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Overview

1 Monday: General presentation
2 Tuesday: Guess’n’Prove
3 Wednesday: Creative telescoping
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Part II: Guess’n’Prove
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Summary of Part I: Walks with unit steps in N2

quadrant models: 79

|G|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|G| = ∞: 56

asymptotics + GB

not D-finite
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Summary of Part I: Classification of 2D non-singular walks

The Main Theorem Let S be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Proof
(1)⇒ (2) Easy
(2)⇒ (3) [Denisov & Wachtel 2013] + [Chudnovsky’85, André’89, Katz’70]
(3)⇒ (4) [B., Raschel & Salvy 2013]
(4)⇒ (1) [Bousquet-Mélou & Mishna 2010] + [B. & Kauers 2010]
(5)⇔ (4) A posteriori observation
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(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.

I Proof of the last statements: [B., Chyzak, van Hoeij, Kauers & Pech 2015]
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.
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Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• g(n; i, j) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

g(n; i, j) xiyjtn ∈ Q[[x, y, t]]

Theorem (B.-Kauers 2010) G(t; x, y) is an algebraic function.†

→ Effective, computer-driven discovery and proof
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First guess, then prove [Pólya, 1954]
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Personal bias: Experimental Mathematics using Computer Algebra
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Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics



10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess a candidate for the minimal polynomial of FS(t; x, y), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics



10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics



10 / 47

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Computer Algebra for Lattice Path Combinatorics



11 / 47

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·
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Step (S2): guessing equations for FS(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, j) reads(
xy− (x + y + x2y2)t

)
K(t; x, y)

= xy− xt K(t; x, 0)− yt K(t; 0, y) (KerEq)

I A similar kernel equation holds for FS(t; x, y), for any S-walk.

Corollary. FS(t; x, y) is algebraic (resp. D-finite) if and only if FS(t; x, 0) and
FS(t; 0, y) are both algebraic (resp. D-finite).

I Crucial simplification: equations for G(t; x, y) are huge (≈30Gb)
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Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.
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Step (S2): guessing equations for K(t; x, 0)

Using N = 80 terms of K(t; x, 0), one can guess

I a linear differential equation of order 4, degrees (14, 11) in (t, x), such that

t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·
· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·

· (4t2x3 − t2 + 2xt− x2) · ∂4K(t; x, 0)
∂t

+ · · ·

= 0 mod t100

I a polynomial of tridegree (6, 10, 6) in (T, t, x)

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·

such that Px,0(K(t; x, 0), t, x) = 0 mod t100.
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Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that
Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

IWe actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

I Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈1000 digits entries!
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Guessing is good, proving is better [Pólya, 1957]
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Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; 0, y)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!
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4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!

Alin Bostan Computer Algebra for Lattice Path Combinatorics



18 / 47

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��
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Algebraicity of Kreweras walks: our Maple proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 19 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617
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Step (S3): rigorous proof for Gessel walks �	
�@
@
-��

Same strategy, but several complications:
stepset diagonal symmetry is lost: G(t; x, y) 6= G(t; y, x);
G(t; 0, 0) occurs in (KerEq) (because of the step↙);
equations are ≈ 5 000 times bigger.

−→ replace equation (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).
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INSIDE THE BOX

–Computer algebra–
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General framework

Computer algebra = effective mathematics and algebraic complexity

Effective mathematics: what can we compute?

algebraic complexity: how fast?
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Computer algebra books
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Complexity yardsticks

Important features:

addition is easy: naive algorithm already optimal
multiplication is the most basic (non-trivial) problem
almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:

integer/polynomial/power series multiplication? Yes!
matrix multiplication? Big open problem!
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Complexity yardsticks

M(n) = complexity of multiplication in K[x]<n, and of n-bit integers
= O(n2) by the naive algorithm
= O

(
n1.58) by Karatsuba’s algorithm

= O
(
nlogα (2α−1)) by the Toom-Cook algorithm (α ≥ 3)

= O
(
n log n loglog n

)
by the Schönhage-Strassen algorithm

MM(r) = complexity of matrix product inMr(K)
= O(r3) by the naive algorithm
= O(r2.81) by Strassen’s algorithm
= O(r2.38) by the Coppersmith-Winograd algorithm

MM(r, n) = complexity of polynomial matrix product inMr(K[x]<n)
= O(r3 M(n)) by the naive algorithm
= O(MM(r) n log(n) + r2n log n loglog n) by the Cantor-Kaltofen algo
= O(MM(r) n + r2 M(n)) by the B-Schost algorithm
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Fast polynomial multiplication in practice

Practical complexity of Magma’s multiplication in Fp[x], for p = 29× 257 + 1.
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What can be computed in 1 minute with a CA system

on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7

polynomial product† in degree 14,000,000 (>1 year with schoolbook)

product of two integers with 500,000,000 binary digits

factorial of N = 20, 000, 000 (output of 140,000,000 digits)

gcd of two polynomials of degree 600,000
resultant of two polynomials of degree 40,000
factorization of a univariate polynomial of degree 4,000
factorization of a bivariate polynomial of total degree 500
resultant of two bivariate polynomials of total degree 100 (output 10,000)

product/sum of two algebraic numbers of degree 450 (output 200,000)

determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

determinant of an integer matrix with 32-bit entries and 700 rows
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INSIDE THE BOX

–Hermite-Padé approximants–
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Definition of Hermite-Padé approximants

Definition: Given a column vector F = (f1, . . . , fn)T ∈ K[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1f1 + · · ·+ Pnfn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

I Very useful concept in number theory (irrationality/transcendence):

[Hermite 1873]: e is transcendent.

[Lindemann 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry 1978, Beukers 1981]: ζ(3) = ∑n

1
n3 is irrational.

[Rivoal 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + O(x6).
This boils down to finding α0, α1, β0, β1, γ0, γ1 such that

α0 + α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4) = O(x5).

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



31 / 47

Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ K[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2

[1 - y(x) + x y(x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \

/d \ |d |
[{-2 y(x) + (2 - 4 x) |-- y(x)| + x |--- y(x)|, y(0) = 1, D(y)(0) = 1}, egf]

\dx / | 2 |
\dx /
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Existence and naive computation

Theorem For any vector F = (f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(MM(σ)) = O(σθ), for 2 ≤ θ ≤ 3.

I There are better algorithms:

The linear system is structured (Sylvester-like / quasi-Toeplitz)

Derksen’s algorithm (Gaussian-like elimination) O(σ2)

Beckermann-Labahn’s algorithm (DAC) Õ(σ) = O(σ log2 σ)
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Quasi-optimal computation

Theorem [Beckermann-Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = (f1, . . . , fn) in O(MM(n, d) log(nd)).

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ K[x]n×n s.t. P2 ·R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

I The precise choices of degrees is a delicate issue
I Corollary: Gcd, extended gcd, Padé approximants in O(M(n) log n)
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INSIDE THE BOX

–Linear differential operators–
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Linear differential operators

Definition: If K is a field, K〈x, ∂; ∂x = x∂ + 1〉, or simply K(x)〈∂〉, denotes the
associative algebra of linear differential operators with coefficients in K(x).

K(x)〈∂〉 is called the (rational) Weyl algebra. It is the algebraic formalization of
the notion of linear differential equation with rational function coefficients:

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0

⇐⇒
L(y) = 0, where L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x)

The commutation rule ∂x = x∂ + 1 formalizes Leibniz’s rule (fg)′ = f ′g + fg′.

I Implementation in the DEtools package: diffop2de, de2diffop, mult

DEtools[mult](Dx,x,[Dx,x]);
x Dx + 1

Alin Bostan Computer Algebra for Lattice Path Combinatorics



36 / 47

Weyl algebra is Euclidean

Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)〈∂〉 is a non-commutative (left and right) Euclidean domain: for any
A, B ∈ K(x)〈∂〉, there exist unique operators Q, R ∈ K(x)〈∂〉 such that

A = QB + R, and deg∂(R) < deg∂(B).

This is called the Euclidean right division of A by B.

Moreover, any A, B ∈ K(x)〈∂〉 admit a greatest common right divisor (GCRD)
and a least common left multiple (LCLM). They can be computed by a
non-commutative version of the extended Euclidean algorithm.

I rightdivision, GCRD, LCLM from the DEtools package

> rightdivision(Dx^10,Dx^2-x,[Dx,x])[2];
3 2 5

(20 x + 80) Dx + 100 x + x

proves that Ai(10)(x) = (20x3 + 80)Ai
′
(x) + (100x2 + x5)Ai(x)
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Application to differential guessing

0 5 10 15 20 25 30
order Dt0

20

40

60

80

100

degree t

1000 terms of a series are enough to guess candidate differential equations
below the red curve. GCRD of candidates could jump above the red curve.
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Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let f (x) ∈ K[[x]] such that P(x, f (x)) = 0, with P ∈ K[x, y] irreducible.

Differentiate w.r.t. x:

Px(x, f (x)) + f ′(x)Py(x, f (x)) = 0 =⇒ f ′ = − Px

Py
(x, f ).

Bézout relation: gcd(P, Py) = 1 =⇒ UP + VPy = 1, for U, V ∈ K(x)[y]

=⇒ f ′ = −
(

PxV mod P
)
(x, f ) ∈ VectK(x)

(
1, f , f 2, . . . , f degy(P)−1

)
.

By induction, f (`) ∈ VectK(x)

(
1, f , f 2, . . . , f degy(P)−1

)
, for all `. �

I Implemented in gfun: algeqtodiffeq
I Generalization: g D-finite, f algebraic → g ◦ f D-finite algebraicsubs
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BACK TO THE EXERCISE

–A hint–
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An exercise involving the model

Let S = {N, W, SE}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0).

(ii) the number of S-walks of length n confined to the quarter plane N2 that
start at the origin (0, 0) and finish on the diagonal x = y;

For instance, for n = 3, this common value is 3:

(i) (0, 0) 7→ (−1, 0) 7→ (−1, 1) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (−1, 1) 7→ (0, 0)
and (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), i.e., W–N–SE, N–W–SE, N–SE–W
(ii) (0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (0, 0), (0, 0) 7→ (0, 1) 7→ (0, 2) 7→ (1, 1) and
(0, 0) 7→ (0, 1) 7→ (1, 0) 7→ (1, 1), i.e., N–SE–W, N–N–SE, N–SE–N
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A recurrence relation for -walks in Z×N

h(n; i, j) = # walks in Z×N of length n from (0, 0) to (i, j), with S =
The numbers h(n; i, j) satisfy

h(n; i, j) =


0 if j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

h(n− 1; i− i′, j− j′) otherwise.

> h:=proc(n,i,j)
option remember;

if j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1)+h(n-1,i+1,j)+h(n-1,i-1,j+1) fi

end:

> A:=series(add(h(n,0,0)*t^n,n=0..12),t,12);

A = 1 + 3t3 + 30t6 + 420t9 + O(t12)
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A recurrence relation for -walks in N2

q(n; i, j) = # walks in N2 of length n from (0, 0) to (i, j), with S =
The numbers q(n; i, j) satisfy

q(n; i, j) =


0 if i < 0 or j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

q(n− 1; i− i′, j− j′) otherwise.

> q:=proc(n,i,j)
option remember;

if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1)+q(n-1,i+1,j)+q(n-1,i-1,j+1) fi

end:

> B:=series(add(add(q(n,k,k),k=0..n)*t^n,n=0..12),t,12);

B = 1 + 3t3 + 30t6 + 420t9 + O(t12)
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Guessing the answer for -excursions in Z×N

> seriestorec(series(add(h(n,0,0)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> A:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

A := hypergeom([1/3, 2/3], [2], 27 t )

I Thus, differential guessing predicts

A(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.
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Guessing the answer for diagonal -walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t )

I Thus, differential guessing predicts

A(t) = B(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.
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Guessing the answer for diagonal -walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t )

I Tomorrow, we will prove this using creative telescoping Tomorrow, we will prove
this using creative telescoping Tomorrow, we will prove this using creative telescoping
Tomorrow, we will prove this using creative telescoping
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Summary

, Guess’n’Prove is a powerful method, especially when combined with
efficient computer algebra

, It is robust: can be used to uniformly prove

D-finiteness in all the cases with finite group

algebraicity in all the cases with finite group and zero orbit sum

, In the D-finite cases, failure of algebraic guessing proves transcendence:
∃N (depending only on the differential equation) such that if algebraic
guessing mod tN only produces the trivial equation, then there is no
non-trivial equation [B., Bousquet-Mélou, Kauers, Melczer 2015]

, Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.
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End of Part II

Thanks for your attention!
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