof; Hey Hthan/ P oot/ véy.
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Main results (I): al

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
e o (173273 18\ "G
K(;0,0) —3F2< 3/2 2 ‘2” ) =L ity

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1], ., 2 (5/6)n(1/2)n, ,\om
G(£0,0) = 3F ( 16t ) =) SR (4P
32\ 573 2 = (5/3)u(2)n

Question: What about K(f;x,y) and G(tx,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(; x, ) is algebraic.
» G(t;x,y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(f; x, y) is D-finite, even algebraic.

» Fresh news: recent human proof [B., Kurkova & Raschel 2015].
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Main results (I):

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
) 3n
e o (173273 18\ 4'C0D
K(:0,0) —3F2< 3/2 2 ‘m ) =L ity

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

5/6 1/2 1|, .2 o (5/6)n(1/2)n . on
G(£:0,0) = 5F < 16t ) _y 57O/ 2y,
32\ 5/3 2 ng (5/3)u(2)n

Question: What about K(;x,y) and G(tx,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(¢; x, ) is algebraic.
» G(t;x,y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(f; x, y) is D-finite, even algebraic.

» Guess'n’Prove method, using Hermite-Padé approximants ~— Tuesday
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Main r

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4t + 36t* + 396t° + - - - be a root of

(V—-1)(1+3/V)3 = (16t)%,
let U = 1+ 21> + 16t* + 2xt> + 2(x? + 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8Vt)U?
—xV(V% =24V — 9)U + 2V%(xV — 9x — 8Vt) = 0,
let W =2+ (y + 8)t* +2(y*> + 8y +41)t° + - - - be a root of
y(1—=V)W3 +y(V4+3)W? — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(V41)—2V)V3/2 y(W=1)*(1-Wy)V—3/2
x(P-V(WP—8U+9-V))> ~ Hy+D)(I-W)(W2y+1)> 1
(1+y+ 22y + x2y2)t — xy tx(y+1)

» Computer-driven discovery and proof; no human proof yet.

25/ 48
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Main resul

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4t + 36t* + 396t° + - - - be a root of

(V-1)1+3/V)3 = (16t)?,
let U = 1+ 21> + 16t* + 2xt> + 2(x? + 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8Vt)U?
—xV(V? =24V —9)U +2V?*(xV — 9x — 8Vt) = 0,
let W =2+ (y + 8)t* +2(y*> + 8y +41)t° + - - - be a root of
y(1—=V)W3 +y(V4+3)W? — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(V41)—2V)V3/2 y(W=1)*(1-Wy)V—3/2
x(P-V(WP—8U+9-V))> ~ Hy+D)(I-W)(W2y+1)> 1
(1+y+ 22y + x2y2)t — xy tx(y+1)

» Computer-driven discovery and proof; no human proof yet.
» Proof uses guessed minimal polynomials for G(t;x,0) & G(t;0,y)
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Main results (III): Conjectured D-Finite F(£;1,1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS & Pol size ODE size
1|A005566 4 — 3,4 |[13)a151275 & — 5,24
2|A018224 X — 3,5 |[14/a151314 @& — 5,24
3|Aa151312 K — 3,8 |15|a151255 A, — 4,16
4|A151331 3 — 3,6 |[16|A151287 & — 5,19
5|A151266 'Y — 516 |[17/a001006 &, 2,2 2,3
6|A151307 F — 5,20 |[18/Aa129400 R 2,2 2,3
71a151291 ¥° — 515 [19]A005558 ¥ < — 3,5
8|A151326 ¥  — 518
9(a151302 K — 524 [20A151265 <° 6,8 4,9
10(a151329 38  — 5,24 |21/A151278 > 6,8 4,12
11]a151261 b — 4,15 |[22/A151323 B 4,4 2,3
12|A151297 % — 5,18 ||23/A060900 ¥ 8,9 3,5

Equation sizes = {order, degree}@(algeq, diffeq)

» Computerized discovery by enumeration + Hermite-Padé
» 1-22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]
» 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]
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Main results (III): Conjectured D-Finite F(£;1,1) [B. & Kauers 2009]

OEIS & alg asympt OEIS & alg asympt
1]A005566 <f> N 44 |l13{A151075 K N 12030 zf "
2]A018224 P& N 2% |l14]A151314 BE N V8 Aucm (zncz>
3|A151312 3K N ¥8¢  |115/A151255 A N z4f @2y
4|A151331 B N L8 |16|A151287 g N 2/ 7;*”””2)”
5|A151266 'Y" N %\/E 3 |l17]a001006 < Y g\/%%
6|Aa151307 B N 1/ 2 5 |lis|az0a00 R v 3\/2.9,
7|a151201 $T N Aok lioacossss B N B4
8 |A151326 ¥ N o
9|A151302 3K N 1/ 2 2. 20{A151265 " Y r%ﬁ) 3
10(a151329 3§ N 1\/Z 7, ||21]a151278 1S ¥ e
11|A151261 A N 203231155 A151323 3 Y f(l% LN
12(a151297 g N Y32 L) 12314060000 2 v AL 4

A=14V2 B=1+3, C=1+V6, A=7+3V6, u=1/ 21
» Computerized discovery by enumeration + Hermite-Padé + LLL/PSLQ.
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1 1
The characteristic polynomial xg :=x + po +y+ y
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1 1
The characteristic polynomial xg := x+ po +y+ y is left invariant under

v = (v,) ot = (L),
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1 1
The characteristic polynomial xg := x+ po +y+ y is left invariant under

v = (v,) ot = (L),

and thus under any element of the group

= o) ()
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| o1 ;
The polynomial xe:= ) 'y =) Bi(y)x'=) Ajx)y
(ij)es =1 =1
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| | .
The polynomial e := Y x'v/ =) Bi(y)x'=) Aj(x)y isleft
(ij)e6 =1 =1
invariant under

( Aaw1 (a1
v = (i) o0 = (grey)
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| | )
The polynomial e := Y x'v/ =) Bi(y)x'=) Aj(x)y isleft
(ij)es i=—1 j=—1
invariant under

o= (1) o= (80L),

and thus under any element of the group

Gs = (¥, ).
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Order 4,
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Order 4, order 6,
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Order 4, order 6, order 8§,
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Ex

Order 4, order 6, order 8§, order oo,
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 An imporantoject theorbitsum (09
The orbit sum of a model & is the following polynomial in Q[x,x~1,y,y~1]:

OrbitSum(&) := ) (=1)%(xy)
[dS9S
» E.g., for the simple walk:

1 1

» For 4 models, the orbit sum is zero:

S

E.g. for the Kreweras model:

—X-

<=
<

1 1 1 1
OSE {—x-y—@-y—i—@-x—yw—i—y-@—x-@ =0

Computer Algebra for Lattice Path Combinatorics
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79 models
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23 admit a finite group
[Mishna’07]

79 models

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t;x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t;x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
(3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

79 models

56 have an infinite group — all non-D-finite
[Bousquet-Mélou & Mishna’10] o [Mishna & Rechnitzer’07] and
[Melczer & Mishna’13] for 5 singular models
e [Kurkova & Raschel’13] and
[B., Raschel & Salvy’13] for all others
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The 23 models with a finit

(i) 16 with a vertical symmetry, and group isomorphic to D;

AR AHRATK AKX ¥
AOK HOK 3K

(if) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic to

A ok

(iii) 2 with group isomorphic to Dy

AV

(i): vertical symmetry; (ii)+(iii): zero drift Z 5
s€6
In red, models with OS = 0 and algebraic GF

Computer Algebra for Lattice Path Combinatorics



Theorem [B., Chyzak, van Hoeij, Kauers & Pech 2015]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then F is expressible using iterated integrals of ,F; expressions.
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Main results
transcendent

Theorem [B., Chyzak, van Hoeij, Kauers & Pech 2015]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then F is expressible using iterated integrals of ,F; expressions.

Example (King walks in the quarter plane, A025595)

16x(1 + x)
1+ 402 ) d

3

1}%(”1 t/(1+4x 2F1<2

=1+ 3t + 18> + 105t° + 684+* + 4550¢° + 31340¢° + 219555+ +

34 /48
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transcendental mode

Theorem [B., Chyzak, van Hoeij, Kauers & Pech 2015]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then F is expressible using iterated integrals of ,F; expressions.

Example (King walks in the quarter plane, A025595)

16x(1 + x)
1+ 402 )d

3

I%(t“ t/(1+4x 2F1<2

=1+ 3t + 18> + 105> + 684t* + 4550¢° + 31340¢° + 219555t + - - -

» Computer-driven discovery and proof; no human proof yet.
» Proof uses creative telescoping, ODE factorization, ODE solving. —
Wednesday

34 /48
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Hypergeometric Series Occu.

hypl hypz w hypl hypz
11 13 N 79 9 11 t2+t+1t2
1 2P1 212 w 2P1 222 w 16t 10 21:1 424 w 21:1 434 w (12t2+l
11 5 13 15 162
2 2P1 (212 w) 16t 11 2P1 (222 w) 2F1 (232 w) 21
33 57 57 3
16t 64F 2t+1
3 2F1 (222 w) m 12 2F1 (414 w) 2F1 (424 w) 8t2 1
33 79 79 2
16t(1+t) 6412 (2 41)
4 2F1<222 w> ara? |13 2F1(424 w) 2F1<434 w) (16t2+1
35 57 79 911 (2 2
5 2F1 <414 ZU) 2F1 (424 w) 64t4 14 2F1 (424 w) 2F1 <4 34 ’ w) 64(;2:2#;;1 )t
79 79 13 35
6 oF; <424 w) 2F1 (434 ZU) Titjilt;r)tz) 15 F; (414 w) 2F (424 w) 64t*
11 13 > 79 9 11 6481
7 2F (212 w) 2Fy (212 w) prere S| N & (424 w) 2F (4 3t w) (f 4;?
57 79 3
6413 (2t+1
8 2F1<424 w) 2F1(424 w) ﬁ
79 79 212 _11 11
6412 (2 +1
9 21—"1(424 w) 21—"1(434 w) ﬁ 19 21—"1( 32 w) zpl(zzz w) 1612

NN o Algebr fo Lattice Path Combinalorics
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Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fs (t;0,0), and in particular Fg (£ x,y), are non-D-finite.
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Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fs (t;0,0), and in particular Fg (£ x,y), are non-D-finite.

» Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
» Based on two ingredients: asymptotics + irrationality.

» [Kurkova & Raschel 2013] Human proof that Fg (£ x,y) is non-D-finite.
» No human proof yet for Fg (t;0,0) non-D-finite.

36 / 48
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The 56 models with infinite group

ACHRR SRR AR K
KKK HK A A
AR AR K
AR RO XA A
KR AR HOK
RORKKK

In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]

Alin Bostan Computer Algebra for Lattice Path Combinatorics



[B., Raschel & Salvy 2013]: Fg(t;0,0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence ["] Fs(t;0,0)

1,0,0,2,4,8,28,108,372, ...
is~ K-5"-n"* witha =1+ 7/ arccos(1/4) = 3.3833%...

The irrationality of « prevents Fg (£;0,0) from being D-finite.
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Summar

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series F (t;x,y) is D-finite

(2) the excursions generating series F (t;0,0) is D-finite

(3) the excursions sequence [t"| Fg(£;0,0) is ~ K- p" - n*, with v € Q
(4) the group G is finite (and |Gg | = 2 - min{¢ € N* | 45 € Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

39 /48
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Summary: Classi

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series F (t;x,y) is D-finite

(2) the excursions generating series F (t;0,0) is D-finite

(3) the excursions sequence [t"| Fg(£;0,0) is ~ K- p" - n*, with v € Q
(4) the group G is finite (and |G| = 2 - min{¢ € N*| £ i €ZY)

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)-(5), F (t;x,y) is algebralc if and only if the model &
has positive covariance ) | ij— ) i- ) j>0,and iff it has OS = 0.
(ij)es  (ij)e&  (ij)e®

39 /48
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Summary: Classification

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series F (t;x,y) is D-finite

(2) the excursions generating series F (t;0,0) is D-finite

(3) the excursions sequence [t"| Fg(£;0,0) is ~ K- p" - n*, with v € Q
(4) the group G is finite (and |G| = 2 - min{¢ € N*| £ a1 €Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)—(5), Fg (t;x,y) is algebra1c if and only if the model &
has positive covariance ) | ij— ) i- ) j>0,and iff it has OS = 0.
(ij)es  (ij)e&  (ij)e®

In this case, Fg (1;x, ) is expressible using nested radicals.
If not, F (£ x,y) is expressible using iterated integrals of ,F; expressions.
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(1) for proving algebraicity / D-finiteness
(1a) Guess'n'Prove
(1b) Creative telescoping

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics
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(1) for proving algebraicity / D-finiteness
(1a) Guess'n’Prove Hermite-Padé approximants
(1b) Creative telescoping Diagonals of rational functions

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

» All methods are algorithmic.
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quadrant models: 79

— T~

|G| <oo: 23 |G| = o0: 56

N |

nonzero orbit sum: 19  zero orbit sum: 4 asymptotics + GB

Kernel method + CT Guess'n’Prove not D-finite

D-finite algebraic
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11074225 distinct interesting models

3D octant models with < 6 steps: 20804

— T~

|G| < o0: 170 G| = 0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62 not D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite not D-finite?

[B., Bousquet-Mélou, Kauers, Melczer 2015]

» Open question: some non-D-finite models with a finite group?

42/ 48
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The 19 mysterio

g 7
7 7
/ /
/ / )/
/ / i / /
7 T a8 IL/’ 7 S
”* f’* T
7 7 7 7 7
/ / I / /
/ /
i i
N N
IA TAN
/ /
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The 19 my.
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o Define (and use) a group G for models with larger steps?

e Example: When & = {(0,1), (1, —1), (=2, —1)}, there is an underlying
group that is finite and

20 20 (X =20 D) (y— (x—x Py
A e e P 2.1
1—txy 1 +y+x2y-1

N\

[B., Bousquet-Mélou & Melczer, in progress]

xyF(tx,y) = [x

» Current status:
e 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

e 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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Let & = {N, W, SE}. A &-walk is a path in Z? using only steps from &.
Show that, for any integer 1, the following quantities are equal:

(i) the number of G-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0, 0).

(ii) the number of G-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal x = y;
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_

Let & = {N, W, SE}. A &-walk is a path in Z? using only steps from &.
Show that, for any integer 1, the following quantities are equal:

(i) the number of G-walks of length 7 confined to the upper half plane
Z x N that start and end at the origin (0, 0).

(ii) the number of G-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal x = y;

For instance, for n = 3, this common value is 3:

(i) (0,0) — (=1,0) — (—1,1) > (0,0), (0,0)  (0,1) — (—1,1)  (0,0)
and (0,0) — (0,1) — (1,0) — (0,0), i.e., W-N-SE, N-W-SE, N-SE-W

(ii) (0,0) > (0,1) — (1,0) — (0,0),(0,0) — (0,1) ~— (0,2) > (1,1) and
(0,0) = (0,1) = (1,0) — (1,1), i.e., N~SE-W, N-N-SE, N-SE-N
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Thanks for your attention!



