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@ Monday: General presentation
@ Tuesday: Guess'n'Prove
@ Wednesday: Creative telescoping
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Part II: Guess'n’Prove _
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Summary of Part I: Cl

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating series F (t;x,y) is D-finite

(2) the excursions generating series F (t;0,0) is D-finite

(3) the excursions sequence [t"| Fg(£;0,0) is ~ K- p" - n*, with o € Q
(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Proof

(1) = (2) Easy

(2) = (3) [Denisov & Wachtel 2013] + [Chudnovsky'85, André'89, Katz'70]
(3) = (4) [B., Raschel & Salvy 2013]

(4) = (1) [Bousquet-Mélou & Mishna 2010] + [B. & Kauers 2010]

(5) < (4) A posteriori observation
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Summary of Part I: Classificati

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating series Fe (t;x,y) is D-finite

(2) the excursions generating series F (£;0,0) is D-finite

(3) the excursions sequence [t"| Fg(£;0,0) is ~ K- p" - n*, with w € Q

(4) the group Gg is finite (and |Gg| = 2 - min{f € N* % €Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)—(5), Fg (t;x,y) is algebraic if and only if the model &
has positive covariance ) ij— ) i- ) j>0,and iff it has OS = 0.
(ij)es (ij)es  (ij)eS

In this case, Fg (1;x, ) is expressible using nested radicals.
If not, Fg (t;x,y) is expressible using iterated integrals of ,F; expressions.

» Proof of the last statements: [B., Chyzak, van Hoeij, Kauers & Pech 2015]
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Two important mo

6={l« 7} Fe(tx,y) = K(tx,y)

6={"/,<,—} Fslt;xy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.
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e Gessel walks: walks in IN? using only steps in & = { , /, +, —}
e g(n;1,j) = number of walks from (0,0) to (i,j) with n steps in &

Question: Find the nature of the generating function

G(t;x,y) = Z g(m;,7) X'yt € Q[[x,y,1]]
i,j,n=0

Theorem (B.-Kauers 2010) G(t;x,y) is an algebraic function.

— Effective, computer-driven discovery and proof
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First guess, then prove [Pdlya, 1954]

wnires | GUESSinG and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.
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Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M

Modern Computer Algebra  sccondcition

Joachim von zur Gathen and Jiirgen Gerhard

Experimental
Mathematics
in Action
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Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data

(52) Conjecture

(S3) Prove
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 Methodology for proving algebraicty

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (t;x,);

(52) Conjecture
guess a candidate for the minimal polynomial of Fg (£;x,y), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

10 / 47
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Meth

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (t;x,);

(52) Conjecture
guess candidates for minimal polynomials of Fg (£;x,0) and Fg (0,y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

10 / 47

Y (. Algebi for Lattce Path Combinalorics



 Methodologyfor provingalgebreiy

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (t;x,);

(52) Conjecture
guess candidates for minimal polynomials of Fg (£;x,0) and Fg (0,y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

10 / 47

Y (. Algebi for Lattce Path Combinalorics



fe(n;1,]) satisfies the recurrence with constant coefficients

fe(m+1ij)= 3 fe(mi—uj—v) for nij>0
(u0)e&

+ initial conditions f& (0;7,/) = dy,;; and fe (n; —1,j) = fe (n;1, —1) = 0.
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fe(n;1,]) satisfies the recurrence with constant coefficients

fe(m+1ij)= 3 fe(mi—uj—v) for nij>0
(uv)e&

+ initial conditions f& (0;7,/) = dy,;; and fe (n; —1,j) = fe (n;1, —1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

Fk(ni—1,j—1)
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Step (S1):

fe(n;1,]) satisfies the recurrence with constant coefficients

fe(m+1ij)= 3 fe(mi—uj—v) for nij>0
(uv)e&

+ initial conditions f& (0;7,/) = dy,;; and fe (n; —1,j) = fe (n;1, —1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

Fk(ni—1,j—1)

> Recurrence is used to compute Fg (t;x,) mod tV for large N.

K(txy) = 1+xyt + (P +y + 02 + (3 + 2xy% + 222y +2)1°
+ (ety* + 30y + 3x%2 4 2% + by + 2021
+ (% + 43y* + 4xty® + 5xy® + 12677 + 523y + 8y + 8x) 0 + - -
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Step (S

In terms of generating series, the recurrence on k(1;1,j) reads

(xy — (x+y + 22y K(Ex,y)
=uxy —xtK(t;x,0) —ytK(£;0,y) (KerEq)

» A similar kernel equation holds for Fg (£;x,y), for any G-walk.

Corollary. Fg (£ x,y) is algebraic (resp. D-finite) if and only if Fg (£ x,0) and
Fe(t;0,y) are both algebraic (resp. D-finite).

» Crucial simplification: equations for G(t; x,y) are huge (~30Gb)

Y . Algebi for Lattce Path Combinalorics



Task 1: Given the first N terms of S = Fg (t;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

9"S aS
cr(x,t) - 5 + o (xt) - 3 +co(x,t)-S=0 mod V.
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Task 1: Given the first N terms of S = Fg (t;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

9"S aS
cr(x,t) - 5 + o (xt) - 3 +co(x,t)-S=0 mod V.

Task 2: Search for an algebraic equation Pyo(S) =0 mod V.
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Step (52): gues

Task 1: Given the first N terms of S = Fg (t;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:
J'S

cr(x,t) - e + o (xt) - %—f+c0(x,t)-s =0 mod V.

Task 2: Search for an algebraic equation Pyo(S) =0 mod V.

o Both tasks amount to linear algebra in size N over Q(x).

o In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

o Fast (FFT-based) arithmetic in Fp[t] and F,[t](4;).
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Using N = 80 terms of K(f;x,0), one can guess

» a linear differential equation of order 4, degrees (14,11) in (f,x), such that

£ (3t —1)- (9% + 3t +1) - (31> + 24£2x% — 3xt — 242)-
S(168%%° 4 ot — 721403 — 18x3 + 51242 + 18x83 — 98t)-
0*K(t;x,0)

~(4t2x3—t2+2xt—x2)~T+~~

» a polynomial of tridegree (6,10,6) in (T,t,x)
Pro = xOH0T0 — 3y 8 (x — 26)TO+

+ 2240 (121&2 +32%% — 12xt + ;x2> T4 ...

such that Py (K(t;x,0),t,x) = 0 mod £100,

14/47
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 Stap (52 guesing equations for G;x.0)and G604)

Using N = 1200 terms of G(t;x,y), our guesser found candidates

0Py in Zx,t, T] of degree (32,43,24), coefficients of 21 digits
0Py, in Z[y,t,T) of degree (40,44,24), coefficients of 23 digits

such that
Pro(x,t,G(tx,0)) = Poy(y,t,G(£0,y)) =0 mod £1200,
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Step (52): guessing

Using N = 1200 terms of G(t;x,y), our guesser found candidates
0Py in Zx,t, T] of degree (32,43,24), coefficients of 21 digits
0Py, in Z[y,t,T) of degree (40,44,24), coefficients of 23 digits

such that
Pro(x,t,G(tx,0)) = Poy(y,t,G(£;0,y)) =0 mod #1200,

» We actually first guessed differential equations’, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t;x,0) and G(+;0,y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.
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Step (52): guessing equation

Using N = 1200 terms of G(t;x,y), our guesser found candidates

0Py in Zx,t, T] of degree (32,43,24), coefficients of 21 digits
0Py, in Z[y,t,T) of degree (40,44,24), coefficients of 23 digits

such that
Pro(x,t,G(£x,0)) = Poy(y, £, G(10,y)) =0 mod 20

» We actually first guessed differential equations’, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t;x,0) and G(+;0,y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

» Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and /1000 digits entries!
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~ Guessing is good, proving is better [_

How to Solve It

A New Aspect of

e Guessing and Proving

George Pélya

Guessing is good, proving is better.
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Theorem. g(t) := G(v/£0,0) = i %(16&" is algebraic.
n=0 n\&/n
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Theorem. g(t) := G(v/£0,0) = i %(16&" is algebraic.
n=0 n\&/n

Proof: First guess a polynomial P(t,T) in Q[t, T|, then prove that P admits
the power series g(t) = Y5> gut" as a root.
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Theorem. g(t) := G(v/£0,0) = i %(16&" is algebraic.
n=0 n\4)n

Proof: First guess a polynomial P(t,T) in Q[t, T|, then prove that P admits
the power series g(t) = Y5> gut" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).
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 Stap (55 warmup - Gessl xcursionsarealgebraie

Theorem. g(t) := G(v/£0,0) = i %(161‘)" is algebraic.
=0 n\<)n

Proof: First guess a polynomial P(t,T) in Q[t, T|, then prove that P admits
the power series g(t) = Y5> gut" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).

@ Implicit function theorem: 3! root r(t) € Q[[¢]] of P.
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Step (S3):

o (5/6)n(1/2)n , .
Theorem. g(t) := G(V£0,0) = ) (16t)" is algebraic.
§ i /3@ ¢

Proof: First guess a polynomial P(t,T) in Q[t, T|, then prove that P admits
the power series g(t) = Y5> gut" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).

@ Implicit function theorem: 3! root r(t) € Q[[¢]] of P.

@ r(t)=Y,_(rat" being algebraic, it is D-finite, and so is (r;):
(n+2)(3n+5)r,41 —4(6n+5)(2n+1)r, =0, rp=1

= solution r,; = %16" = gu, thus g(t) = r(t) is algebraic.
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. __\/ﬁ .
® Setting yo = VI 20Dy 14 Y184 in the

2tx2

kernel equation

(xy— (x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;0,y)

!
=0
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. __\/ﬁ .
@ Setting yo = VI 2EHEIA) 10y 205 i the

2tx2

kernel equation

(xy— (x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)
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@ Setting yo = VI 2EHEIA) 10y 205 i the

2tx2

kernel equation

(xy— (x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ U = K(t;x,0) is the unique solution in Q[[x, t]] of (RKerEq).
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. __\/ﬁ .
@ Setting yo = VI 2EHEIA) 10y 205 i the

2tx2

kernel equation

(xy—(x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ U = K(t;x,0) is the unique solution in Q[[x, t]] of (RKerEq).

@ The guessed candidate P, o has one solution H(t,x) in Q[[x, t]].
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_

. b\ /[P DI P(1=4D) ]
@ Setting yg = ~ Ve s A G =t+%t2+’%t3+~~mthe

2tx2

kernel equation

(xy—(x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ U = K(t;x,0) is the unique solution in Q[[x, t]] of (RKerEq).
@ The guessed candidate P, o has one solution H(t,x) in Q[[x, t]].

@ Resultant computations + verification of initial terms
= U = H(t,x) also satisfies (RKerEq).

18 / 47
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. b\ /[P DI P(1=4D) ]
@ Setting yo = V- 24 (1-40) =t+%t2+’%t3+~~mthe

. 2tx?
kernel equation

(xy—(x+y+ xzyz)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ U = K(t;x,0) is the unique solution in Q[[x, t]] of (RKerEq).
@ The guessed candidate P, o has one solution H(t,x) in Q[[x, t]].

@ Resultant computations + verification of initial terms
= U = H(t,x) also satisfies (RKerEq).

® Uniqueness: H(t,x) = K(;x,0) = K(t;x,0) is algebraic!

18 / 47
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Algebraicity of

[bostan@inria ~]$ maple
/1 Maple 19 (APPLE UNIVERSAL 0SX)
INI - I/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
> Waterloo Maple Inc.
| Type 7 for help.

vV Vo

**

HIGH ORDER EXPANSION (S1)
st,bu:=time () ,kernelopts(bytesused) :
f:=proc(n,i,j)
option remember;
if i<0 or j<O or n<O then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
end:
S:=series(add(add(f(k,i,0)*x"1i,i=0..k)*t"k,k=0..80),t,80):

GUESSING (S2)

libname:=".",libname:gfun:-version();
3.62

gfun:-seriestoalgeq(S,Fx(t)):

P:=collect (numer (subs(Fx(t)=T,%[1])),T):

RIGOROUS PROOF (S3)
ker := (T,t,x) -> (x+T+x"2¥T"2)*t-x*T:
:= unapply(P,T,t,x):
resultant (pol(z-T,t,x),ker(t*z,t,x),z):
p2 := subs(T=x*T,resultant (numer(pol(T/z,t,z)) ,ker(z,t,x),z)):
normal (primpart (p1,T) /primpart (p2,T)) ;
1

time (in sec) and memory consumption (in Mb)
trunc(time () -st) ,trunc((kernelopts(bytesused)-bu)/100072);
7, 617 19 /47
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Step (S3):

Same strategy, but several complications:
o stepset diagonal symmetry is lost: G(t;x,y) # G(t;y,x);
o G(t0,0) occurs in (KerEq) (because of the step /);
o equations are ~ 5000 times bigger.

— replace equation (RKerEq) by a system of 2 reduced kernel equations.

— fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).

Available onli directcom

.B.....,.@......:r- Journal of
Symbolic
e Computation
ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/js

Fast computation of special resultants

Alin Bostan®*, Philippe Flajolet?, Bruno Salvy?, Eric Schost®

® Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
Y LIX, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005
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INSIDE THE BOX

—Computer algebra-
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Computer algebra = effective mathematics and algebraic complexity

o Effective mathematics: what can we compute?

o algebraic complexity: how fast?

22/ 47



Computer algebra books

The Desngn
Ny USATED AND REVIED of mmr
w0 opcrorr | uuLaan Polynomial
The Art of and Matrix
Computer Computations
Programming Noumet

Fundamental

VOLUME 2 Algorithms

Seminumerical Algorithms

Dario Bini and Victor Pan
Thid Edition

DONALD E. KNUTH

Mathématiques & Applications 42
Fundamental Problems Joundidi Abdeljooved
of Algorithmic Algebra Henr lombordi

@ Chee Keng vap
spingr
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Important features:
o addition is easy: naive algorithm already optimal
o multiplication is the most basic (non-trivial) problem

o almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:
o integer/polynomial/power series multiplication? Yes!

o matrix multiplication? Big open problem!
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Complexity yard

MM(r)

MM (7, n)

complexity of multiplication in K[x|,, and of n-bit integers
O(n?) by the naive algorithm

O(n'%®) by Karatsuba’s algorithm

O(n'°8: 2*=1)) by the Toom-Cook algorithm («x > 3)
O(nlognloglogn) by the Schénhage-Strassen algorithm

complexity of matrix product in M, (K)

O(r*) by the naive algorithm

O(r*®1) by Strassen’s algorithm

O(r*38) by the Coppersmith-Winograd algorithm

complexity of polynomial matrix product in M, (K[x]<,)
O(r*M(n)) by the naive algorithm

O(MM(r) nlog(n) + r’nlognloglogn) by the Cantor-Kaltofen algo
O(MM(r) n+r>M(n)) by the B-Schost algorithm

Y . Algebi for Lattce Path Combinalorics



25

T T
"FastMultiplication.out” ———

multiplication time (in milliseconds)

0 | I L |
500 1000 1500 2000

degree of multiplicands

Practical complexity of Magma’s multiplication in Fp[x], for p =29 x 257 4 1.
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What can be computed i

on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7

polynomial product’ in degree 14,000,000 (>1 year with schoolbook)
product of two integers with 500,000,000 binary digits

factorial of N = 20,000,000 (output of 140,000,000 digits)

ged of two polynomials of degree 600,000

resultant of two polynomials of degree 40,000

factorization of a univariate polynomial of degree 4,000

factorization of a bivariate polynomial of total degree 500

resultant of two bivariate polynomials of total degree 100 (output 10,000)
product/sum of two algebraic numbers of degree 450 (output 200,000)
determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

© 0 06 06 © 06 ©6 © © o o

determinant of an integer matrix with 32-bit entries and 700 rows

27 /47

Y . Algebi for Lattce Path Combinalorics



INSIDE THE BOX

—Hermite-Padé approximants—

Computer Algebra for Lattice Path Combinatorics



Definition of Hermit

Definition: Given a column vector F = (fi,...,fx)T € K[[x]]* and an n-tuple
d = (dy,...,ds) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,P,) € K[x]", (P # 0), such that:

(1) P-F=Pifi + -+ Pyfy = O(x%) with o = Y;(d; +1) — 1,
(2) deg(P;) < d; for all i.

o is called the order of the approximant P.

» Very useful concept in number theory (irrationality /transcendence):
o [Hermite 1873]: e is transcendent.
o [Lindemann 1882]: 7 is transcendent; so does ¢* for any « € Q \ {0}.
o [Apéry 1978, Beukers 1981]: {(3) =), % is irrational.
o [Rivoal 2000]: there exist infinite values of k such that {(2k + 1) ¢ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, Cz),
where C(x) = 1+ x 4 2x2 + 533 4 14x* + 42x5 + O(x0).
This boils down to finding &g, a1, Bo, B1, Y0, 71 such that

ag + a1x+(Bo + P1x) (14 x +2x% + 52 + 14x* )+ (70 + 71%) (1 + 2x + 5x% + 142 + 42¢*) = O(x°).
Identifying coefficients, this is equivalent to a homogeneous linear system:

X0

10 1 0 1 0 o 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
00 2 1 5 2{x|[% =010 0 2 1 5|x|B|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 3‘1) 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B¢, 81, 70) = (—1,0,0).
The other values are ayp =1, a1 = 0.

Thus the approximant is (1, —1,x), which corresponds to P = 1 —y + xy?
such that P(x,C(x)) = 0 mod x°.

30 / 47
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Algebraic and diff

o Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

o algebraic approximants = Hermite-Padé approximants for fy = AL
where A € K][[x]] seriestoalgeq, listtoalgeq

o differential approximants = Hermite-Padé approximants for f; = ALY,
where A € K][[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2
[1-y& +xy& , ogfl

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \
/d \ ld |

{2y&) + @2-4x |--y&I| +x |-—— y&@I, y0) =1, D(y)(0) = 1}, egf]
\dx / | 2 |
\dx /
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Existence and na

Theorem For any vector F = (f},...,f,)T € K[[x]]" and for any n-tuple
d = (dy,...,ds) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i":O p,',jxf satisfy a linear
homogeneous system with ¢ = ) ;(d; + 1) — 1 egs and ¢ + 1 unknowns.

Corollary Computation in O(MM(c)) = O(c?), for 2 < 6 < 3.

» There are better algorithms:
o The linear system is structured (Sylvester-like / quasi-Toeplitz)
o Derksen's algorithm (Gaussian-like elimination) O(c?)
o Beckermann-Labahn's algorithm (DAC) O(c) = O(clog? )
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Quasi-optimal ¢

Theorem [Beckermann-Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (f1,...,f) in O(MM(n,d) log(nd)).

Ideas:

o Compute a whole matrix of approximants
o Exploit divide-and-conquer

Algorithm:
@ If o =n(d+1) —1 < threshold, call the naive algorithm
@ Else:
® recursively compute P € K[x]"*" s.t. Py - F = O(x"/2), deg(P) ~ ¢
@ compute “residue” R such that P; - F = x7/2 . (R + O(x7/2))
@ recursively compute P, € K[x]"*" s.t. P, - R = O(x7/2), deg(P,) ~ 4
@ returnP:=Py - Py

» The precise choices of degrees is a delicate issue
» Corollary: Ged, extended ged, Padé approximants in O(M(n)logn)
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INSIDE THE BOX

—Linear differential operators—
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Linear differenti

Definition: If K is a field, K(x, 9; dx = xd + 1), or simply K(x)(9), denotes the
associative algebra of linear differential operators with coefficients in K(x).

K(x)(9) is called the (rational) Weyl algebra. It is the algebraic formalization of
the notion of linear differential equation with rational function coefficients:

ar(x)y") () + -+ ()Y (x) + ap(x)y(x) = 0
Aaad
L(y) =0, where L=a,(x)0"+--+ay(x)d+ap(x)
The commutation rule dx = xd + 1 formalizes Leibniz’s rule (fg)" = f'g + f¢'.

» Implementation in the DEtools package: diffop2de, de2diffop, mult

DEtools [mult] (Dx,x, [Dx,x]);
x Dx + 1

Y . Algebi for Lattce Path Combinalorics



Weyl algebra is Euclide

Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)(9) is a non-commutative (left and right) Euclidean domain: for any
A, B € K(x)(9), there exist unique operators Q,R € K(x)(d) such that

A=QB+R, and deg,(R) < deg,(B).
This is called the Euclidean right division of A by B.

Moreover, any A, B € K(x)(9d) admit a greatest common right divisor (GCRD)
and a least common left multiple (LCLM). They can be computed by a
non-commutative version of the extended Euclidean algorithm.

» rightdivision, GCRD, LCLM from the DEtools package
> rightdivision(Dx~10,Dx"2-x, [Dx,x]) [2];

3 2 5
(20 x + 80) Dx + 100 x + x

proves that Ai1% (x) = (20x3 + 80) Ai (x) + (100x2 + x5) Ai (x)
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40t
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1000 terms of a series are enough to guess candidate differential equations
below the red curve. GCRD of candidates could jump above the red curve.
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Algebraic ser

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let f(x) € K[[x]] such that P(x,f(x)) = 0, with P € K]x,y] irreducible.

Differentiate w.r.t. x:

Pr(x,f(0) +f (0)Py(x,f(x)) =0 = f'=-2(xf)

Bézout relation: ged(P,Py) =1 == UP+VP,=1, forU,V € K(x)[y]

= f'= —(PXV mod P) (x,f) € Vecty(y (1,f,f2,...,fdegv(P)_l).

By induction, f(*) ¢ Vecty () (1,f,f2, . .,degv(P)_l), for all /. O

» Implemented in gfun: algeqtodiffeq
» Generalization: ¢ D-finite, f algebraic — g of D-finite algebraicsubs
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BACK TO THE EXERCISE
—A hint-
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Let & = {N, W, SE}. A &-walk is a path in Z? using only steps from &.
Show that, for any integer 1, the following quantities are equal:

(i) the number of G-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0, 0).

(ii) the number of G-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal x = y;
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Let & = {N, W, SE}. A &-walk is a path in Z? using only steps from &.
Show that, for any integer 1, the following quantities are equal:

(i) the number of G-walks of length 7 confined to the upper half plane
Z x N that start and end at the origin (0, 0).

(ii) the number of G-walks of length n confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal x = y;

For instance, for n = 3, this common value is 3:

1) (0,0) — (—1,0) — (—1,1) — (0,0), (0,0) — (0,1) — (—1,1) — (0,0)
and (0,0) — (0,1) — (1,0) — (0,0), i.e., W-N-SE, N-W-SE, N-SE-W
(ii) (0,0) — (0,1) — (1,0) — (0,0),(0,0) — (0,1) — (0,2) — (1,1) and
(0,0) — (0,1) — (1,0) — (1,1), i.e., N-SE-W, N-N-SE, N-SE-N
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h(n;i,j) = # walks in Z x N of length n from (0,0) to (i,j), with & = &
The numbers h(n;i,j) satisfy

0 ifj<O0orn <0,
i ]1i='=0 ifn= O,
h(m;i,f) = t h(n—1i—1,j—j) otherwise.
(7j)e&

> h:=proc(n,i,j)
option remember;
if j<O or n<O then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1)+h(n-1,i+1,j)+h(n-1,i-1,j+1) fi
end:

> A:=series(add(h(n,0,0)*t™n,n=0..12),t,12);

A =1+38430t° + 4208 + O(t1?)
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q(n;i,j) = # walks in IN? of length n from (0,0) to (i,j), with & = &
The numbers q(n;i,j) satisfy

0 ifi<Oorj<0orn<0,
i ]1i='=0 1f1’l=0,
q0mi,) = t qin—1;i—1i,j—j) otherwise.
("])e&

> q:=proc(n,i,j)
option remember;
if i<0 or j<O0 or n<O then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1)+q(n-1,i+1,j)+q(n-1,i-1,j+1) fi
end:

> B:=series(add(add(q(n,k,k),k=0..n)*t"n,n=0..12),t,12);

B =1+ 3t +30t° + 420¢° + O(t'?)
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> seriestorec(series(add(h(n,0,0)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27 n -81n-54) u(n) + (m» + 9 n + 18) uln + 3),
u(0) =1, u(1) =0, u(2) = 0%}

> rsolve(%, u(n));

{ @/3) 1/2

{27 GAMMA (n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)

{ irem(n, 3) = 0

{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) =0
{

{ 0 irem(n-2, 3) =0

> A:=sum(subs(n=3*n,0p(2,%))*t~(3%n) ,n=0..infinity) ;
3
A := hypergeom([1/3, 2/3], [2], 27 t )

» Thus, differential guessing predicts
_ 1/3 2/3 3 & (Bt B
A(t)—zFl( , ‘m)_n;o e
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o e g e

> series(add(add(q(n,k,k),k=0..n)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27 n -81n-54) u(n) + (m» + 9 n + 18) uln + 3),
u(0) =1, u(l) =0, u(2) = 0}

> rsolve(%, u(n));

{ @/3) 1/2

{27 GAMMA (n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)

{ irem(n, 3) = 0

{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) =0
{

{ 0 irem(n-2, 3) =0

> B:=sum(subs(n=3*n,0p(2,%))*t~(3%n) ,n=0..infinity) ;
3
B := hypergeom([1/3, 2/3], [2], 27 t )

» Thus, differential guessing predicts
B B 1/3 2/3],, 3\ & Bn)t £
A(f)—B(t)—Zpl( 2 ‘2”)_";0 P
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> series(add(add(q(n,k,k),k=0..n)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27 n -81n-54) un) + (n +9n + 18) u(n + 3),
u(0) =1, u(1) =0, u(2) = 0}

> rsolve(%, u(n));

{ @/3 1/2

{27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (/3 + 1)

{ irem(n, 3) =0
{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) = 0
{

{ 0 irem(n-2, 3) =0

> B:=sum(subs(n=3*n,0p(2,%))*t~(3*n) ,n=0..infinity);
3
B := hypergeom([1/3, 2/3], [2], 27 t )

» Tomorrow, we will prove this using creative telescoping
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® Guess'n'Prove is a powerful method, especially when combined with
efficient computer algebra

® It is robust: can be used to uniformly prove

o D-finiteness in all the cases with finite group

o algebraicity in all the cases with finite group and zero orbit sum

© In the D-finite cases, failure of algebraic guessing proves transcendence:
3N (depending only on the differential equation) such that if algebraic
guessing mod #V only produces the trivial equation, then there is no
non-trivial equation [B., Bousquet-Mélou, Kauers, Melczer 2015]

©® Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(£;x,y) ~ 30Gb.
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Thanks for your attention!



