
1 / 47

Computer Algebra
for Lattice Path Combinatorics

Alin Bostan

The 74th Séminaire Lotharingien de Combinatoire
Ellwangen, March 23–25, 2015

Alin Bostan Computer Algebra for Lattice Path Combinatorics

2 / 47

Overview

1 Monday: General presentation
2 Tuesday: Guess’n’Prove
3 Wednesday: Creative telescoping

Alin Bostan Computer Algebra for Lattice Path Combinatorics

2 / 47

Part II: Guess’n’Prove

Alin Bostan Computer Algebra for Lattice Path Combinatorics

3 / 47

Summary of Part I: Walks with unit steps in N2

quadrant models: 79

|G|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|G| = ∞: 56

asymptotics + GB

not D-finite

Alin Bostan Computer Algebra for Lattice Path Combinatorics

4 / 47

Summary of Part I: Classification of 2D non-singular walks

The Main Theorem Let S be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Proof
(1)⇒ (2) Easy
(2)⇒ (3) [Denisov & Wachtel 2013] + [Chudnovsky’85, André’89, Katz’70]
(3)⇒ (4) [B., Raschel & Salvy 2013]
(4)⇒ (1) [Bousquet-Mélou & Mishna 2010] + [B. & Kauers 2010]
(5)⇔ (4) A posteriori observation

Alin Bostan Computer Algebra for Lattice Path Combinatorics

4 / 47

Summary of Part I: Classification of 2D non-singular walks

The Main Theorem Let S be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.

I Proof of the last statements: [B., Chyzak, van Hoeij, Kauers & Pech 2015]

Alin Bostan Computer Algebra for Lattice Path Combinatorics

5 / 47

Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)

· · ·
· ·
· · ·
����
?

•

•

·

·

·

·

·

·

•

·

·

·

·

·

•

•

•

•

·

·

·

·

•

·

•

·

·

·

·

•

•

•

·

·

·

·

•

•

•

•

·

·

·

·

•

•

•

•

·

·

·

·

·

·

·

·

�
���
�
���
�
���
�

?

?

?�
���
�
���
�
���
��
���
�
���
?

?

?�

?�����

?

Example: A Kreweras excursion.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

6 / 47

Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• g(n; i, j) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

g(n; i, j) xiyjtn ∈ Q[[x, y, t]]

Theorem (B.-Kauers 2010) G(t; x, y) is an algebraic function.†

→ Effective, computer-driven discovery and proof

Alin Bostan Computer Algebra for Lattice Path Combinatorics

7 / 47

First guess, then prove [Pólya, 1954]

Alin Bostan Computer Algebra for Lattice Path Combinatorics

8 / 47

Personal bias: Experimental Mathematics using Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics

9 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics

10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess a candidate for the minimal polynomial of FS(t; x, y), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics

10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics

10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics

11 / 47

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics

11 / 47

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics

11 / 47

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics

12 / 47

Step (S2): guessing equations for FS(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, j) reads(
xy− (x + y + x2y2)t

)
K(t; x, y)

= xy− xt K(t; x, 0)− yt K(t; 0, y) (KerEq)

I A similar kernel equation holds for FS(t; x, y), for any S-walk.

Corollary. FS(t; x, y) is algebraic (resp. D-finite) if and only if FS(t; x, 0) and
FS(t; 0, y) are both algebraic (resp. D-finite).

I Crucial simplification: equations for G(t; x, y) are huge (≈30Gb)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

13 / 47

Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

13 / 47

Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

13 / 47

Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

14 / 47

Step (S2): guessing equations for K(t; x, 0)

Using N = 80 terms of K(t; x, 0), one can guess

I a linear differential equation of order 4, degrees (14, 11) in (t, x), such that

t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·
· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·

· (4t2x3 − t2 + 2xt− x2) · ∂4K(t; x, 0)
∂t

+ · · ·

= 0 mod t100

I a polynomial of tridegree (6, 10, 6) in (T, t, x)

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·

such that Px,0(K(t; x, 0), t, x) = 0 mod t100.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

15 / 47

Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that
Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

IWe actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

I Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈1000 digits entries!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

15 / 47

Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that
Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

IWe actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

I Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈1000 digits entries!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

15 / 47

Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that
Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

IWe actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

I Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈1000 digits entries!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

16 / 47

Guessing is good, proving is better [Pólya, 1957]

Alin Bostan Computer Algebra for Lattice Path Combinatorics

17 / 47

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

17 / 47

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

17 / 47

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

17 / 47

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

17 / 47

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; 0, y)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

19 / 47

Algebraicity of Kreweras walks: our Maple proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 19 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617
Alin Bostan Computer Algebra for Lattice Path Combinatorics

20 / 47

Step (S3): rigorous proof for Gessel walks �	
�@
@
-��

Same strategy, but several complications:
stepset diagonal symmetry is lost: G(t; x, y) 6= G(t; y, x);
G(t; 0, 0) occurs in (KerEq) (because of the step↙);
equations are ≈ 5 000 times bigger.

−→ replace equation (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).

Alin Bostan Computer Algebra for Lattice Path Combinatorics

21 / 47

INSIDE THE BOX

–Computer algebra–

Alin Bostan Computer Algebra for Lattice Path Combinatorics

22 / 47

General framework

Computer algebra = effective mathematics and algebraic complexity

Effective mathematics: what can we compute?

algebraic complexity: how fast?

Alin Bostan Computer Algebra for Lattice Path Combinatorics

23 / 47

Computer algebra books

Alin Bostan Computer Algebra for Lattice Path Combinatorics

24 / 47

Complexity yardsticks

Important features:

addition is easy: naive algorithm already optimal
multiplication is the most basic (non-trivial) problem
almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:

integer/polynomial/power series multiplication? Yes!
matrix multiplication? Big open problem!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

25 / 47

Complexity yardsticks

M(n) = complexity of multiplication in K[x]<n, and of n-bit integers
= O(n2) by the naive algorithm
= O

(
n1.58) by Karatsuba’s algorithm

= O
(
nlogα (2α−1)) by the Toom-Cook algorithm (α ≥ 3)

= O
(
n log n loglog n

)
by the Schönhage-Strassen algorithm

MM(r) = complexity of matrix product inMr(K)
= O(r3) by the naive algorithm
= O(r2.81) by Strassen’s algorithm
= O(r2.38) by the Coppersmith-Winograd algorithm

MM(r, n) = complexity of polynomial matrix product inMr(K[x]<n)
= O(r3 M(n)) by the naive algorithm
= O(MM(r) n log(n) + r2n log n loglog n) by the Cantor-Kaltofen algo
= O(MM(r) n + r2 M(n)) by the B-Schost algorithm

Alin Bostan Computer Algebra for Lattice Path Combinatorics

26 / 47

Fast polynomial multiplication in practice

Practical complexity of Magma’s multiplication in Fp[x], for p = 29× 257 + 1.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

27 / 47

What can be computed in 1 minute with a CA system

on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7

polynomial product† in degree 14,000,000 (>1 year with schoolbook)

product of two integers with 500,000,000 binary digits

factorial of N = 20, 000, 000 (output of 140,000,000 digits)

gcd of two polynomials of degree 600,000
resultant of two polynomials of degree 40,000
factorization of a univariate polynomial of degree 4,000
factorization of a bivariate polynomial of total degree 500
resultant of two bivariate polynomials of total degree 100 (output 10,000)

product/sum of two algebraic numbers of degree 450 (output 200,000)

determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

determinant of an integer matrix with 32-bit entries and 700 rows

Alin Bostan Computer Algebra for Lattice Path Combinatorics

28 / 47

INSIDE THE BOX

–Hermite-Padé approximants–

Alin Bostan Computer Algebra for Lattice Path Combinatorics

29 / 47

Definition of Hermite-Padé approximants

Definition: Given a column vector F = (f1, . . . , fn)T ∈ K[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1f1 + · · ·+ Pnfn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

I Very useful concept in number theory (irrationality/transcendence):

[Hermite 1873]: e is transcendent.

[Lindemann 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry 1978, Beukers 1981]: ζ(3) = ∑n

1
n3 is irrational.

[Rivoal 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

30 / 47

Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + O(x6).
This boils down to finding α0, α1, β0, β1, γ0, γ1 such that

α0 + α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4) = O(x5).

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

31 / 47

Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ K[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2

[1 - y(x) + x y(x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \

/d \ |d |
[{-2 y(x) + (2 - 4 x) |-- y(x)| + x |--- y(x)|, y(0) = 1, D(y)(0) = 1}, egf]

\dx / | 2 |
\dx /

Alin Bostan Computer Algebra for Lattice Path Combinatorics

32 / 47

Existence and naive computation

Theorem For any vector F = (f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(MM(σ)) = O(σθ), for 2 ≤ θ ≤ 3.

I There are better algorithms:

The linear system is structured (Sylvester-like / quasi-Toeplitz)

Derksen’s algorithm (Gaussian-like elimination) O(σ2)

Beckermann-Labahn’s algorithm (DAC) Õ(σ) = O(σ log2 σ)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

33 / 47

Quasi-optimal computation

Theorem [Beckermann-Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = (f1, . . . , fn) in O(MM(n, d) log(nd)).

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ K[x]n×n s.t. P2 ·R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

I The precise choices of degrees is a delicate issue
I Corollary: Gcd, extended gcd, Padé approximants in O(M(n) log n)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

34 / 47

INSIDE THE BOX

–Linear differential operators–

Alin Bostan Computer Algebra for Lattice Path Combinatorics

35 / 47

Linear differential operators

Definition: If K is a field, K〈x, ∂; ∂x = x∂ + 1〉, or simply K(x)〈∂〉, denotes the
associative algebra of linear differential operators with coefficients in K(x).

K(x)〈∂〉 is called the (rational) Weyl algebra. It is the algebraic formalization of
the notion of linear differential equation with rational function coefficients:

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0

⇐⇒
L(y) = 0, where L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x)

The commutation rule ∂x = x∂ + 1 formalizes Leibniz’s rule (fg)′ = f ′g + fg′.

I Implementation in the DEtools package: diffop2de, de2diffop, mult

DEtools[mult](Dx,x,[Dx,x]);
x Dx + 1

Alin Bostan Computer Algebra for Lattice Path Combinatorics

36 / 47

Weyl algebra is Euclidean

Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)〈∂〉 is a non-commutative (left and right) Euclidean domain: for any
A, B ∈ K(x)〈∂〉, there exist unique operators Q, R ∈ K(x)〈∂〉 such that

A = QB + R, and deg∂(R) < deg∂(B).

This is called the Euclidean right division of A by B.

Moreover, any A, B ∈ K(x)〈∂〉 admit a greatest common right divisor (GCRD)
and a least common left multiple (LCLM). They can be computed by a
non-commutative version of the extended Euclidean algorithm.

I rightdivision, GCRD, LCLM from the DEtools package

> rightdivision(Dx^10,Dx^2-x,[Dx,x])[2];
3 2 5

(20 x + 80) Dx + 100 x + x

proves that Ai(10)(x) = (20x3 + 80)Ai
′
(x) + (100x2 + x5)Ai(x)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

37 / 47

Application to differential guessing

0 5 10 15 20 25 30
order Dt0

20

40

60

80

100

degree t

1000 terms of a series are enough to guess candidate differential equations
below the red curve. GCRD of candidates could jump above the red curve.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

38 / 47

Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let f (x) ∈ K[[x]] such that P(x, f (x)) = 0, with P ∈ K[x, y] irreducible.

Differentiate w.r.t. x:

Px(x, f (x)) + f ′(x)Py(x, f (x)) = 0 =⇒ f ′ = − Px

Py
(x, f).

Bézout relation: gcd(P, Py) = 1 =⇒ UP + VPy = 1, for U, V ∈ K(x)[y]

=⇒ f ′ = −
(

PxV mod P
)
(x, f) ∈ VectK(x)

(
1, f , f 2, . . . , f degy(P)−1

)
.

By induction, f (`) ∈ VectK(x)

(
1, f , f 2, . . . , f degy(P)−1

)
, for all `. �

I Implemented in gfun: algeqtodiffeq
I Generalization: g D-finite, f algebraic → g ◦ f D-finite algebraicsubs

Alin Bostan Computer Algebra for Lattice Path Combinatorics

39 / 47

BACK TO THE EXERCISE

–A hint–

Alin Bostan Computer Algebra for Lattice Path Combinatorics

40 / 47

An exercise involving the model

Let S = {N, W, SE}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0).

(ii) the number of S-walks of length n confined to the quarter plane N2 that
start at the origin (0, 0) and finish on the diagonal x = y;

For instance, for n = 3, this common value is 3:

(i) (0, 0) 7→ (−1, 0) 7→ (−1, 1) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (−1, 1) 7→ (0, 0)
and (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), i.e., W–N–SE, N–W–SE, N–SE–W
(ii) (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (0, 2) 7→ (1, 1) and
(0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (1, 1), i.e., N–SE–W, N–N–SE, N–SE–N

Alin Bostan Computer Algebra for Lattice Path Combinatorics

40 / 47

An exercise involving the model

Let S = {N, W, SE}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0).

(ii) the number of S-walks of length n confined to the quarter plane N2 that
start at the origin (0, 0) and finish on the diagonal x = y;

For instance, for n = 3, this common value is 3:

(i) (0, 0) 7→ (−1, 0) 7→ (−1, 1) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (−1, 1) 7→ (0, 0)
and (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), i.e., W–N–SE, N–W–SE, N–SE–W
(ii) (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (0, 2) 7→ (1, 1) and
(0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (1, 1), i.e., N–SE–W, N–N–SE, N–SE–N

Alin Bostan Computer Algebra for Lattice Path Combinatorics

41 / 47

A recurrence relation for -walks in Z×N

h(n; i, j) = # walks in Z×N of length n from (0, 0) to (i, j), with S =
The numbers h(n; i, j) satisfy

h(n; i, j) =


0 if j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

h(n− 1; i− i′, j− j′) otherwise.

> h:=proc(n,i,j)
option remember;

if j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1)+h(n-1,i+1,j)+h(n-1,i-1,j+1) fi

end:

> A:=series(add(h(n,0,0)*t^n,n=0..12),t,12);

A = 1 + 3t3 + 30t6 + 420t9 + O(t12)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

42 / 47

A recurrence relation for -walks in N2

q(n; i, j) = # walks in N2 of length n from (0, 0) to (i, j), with S =
The numbers q(n; i, j) satisfy

q(n; i, j) =


0 if i < 0 or j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

q(n− 1; i− i′, j− j′) otherwise.

> q:=proc(n,i,j)
option remember;

if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1)+q(n-1,i+1,j)+q(n-1,i-1,j+1) fi

end:

> B:=series(add(add(q(n,k,k),k=0..n)*t^n,n=0..12),t,12);

B = 1 + 3t3 + 30t6 + 420t9 + O(t12)

Alin Bostan Computer Algebra for Lattice Path Combinatorics

43 / 47

Guessing the answer for -excursions in Z×N

> seriestorec(series(add(h(n,0,0)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ --- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> A:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

A := hypergeom([1/3, 2/3], [2], 27 t)

I Thus, differential guessing predicts

A(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

44 / 47

Guessing the answer for diagonal -walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ --- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t)

I Thus, differential guessing predicts

A(t) = B(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

44 / 47

Guessing the answer for diagonal -walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ --- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t)

I Tomorrow, we will prove this using creative telescoping Tomorrow, we will prove
this using creative telescoping Tomorrow, we will prove this using creative telescoping
Tomorrow, we will prove this using creative telescoping

Alin Bostan Computer Algebra for Lattice Path Combinatorics

45 / 47

Summary

, Guess’n’Prove is a powerful method, especially when combined with
efficient computer algebra

, It is robust: can be used to uniformly prove

D-finiteness in all the cases with finite group

algebraicity in all the cases with finite group and zero orbit sum

, In the D-finite cases, failure of algebraic guessing proves transcendence:
∃N (depending only on the differential equation) such that if algebraic
guessing mod tN only produces the trivial equation, then there is no
non-trivial equation [B., Bousquet-Mélou, Kauers, Melczer 2015]

, Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

46 / 47

Bibliography

Automatic classification of restricted lattice walks, with M. Kauers.
Proc. FPSAC, 2009.

The complete generating function for Gessel walks is algebraic, with
M. Kauers. Proc. Amer. Math. Soc., 2010.

Explicit formula for the generating series of diagonal 3D Rook paths,
with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de
Combinatoire, 2011.

Non-D-finite excursions in the quarter plane, with K. Raschel and
B. Salvy. Journal of Combinatorial Theory A, 2013.

On 3-dimensional lattice walks confined to the positive octant, with
M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2015.

A human proof of Gessel’s lattice path conjecture, with I. Kurkova,
K. Raschel, 2015.

Explicit Differentiably Finite Generating Functions of Walks with Small
Steps in the Quarter Plane, with F. Chyzak, M. van Hoeij, M. Kauers
and L. Pech, 2015.

Alin Bostan Computer Algebra for Lattice Path Combinatorics

47 / 47

End of Part II

Thanks for your attention!

Alin Bostan Computer Algebra for Lattice Path Combinatorics

