Evolution equations in Combinatorial Physics

V.C. Bui, G.H.E. Duchamp, Hoang Ngoc Minh, Q.H. Ngô and
Andrzej Horzela, Karol A. Penson, Katarzyna Gorska

Séminaire Lotharingien de Combinatoire,
March, 2015, Ellwangen

INTRODUCTION \& CONTEXT

Context

This is a starting project with a group of physicists (second group of names). The aim is to provide methods in order to compute Dyson series based on a tractable (combinatorial) indexing. The advantage of the presented method are the following

- Easy implementation
- Eased combinatorial analysis of the outputs, the basic indexing being provided by noncommutative and (perspective) partially commutative words
- Possible factorization in infinite products (Schützenberger's factorization)

Linear differential equations and Dyson series

Let us start with the simplest (linear) case:
∂_{z} denotes $d / d z$ and $a_{0}, \ldots, a_{n} \in \mathcal{A}$ (some full algebra of \mathbb{C}-valued functions).

We are in search of solutions of

$$
\begin{equation*}
a_{n}(z) \partial_{z}^{n} y(z)+\ldots+a_{1}(z) \partial_{z} y(z)+a_{0}(z) y(z)=0 \tag{1}
\end{equation*}
$$

Which can be written in matrix form as

$$
(E D) \quad\left\{\begin{align*}
\partial_{z} q(z) & =A(z) q(z) \tag{2}\\
q\left(z_{0}\right) & =\eta, \\
y(z) & =\lambda q(z)
\end{align*}\right.
$$

with

$$
A(z)=\left(A_{i, j}(z)\right)_{i, j=1 . . n} \in \mathcal{M}_{n, n}(\mathcal{A}), \lambda \in \mathcal{M}_{1, n}(k), \eta \in \mathcal{M}_{n, 1}(k)
$$

... and implies

$$
\begin{equation*}
q(z)=q\left(z_{0}\right)+\int_{z_{0}}^{z} A(s) q(s) d s \tag{3}
\end{equation*}
$$

Linear differential equations and Dyson series II

By successive Picard iterations w.r.t. the integral eq.3, we get

$$
q_{0} \equiv q\left(z_{0}\right) ; q_{k}(z)=q\left(z_{0}\right)+\int_{z_{0}}^{z} A(s) q_{k-1}(s) d s
$$

with the initial point $q_{0}(z)=\eta$, one gets $y(z)=\lambda U\left(z_{0} ; z\right) \eta$,

Linear differential equations and Dyson series II

By successive Picard iterations w.r.t. the integral eq.3, we get

$$
q_{0} \equiv q\left(z_{0}\right) ; q_{k}(z)=q\left(z_{0}\right)+\int_{z_{0}}^{z} A(s) q_{k-1}(s) d s
$$

with the initial point $q_{0}(z)=\eta$, one gets $y(z)=\lambda U\left(z_{0} ; z\right) \eta$, where $U\left(z_{0} ; z\right)$ is the solution of the differential system

$$
(E D R) \quad\left\{\begin{align*}
\partial_{z} U\left(z_{0}, z\right) & =A(z) U\left(z_{0}, z\right), \tag{4}\\
U\left(z_{0}, z_{0}\right) & =I_{n \times n}
\end{align*}\right.
$$

and U satisfies the functional expansion

$$
\begin{equation*}
U\left(z_{0} ; z\right)=\sum_{k \geq 0} \int_{z_{0}}^{z} A\left(s_{1}\right) d s_{1} \int_{z_{0}}^{s_{1}} A\left(s_{2}\right) d s_{2} \ldots \int_{z_{0}}^{s_{k-1}} A\left(s_{k}\right) d s_{k} \tag{5}
\end{equation*}
$$

also called Dyson series.

An example with singularities (familiar to combinatorists)
Example (Hypergeometric equation)
Let a, b, c be parameters and

$$
z(1-z) \partial_{z}^{2} y(z)+[c-(a+b+1) z] \partial_{z} y(z)-a b y(z)=0 .
$$

An example with singularities (familiar to combinatorists)

Example (Hypergeometric equation)
Let a, b, c be parameters and

$$
z(1-z) \partial_{z}^{2} y(z)+[c-(a+b+1) z] \partial_{z} y(z)-a b y(z)=0 .
$$

Let $q_{1}(z)=y(z)$ and $q_{2}(z)=(1-z) \partial_{z} y(z)$. One has

$$
\begin{aligned}
A\binom{q_{1}}{q_{2}} & =\left(\begin{array}{cc}
0 & \frac{1}{1-z} \\
\frac{a b}{z} & \frac{a+b-c}{1-z}-\frac{c}{z}
\end{array}\right)\binom{q_{1}}{q_{2}} \\
& =\left[\left(\begin{array}{cc}
0 & 0 \\
-a b & -c
\end{array}\right) \frac{1}{z}-\left(\begin{array}{cc}
0 & 1 \\
0 & c-a-b
\end{array}\right) \frac{1}{1-z}\right]\binom{q_{1}}{q_{2}} .
\end{aligned}
$$

An example with singularities (familiar to combinatorists)

Example (Hypergeometric equation)
Let a, b, c be parameters and

$$
z(1-z) \partial_{z}^{2} y(z)+[c-(a+b+1) z] \partial_{z} y(z)-a b y(z)=0 .
$$

Let $q_{1}(z)=y(z)$ and $q_{2}(z)=(1-z) \partial_{z} y(z)$. One has

$$
\begin{aligned}
A\binom{q_{1}}{q_{2}} & =\left(\begin{array}{cc}
0 & \frac{1}{1-z} \\
\frac{a b}{z} & \frac{a+b-c}{1-z}-\frac{c}{z}
\end{array}\right)\binom{q_{1}}{q_{2}} \\
& =\left[\left(\begin{array}{cc}
0 & 0 \\
-a b & -c
\end{array}\right) \frac{1}{z}-\left(\begin{array}{cc}
0 & 1 \\
0 & c-a-b
\end{array}\right) \frac{1}{1-z}\right]\binom{q_{1}}{q_{2}} . \\
A_{0} & =\left(\begin{array}{cc}
0 & 0 \\
-a b & -c
\end{array}\right), A_{1}=\left(\begin{array}{cc}
0 & 1 \\
0 & c-a-b
\end{array}\right) .
\end{aligned}
$$

FORMAL SETTING

Drinfel'd's symbolic calculus (iterated integrals and exponential form)

The trick is to replace the matrices by (formal, noncommuting) letters (in our example, it is $\left\{x_{0}, x_{1}\right\}$).
From the Dyson series of eq. 5, this replacement provides a formal power series

$$
\begin{equation*}
S=\sum_{w \in X}\langle S \mid w\rangle w \tag{6}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
S^{\prime}=\left(\frac{x_{0}}{z}+\frac{x_{1}}{1-z}\right) S=M S \tag{7}
\end{equation*}
$$

where the coefficients $\langle S \mid w\rangle$ of S are analytic functions on a (open, connected and simply connected) domain $\Omega \subset \mathbb{C}$ ($\Omega=\mathbb{C}-(]-\infty, 0] \cup[1,+\infty[)$ is usually considered).

Chen's iterated integral along a path and polylogarithms

The iterated integral, along $z_{0} \rightsquigarrow z$ in $\left.\mathbb{C}-(]-\infty, 0\right] \cup[1,+\infty[)$ and associated to $w=x_{i_{1}} \cdots x_{i_{k}}$, over $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$ is defined by

$$
\alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1 \quad \text { and } \quad \alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right)=\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right) .
$$

Chen's iterated integral along a path and polylogarithms The iterated integral, along $z_{0} \rightsquigarrow z$ in $\left.\mathbb{C}-(]-\infty, 0\right] \cup[1,+\infty[)$ and associated to $w=x_{i_{1}} \cdots x_{i_{k}}$, over $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$ is defined by $\alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1 \quad$ and $\quad \alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right)=\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right)$.
For any $w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1}$,

$$
\alpha_{z_{0}}^{z}(w)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}=\operatorname{Li}_{s_{1}, \ldots, s_{r}}(z), \quad|z|<1 .
$$

Chen's iterated integral along a path and polylogarithms
The iterated integral, along $z_{0} \rightsquigarrow z$ in $\left.\mathbb{C}-(]-\infty, 0\right] \cup[1,+\infty[)$ and associated to $w=x_{i_{1}} \cdots x_{i_{k}}$, over $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$ is defined by
$\alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1 \quad$ and $\quad \alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right)=\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right)$.
For any $w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1}$,

$$
\alpha_{z_{0}}^{z}(w)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}=\operatorname{Li}_{s_{1}, \ldots, s_{r}}(z), \quad|z|<1 .
$$

Example (\ln this case, the word ending by x_{1}, one can take $z_{0}=0$)

$$
\begin{aligned}
& \alpha_{0}^{z}\left(x_{0} x_{1}\right)=\operatorname{Li}_{2}(z)=\int_{0}^{z} \frac{d s_{1}}{s_{1}} \int_{0}^{s_{1}} \frac{d s_{2}}{1-s_{2}} \\
= & \int_{0}^{z} \frac{d s_{1}}{s_{1}} \int_{0}^{s_{1}} d s_{2} \sum_{k \geq 0} s_{2}^{k}=\sum_{k \geq 1} \int_{0}^{z} d s_{1} \frac{s_{1}^{k-1}}{k}=\sum_{k \geq 1} \frac{z^{k}}{k^{2}} .
\end{aligned}
$$

Iterated integrals and shuffle products

The symbols $\alpha_{z_{0}}^{z}$ have a marvelous property: they are compatible with the shuffle product of words.
Three equivalent ways to define shuffle products

- Recursive definition $\mathcal{A}\langle X\rangle \otimes \mathcal{A}\langle X\rangle \rightarrow \mathcal{A}\langle X\rangle$

$$
\begin{aligned}
\forall w \in X^{*}, & w \sqcup 1_{X^{*}}=1_{X^{*}} \sqcup w=w, \\
\forall x, y \in X, \forall u, v \in X^{*}, & x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
\end{aligned}
$$

- Comultiplication $\mathcal{A}\langle X\rangle \rightarrow \mathcal{A}\langle X\rangle \otimes \mathcal{A}\langle X\rangle$

$$
\begin{equation*}
\Delta_{\amalg}(x)=x \otimes 1+1 \otimes x \tag{8}
\end{equation*}
$$

Extension by morphism, one finds for $w \in X^{*}$

$$
\begin{equation*}
\Delta_{\amalg}(x)=\sum_{I+J=[1 \cdots|w|]} w[I] \otimes w[J] \tag{9}
\end{equation*}
$$

- Evaluation of paths

s					
r					
q					
p					
	a	b	c	d	e

Path which contributes apbqcdres in the shuffle product abcde Ш-pqrs.

$$
\begin{aligned}
u \sqcup v & =\sum_{\pi \in \mathcal{D}(|u|,|v|)} e v(\pi, u, v) \\
\mathcal{D}(p, q) & =\left\{\left.\pi \in\{n, e\}^{*}|\quad| \pi\right|_{e}=p,|\pi|_{n}=q\right\}
\end{aligned}
$$

Iterated integrals and shuffle products (replay)

The symbols $\alpha_{z_{0}}^{z}$ have a marvelous property: they are compatible with the shuffle product of words.
Three ways to characterize shuffle products

- Recursive definition $\mathcal{A}\langle X\rangle \otimes \mathcal{A}\langle X\rangle \rightarrow \mathcal{A}\langle X\rangle$

$$
\begin{aligned}
\forall w \in X^{*}, & w \amalg 1_{X^{*}}=1_{X *} \sqcup w=w, \\
\forall x, y \in X, \forall u, v \in X^{*}, & x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
\end{aligned}
$$

- Comultiplication $\mathcal{A}\langle X\rangle \rightarrow \mathcal{A}\langle X\rangle \otimes \mathcal{A}\langle X\rangle$

$$
\begin{equation*}
\Delta_{\amalg}(x)=x \otimes 1+1 \otimes x \tag{10}
\end{equation*}
$$

- Evaluation of paths
... all these objects extend to the ring of formal power series $\mathcal{A}\langle\langle X\rangle\rangle$. Let us put on them a bit of structure.

ALGEBRAIC COMBINATORICS OF NONCOMMUTATIVE GENERATING SERIES

Polynomials and power series on noncommutative variables

A : CAAU (commutative and associative algebra with unit) over \mathbb{Q}.

Polynomials and power series on noncommutative variables

A : CAAU (commutative and associative algebra with unit) over \mathbb{Q}. The set of polynomials with coefficients in A over X (resp. $Y=\left\{y_{k}\right\}_{k \geq 1}$) is denoted by $A\langle X\rangle$ (resp. $A\langle Y\rangle$).

Polynomials and power series on noncommutative variables

A : CAAU (commutative and associative algebra with unit) over \mathbb{Q}.
The set of polynomials with coefficients in A over X (resp. $Y=\left\{y_{k}\right\}_{k \geq 1}$) is denoted by $A\langle X\rangle$ (resp. $A\langle Y\rangle$). It is a A-module admitting $\{w\}_{w \in X^{*}}$ (resp. $\{w\}_{w \in Y^{*}}$) as basis which is auto-dual for the self-duality pairing

$$
\forall u, v \in X^{*}\left(\text { resp. } Y^{*}\right), \quad\langle u \mid v\rangle=\delta_{u, v}
$$

Polynomials and power series on noncommutative variables

A : CAAU (commutative and associative algebra with unit) over \mathbb{Q}.
The set of polynomials with coefficients in A over X (resp. $Y=\left\{y_{k}\right\}_{k \geq 1}$) is denoted by $A\langle X\rangle$ (resp. $A\langle Y\rangle$). It is a A-module admitting $\{w\}_{w \in X^{*}}$ (resp. $\{w\}_{w \in Y^{*}}$) as basis which is auto-dual for the self-duality pairing

$$
\forall u, v \in X^{*}\left(\text { resp. } Y^{*}\right), \quad\langle u \mid v\rangle=\delta_{u, v}
$$

A f.p.s S with coefficients in A over $X($ resp. $Y)$ is the following map which can be identified to its graph

$$
\begin{aligned}
S: X^{*}\left(\text { resp. } Y^{*}\right) & \longrightarrow A, \\
w & \longmapsto\langle S \mid w\rangle .
\end{aligned} \quad S=\sum_{w \in X^{*}}\langle S \mid w\rangle w .
$$

Polynomials and power series on noncommutative variables

A : CAAU (commutative and associative algebra with unit) over \mathbb{Q}.
The set of polynomials with coefficients in A over X (resp. $Y=\left\{y_{k}\right\}_{k \geq 1}$) is denoted by $A\langle X\rangle$ (resp. $A\langle Y\rangle$). It is a A-module admitting $\{w\}_{w \in X^{*}}$ (resp. $\{w\}_{w \in Y^{*}}$) as basis which is auto-dual for the self-duality pairing

$$
\forall u, v \in X^{*}\left(\text { resp. } Y^{*}\right), \quad\langle u \mid v\rangle=\delta_{u, v}
$$

A f.p.s S with coefficients in A over $X($ resp. $Y)$ is the following map which can be identified to its graph

$$
\begin{aligned}
S: X^{*}\left(\text { resp. } Y^{*}\right) & \longrightarrow A, \\
w & \longmapsto\langle S \mid w\rangle . \quad S=\sum_{w \in X^{*}}\langle S \mid w\rangle w .
\end{aligned}
$$

$A\left\langle\langle X\rangle:=A^{X^{*}}\right.$ (resp. $A\langle\langle Y\rangle\rangle:=A^{Y^{*}}$). It is the (algebraic) dual of $A\langle X\rangle$ (resp. $A\langle Y\rangle$) and this can be realized through the pairing $\langle-\mid-\rangle$, i.e. $\forall S \in A\langle\langle X\rangle\rangle($ resp. $A\langle\langle Y\rangle\rangle), \forall P \in A\langle X\rangle$ (resp. $A\langle Y\rangle)$:

$$
\langle S \mid P\rangle=\sum_{w \in X^{*}}\left\langle\left(\text { resp. } Y^{*}\right)<\text { S|w }\langle P \mid w\rangle .\right.
$$

Density

If A is equipped with the discrete topology then

$$
A\langle\langle X\rangle\rangle=\widehat{A\langle X\rangle} \quad(\text { resp. } \quad A\langle\langle Y\rangle\rangle=\widehat{A\langle Y\rangle})
$$

for the pointwise convergence.
A family $\left(S_{i}\right)_{i \in I}$ of formal power series is said summable iff, for all word $w \in X^{*}$

$$
\begin{equation*}
i \mapsto\left\langle S_{i} \mid w\right\rangle \tag{11}
\end{equation*}
$$

has finite support. The sum is then

$$
\begin{equation*}
\sum_{i \in I} S_{i}=\sum_{w \in X^{*}}\left(\sum_{i \in I}\left\langle S_{i} \mid w\right\rangle\right) w \tag{12}
\end{equation*}
$$

This criterium adapts perfectly to infinite products and double series.

Encoding the multi-indices by words

X^{*} and Y^{*} are generated by the totally ordered alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ admitting $1_{X^{*}}$ and $1_{Y^{*},}$ respectively, as neutral elements.

Encoding the multi-indices by words

X^{*} and Y^{*} are generated by the totally ordered alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ admitting $1_{X^{*}}$ and $1_{Y^{*},}$ respectively, as neutral elements.

$$
\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \leftrightarrow w=y_{s_{1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{Y}}{\rightleftharpoons}} w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} .
$$

Encoding the multi-indices by words

X^{*} and Y^{*} are generated by the totally ordered alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ admitting $1_{X^{*}}$ and $1_{Y^{*},}$ respectively, as neutral elements.

$$
\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \leftrightarrow w=y_{s_{1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{Y}}{\rightleftharpoons}} w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} .
$$

w is said convergent if $s_{1}>1$. A divergent word is of the form

Encoding the multi-indices by words

X^{*} and Y^{*} are generated by the totally ordered alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ admitting $1_{X^{*}}$ and $1_{Y^{*},}$ respectively, as neutral elements.

$$
\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \leftrightarrow w=y_{s_{1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{Y}}{\rightleftharpoons}} w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} .
$$

w is said convergent if $s_{1}>1$. A divergent word is of the form

$$
(\underbrace{1, \ldots, 1}_{r \text { times }}, s_{k+1}, \ldots, s_{r}) \leftrightarrow y_{1}^{k} y_{s_{k+1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{Y}}{\rightleftharpoons}} x_{1}^{k} x_{0}^{s_{k+1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} .
$$

Encoding the multi-indices by words

X^{*} and Y^{*} are generated by the totally ordered alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ admitting $1_{X^{*}}$ and $1_{Y^{*},}$ respectively, as neutral elements.

$$
\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \leftrightarrow w=y_{s_{1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\underset{\pi_{\gamma}}{\rightleftharpoons}} w=x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} .
$$

w is said convergent if $s_{1}>1$. A divergent word is of the form

$$
\begin{aligned}
& (\underbrace{1, \ldots, 1}_{r \text { times }}, s_{k+1}, \ldots, s_{r}) \leftrightarrow y_{1}^{k} y_{s_{k+1}} \ldots y_{s_{r}} \stackrel{\pi_{X}}{\pi_{\gamma}} x_{1}^{k} x_{0}^{s_{k+1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} . \\
& \forall w \in Y^{*}, \quad \mathrm{Li}_{\bullet}: w \mapsto \mathrm{Li}_{\pi_{X}(w)}(z)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}, \\
& \mathrm{H}_{\bullet}: w \mapsto \mathrm{H}_{w}(N)=\sum_{N \geq n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}, \\
& \zeta: w \mapsto \zeta(w)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} .
\end{aligned}
$$

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{\uplus_{+}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{\left.\right|_{+ \pm}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73)

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{\uplus^{+}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73) defined recursively respectively by

- (Fliess, 72) $\quad \forall w \in X^{*}, \quad w \sqcup 1_{X^{*}}=1_{X^{*}} \sqcup w=w$, $\forall x, y \in X, \forall u, v \in X^{*}, \quad x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v)$.

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{+ \pm}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73) defined recursively respectively by

- (Fliess, 72) $\quad \forall w \in X^{*}, \quad w \amalg 1_{X^{*}}=1_{X^{*}} \amalg w=w$,

$$
\forall x, y \in X, \forall u, v \in X^{*}, \quad x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
$$

- (Hoffman, 97) $\forall w \in Y^{*}, \quad w \pm 1_{Y^{*}}=1_{Y^{*}}+w=w$,

$$
\begin{aligned}
\forall y_{i}, y_{j} \in Y, \forall u, v \in Y^{*}, \quad y_{i} u \sqcup y_{j} v & =y_{i}\left(u \amalg y_{j} v\right)+y_{j}\left(y_{i} u \sqcup v\right) \\
& +y_{i+j}(u \sqcup v)
\end{aligned}
$$

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{ \pm_{+}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73) defined recursively respectively by

- (Fliess, 72) $\quad \forall w \in X^{*}, \quad w \sqcup 1_{X^{*}}=1_{X^{*}} \sqcup w=w$,

$$
\forall x, y \in X, \forall u, v \in X^{*}, \quad x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
$$

- (Hoffman, 97) $\forall w \in Y^{*}, \quad w \leftarrow 1_{Y^{*}}=1_{Y^{*}}+w=w$,

$$
\begin{aligned}
\forall y_{i}, y_{j} \in Y, \forall u, v \in Y^{*}, \quad y_{i} u \amalg y_{j} v & =y_{i}\left(u \amalg y_{j} v\right)+y_{j}\left(y_{i} u \amalg v\right) \\
& +y_{i+j}(u \pm v)
\end{aligned}
$$

or by their associated coproduct, Δ_{\amalg} and $\Delta_{\uplus+}$, defined as follows

$$
\langle u \sqcup v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{\amalg}(w)\right\rangle \quad \text { and } \quad\langle u \boxminus v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{ \pm \pm}(w)\right\rangle
$$

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{ \pm_{+}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73) defined recursively respectively by

- (Fliess, 72) $\quad \forall w \in X^{*}, \quad w \sqcup 1_{X^{*}}=1_{X^{*}} \sqcup w=w$,

$$
\forall x, y \in X, \forall u, v \in X^{*}, \quad x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
$$

- (Hoffman, 97) $\forall w \in Y^{*}, \quad w \leftarrow 1_{Y^{*}}=1_{Y^{*}}+w=w$,

$$
\begin{aligned}
\forall y_{i}, y_{j} \in Y, \forall u, v \in Y^{*}, \quad y_{i} u \amalg y_{j} v & =y_{i}\left(u \amalg y_{j} v\right)+y_{j}\left(y_{i} u \amalg v\right) \\
& +y_{i+j}(u \pm v)
\end{aligned}
$$

or by their associated coproduct, Δ_{\amalg} and $\Delta_{\uplus+}$, defined as follows

$$
\langle u \sqcup v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{\amalg}(w)\right\rangle \quad \text { and } \quad\langle u \boxminus v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{ \pm \pm}(w)\right\rangle
$$

which are morphisms for the concatenation defined, on the letters, by

$$
\forall x \in X, \quad \Delta_{\amalg}(x)=1 \otimes x+x \otimes 1,
$$

$\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$ and $\left(A\langle Y\rangle, ., 1_{Y^{*}}, \Delta_{ \pm_{+}}, \epsilon_{Y}\right)$

A : commutative and associative algebra with unit over \mathbb{Q}.
Let $A\langle X\rangle$ and $A\langle Y\rangle$ be equipped with the concatenation and the associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle (Knutson, 73) defined recursively respectively by

- (Fliess, 72) $\quad \forall w \in X^{*}, \quad w \sqcup 1_{X^{*}}=1_{X^{*}} \sqcup w=w$,

$$
\forall x, y \in X, \forall u, v \in X^{*}, \quad x u \sqcup y v=x(u \sqcup y v)+y(x u \sqcup v) .
$$

- (Hoffman, 97) $\forall w \in Y^{*}, \quad w \leftarrow 1_{Y^{*}}=1_{Y^{*}}+w=w$,

$$
\begin{aligned}
\forall y_{i}, y_{j} \in Y, \forall u, v \in Y^{*}, \quad y_{i} u \amalg y_{j} v & =y_{i}\left(u \amalg y_{j} v\right)+y_{j}\left(y_{i} u \amalg v\right) \\
& +y_{i+j}(u \pm v)
\end{aligned}
$$

or by their associated coproduct, Δ_{\amalg} and $\Delta_{\uplus+}$, defined as follows

$$
\langle u \sqcup v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{\amalg}(w)\right\rangle \quad \text { and } \quad\langle u \boxminus v \mid w\rangle=\left\langle u \otimes v \mid \Delta_{ \pm \pm}(w)\right\rangle
$$

which are morphisms for the concatenation defined, on the letters, by

$$
\begin{array}{ll}
\forall x \in X, & \Delta_{\amalg}(x)=1 \otimes x+x \otimes 1, \\
\forall y_{k} \in Y, & \Delta_{ \pm}\left(y_{k}\right)=1 \otimes y_{k}+y_{k} \otimes 1+\sum_{i+j=k} y_{i} \otimes y_{j} .
\end{array}
$$

y_{2}					
y_{4}					
y_{1}					
y_{3}					
	y_{3}	y_{2}	y_{5}	y_{1}	y_{4}

Path which contributes $y_{6} y_{2} y_{1} y_{5} y_{1} y_{8} y_{2}$ in the stuffle product $y_{3} y_{2} y_{5} y_{1} y_{4}+y_{3} y_{1} y_{4} y_{2}$.

$$
\begin{aligned}
u \uplus v & =\sum_{\pi \in \mathcal{M}(|u|,|v|)} e v(\pi, u, v) \\
\mathcal{M}(p, q) & =\left\{\left.\pi \in\{n, e, d\}^{*}|\quad| \pi\right|_{e, d}=p,|\pi|_{n, d}=q\right\}
\end{aligned}
$$

Lyndon words as transcendence basis

- A word is a Lyndon word if it is primitive and less than each of its right factor for $\prec_{\text {lex }}$ (Lyndon, 1954).

Example

$$
\begin{aligned}
& x=\left\{x_{0}, x_{1}\right\}, x_{0}<x_{1} \text {. The Lyndon words of length } \leq 5 \text { are } \\
& \qquad x_{0}, x_{0}^{4} x_{1}, x_{0}^{3} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}, x_{0} x_{1} x_{0} x_{1}^{2}, x_{0} x_{1}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{4}, x_{1} .
\end{aligned}
$$

Lyndon words as transcendence basis

- A word is a Lyndon word if it is primitive and less than each of its right factor for $\prec_{\text {lex }}$ (Lyndon, 1954).
Example
$X=\left\{x_{0}, x_{1}\right\}, x_{0}<x_{1}$. The Lyndon words of length ≤ 5 are

$$
x_{0}, x_{0}^{4} x_{1}, x_{0}^{3} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}, x_{0} x_{1} x_{0} x_{1}^{2}, x_{0} x_{1}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{4}, x_{1} .
$$

- For any $w \in X^{*}, w=I_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, I_{1}>\ldots>I_{k}$ (Lyndon, 1954, Širšov, 1962).
Example
$x_{1} x_{0} x_{1}^{2} x_{0} x_{1}^{2} x_{0}^{2} x_{1}=x_{1} \cdot x_{0} x_{1}^{2} \cdot x_{0} x_{1}^{2} \cdot x_{0}^{2} x_{1}=x_{1}\left(x_{0} x_{1}^{2}\right)^{2} x_{0}^{2} x_{1}$.

Lyndon words as transcendence basis

- A word is a Lyndon word if it is primitive and less than each of its right factor for $\prec_{\text {lex }}$ (Lyndon, 1954).
Example
$X=\left\{x_{0}, x_{1}\right\}, x_{0}<x_{1}$. The Lyndon words of length ≤ 5 are
$x_{0}, x_{0}^{4} x_{1}, x_{0}^{3} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}, x_{0} x_{1} x_{0} x_{1}^{2}, x_{0} x_{1}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{4}, x_{1}$.
- For any $w \in X^{*}, w=l_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, I_{1}>\ldots>I_{k}$ (Lyndon, 1954, Širšov, 1962).
Example
$x_{1} x_{0} x_{1}^{2} x_{0} x_{1}^{2} x_{0}^{2} x_{1}=x_{1} \cdot x_{0} x_{1}^{2} \cdot x_{0} x_{1}^{2} \cdot x_{0}^{2} x_{1}=x_{1}\left(x_{0} x_{1}^{2}\right)^{2} x_{0}^{2} x_{1}$.
- $\forall I \in \mathcal{L} y n X-X, \operatorname{st}(I)=(u, v)$, where $u, v \in \mathcal{L} y n X$ such that $I=u v$ and v is the proper Lyndon longest right factor of I.
One then has $u<u v<v$.
Example

$$
\operatorname{st}\left(x_{0}^{2} x_{1} x_{0} x_{1}\right)=\left(x_{0}^{2} x_{1}, x_{0} x_{1}\right), \operatorname{st}\left(x_{0}^{2} x_{1} x_{0}^{2} x_{1} x_{0} x_{1}\right)=\left(x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}\right) .
$$

Lyndon words as transcendence basis

- A word is a Lyndon word if it is primitive and less than each of its right factor for $\prec_{\text {lex }}$ (Lyndon, 1954).
Example
$X=\left\{x_{0}, x_{1}\right\}, x_{0}<x_{1}$. The Lyndon words of length ≤ 5 are

$$
x_{0}, x_{0}^{4} x_{1}, x_{0}^{3} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}, x_{0}^{2} \overline{x_{1}^{2}}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}, x_{0} x_{1} x_{0} x_{1}^{2}, x_{0} x_{1}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{4}, x_{1} .
$$

- For any $w \in X^{*}, w=I_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, I_{1}>\ldots>I_{k}$ (Lyndon, 1954, Širšov, 1962).
Example
$x_{1} x_{0} x_{1}^{2} x_{0} x_{1}^{2} x_{0}^{2} x_{1}=x_{1} \cdot x_{0} x_{1}^{2} \cdot x_{0} x_{1}^{2} \cdot x_{0}^{2} x_{1}=x_{1}\left(x_{0} x_{1}^{2}\right)^{2} x_{0}^{2} x_{1}$.
- $\forall I \in \mathcal{L} y n X-X, \operatorname{st}(I)=(u, v)$, where $u, v \in \mathcal{L} y n X$ such that $I=u v$ and v is the proper Lyndon longest right factor of I. One then has $u<u v<v$.
Example
$\operatorname{st}\left(x_{0}^{2} x_{1} x_{0} x_{1}\right)=\left(x_{0}^{2} x_{1}, x_{0} x_{1}\right), \operatorname{st}\left(x_{0}^{2} x_{1} x_{0}^{2} x_{1} x_{0} x_{1}\right)=\left(x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}\right)$.
- $\left(A\langle X\rangle, \amalg, 1_{X^{*}}\right)$ is a polynomial ring and $\mathcal{L} y n X$ forms a (pure) transcendence basis for it over A (Radford, 1956).
Example
$x_{0} x_{1} x_{0}^{2} x_{1}=x_{0} x_{1} \amalg x_{0}^{2} x_{1}-3 x_{0}^{2} x_{1} x_{0} x_{1}-6 x_{0}^{3} x_{1}^{2}$,
$x_{0}^{3} x_{1} x_{0}^{4} x_{1}=x_{0}^{3} x_{1} \sqcup x_{0}^{4} x_{1}-5 x_{0}^{4} x_{1} x_{0}^{3} x_{1}-15 x_{0}^{5} x_{1} x_{0}^{2} x_{1}-35 x_{0}^{6} x_{1} x_{0} x_{1}-70 x_{0}^{7} x_{1}^{2}$

Schützenberger's factorization in $\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$

$\mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$ denotes the set of Lyndon words over $X($ resp. $Y)$.

Schützenberger's factorization in $\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$

$\mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$ denotes the set of Lyndon words over $X($ resp. $Y)$.

- $\left\{P_{l}\right\}_{l \in \mathcal{L} y n X}$: basis of $\mathcal{L i e}_{A}\langle X\rangle$, where P_{l} is defined by

$$
P_{I}=I \text { if } I \in X \text { and } P_{l}=\left[P_{u}, P_{v}\right] \text { if } I \in \mathcal{L} y n X \text { and } \operatorname{st}(I)=(u, v) \text {. }
$$

Schützenberger's factorization in $\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$

$\mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$ denotes the set of Lyndon words over X (resp. Y).

- $\left\{P_{l}\right\}_{l \in \mathcal{L} y n X}$: basis of $\mathcal{L i e}_{A}\langle X\rangle$, where P_{l} is defined by

$$
P_{I}=I \text { if } I \in X \text { and } P_{l}=\left[P_{u}, P_{v}\right] \text { if } I \in \mathcal{L} y n X \text { and } \operatorname{st}(I)=(u, v) \text {. }
$$

- $\left\{P_{w}\right\}_{w \in X^{*}}:$ PBW-L basis of $\mathcal{U}\left(\mathcal{L i e}_{A}\langle X\rangle\right)$ is obtained by putting

$$
P_{w}=P_{l_{1}}^{i_{1}} \ldots P_{l_{k}}^{i_{k}} \text { for } w=I_{1}^{i_{1}} \ldots, I_{k}^{i_{k}}, l_{1}, \ldots, I_{k} \in \mathcal{L} y n X, I_{1}>\ldots>I_{k} .
$$

Schützenberger's factorization in $\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$

$\mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$ denotes the set of Lyndon words over X (resp. Y).

- $\left\{P_{l}\right\}_{l \in \mathcal{L} y n X}$: basis of $\mathcal{L i e}_{A}\langle X\rangle$, where P_{l} is defined by

$$
P_{I}=I \text { if } I \in X \text { and } P_{l}=\left[P_{u}, P_{v}\right] \text { if } I \in \mathcal{L} y n X \text { and } \operatorname{st}(I)=(u, v) \text {. }
$$

- $\left\{P_{w}\right\}_{w \in X^{*}}:$ PBW-L basis of $\mathcal{U}\left(\mathcal{L i e}_{A}\langle X\rangle\right)$ is obtained by putting

$$
P_{w}=P_{l_{1}}^{i_{1}} \ldots P_{l_{k}}^{i_{k}} \text { for } w=I_{1}^{i_{1}} \ldots, I_{k}^{i_{k}}, l_{1}, \ldots, I_{k} \in \mathcal{L} y n X, I_{1}>\ldots>I_{k} .
$$

- The dual basis $\left\{S_{w}\right\}_{w \in X^{*}}$ of $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$, i.e. :

$$
\forall u, v \in X^{*},\left\langle P_{u} \mid S_{v}\right\rangle=\delta_{u, v}
$$

can be obtained by putting

$$
\begin{array}{ll}
S_{I}=x S_{u}, & \text { for } \quad I=x u \in \mathcal{L} y n X, \\
S_{w}=\frac{1}{i_{1}!\ldots i_{k}!} S_{l_{1}}^{\amalg i_{1}} \amalg \ldots \sqcup S_{l_{k}}^{\amalg i_{k}}, & \text { for } \quad w=l_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, I_{1}>\ldots>I_{k} .
\end{array}
$$

Schützenberger's factorization in $\left(A\langle X\rangle, ., 1_{X^{*}}, \Delta_{\amalg}, \epsilon_{X}\right)$

$\mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$ denotes the set of Lyndon words over X (resp. Y).

- $\left\{P_{l}\right\}_{l \in \mathcal{L} y n X}$: basis of $\mathcal{L i e}_{A}\langle X\rangle$, where P_{l} is defined by

$$
P_{I}=I \text { if } I \in X \text { and } P_{I}=\left[P_{u}, P_{v}\right] \text { if } I \in \mathcal{L} y n X \text { and } \operatorname{st}(I)=(u, v) \text {. }
$$

- $\left\{P_{w}\right\}_{w \in X^{*}}$: PBW-L basis of $\mathcal{U}\left(\mathcal{L i e}_{A}\langle X\rangle\right)$ is obtained by putting

$$
P_{w}=P_{l_{1}}^{i_{1}} \ldots P_{l_{k}}^{i_{k}} \text { for } w=I_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, l_{1}, \ldots, I_{k} \in \mathcal{L} y n X, I_{1}>\ldots>I_{k} .
$$

- The dual basis $\left\{S_{w}\right\}_{w \in X^{*}}$ of $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$, i.e. :

$$
\forall u, v \in X^{*},\left\langle P_{u} \mid S_{v}\right\rangle=\delta_{u, v}
$$

can be obtained by putting

$$
\begin{array}{ll}
S_{l}=x S_{u}, & \text { for } \quad I=x u \in \mathcal{L} y n X, \\
S_{w}=\frac{1}{i_{1}!\ldots i_{k}!} S_{l_{1}}^{\amalg i_{1}} \amalg \ldots \amalg S_{l_{k}}^{\omega i_{k}}, & \text { for } \quad w=l_{1}^{i_{1}} \ldots I_{k}^{i_{k}}, l_{1}>\ldots>I_{k} .
\end{array}
$$

Theorem (Schützenberger, 1958, Reutenauer 1988)

$$
\mathcal{D}_{X}:=\sum_{w \in X^{*}} w \otimes w=\sum_{w \in X^{*}} S_{w} \otimes P_{w}=\prod_{l \in \mathcal{C} y n X}^{\searrow} \exp \left(S_{l} \otimes P_{l}\right) .
$$

Computational examples

1	P_{1}	S_{1}
${ }^{0}$	${ }^{x_{0}}$	${ }^{x_{0}}$
${ }_{1}$	${ }_{1}$	${ }_{1}$
${ }_{0} x_{1}$	[x_{0}, x_{1}]	${ }^{x_{0} x_{1}}$
$x_{0}^{2} x_{1}$	$\left[x_{0},\left[x_{0}, x_{1}\right]\right]$	$x_{0}^{2} x_{1}$
$x_{0} x_{1}^{2}$	[$\left.\left[x_{0}, x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{2}$
${ }^{3}{ }^{3} x_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]$	${ }^{3}{ }_{2}{ }_{1}{ }_{1}$
$x_{0}^{2} x_{1}^{2}$	$\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{2}$
$x_{0} x_{1}^{3}$	[$\left.\left.\left[1 x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]$	$\times_{0} x_{1}^{3}$
${ }^{4}{ }_{0}^{4} x_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]$	$\times_{0}^{4} x_{1}$
${ }^{x_{0}^{3} x^{2}}$	$\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]$	${ }^{x_{0}^{3} \times{ }_{1}^{2}}$
$x_{0}^{2} x_{1} x_{0} x_{1}$	$\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$2 x_{0}^{3} x_{1}^{2}+x_{0}^{2} x_{1} x_{0} x_{1}$
${ }_{0}^{2} x_{1}^{3}$	$\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]$	${ }^{2}{ }^{x_{0}^{2} x_{1}^{3}}$
$x_{0} x_{1} x_{0} x_{1}^{2}$	$\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$3 x_{0}^{2} x_{1}^{3}+x_{0} x_{1} x_{0} x_{1}^{2}$
${ }^{x_{0} x_{1}^{4}}$	${ }^{\left.\left[1\left[\left[1 x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]}$	${ }_{\substack{\text { a }}}^{\substack{0 \\ 0 \\ 0 \\ 0_{1}^{4}}}$
${ }^{x_{0}^{5} x_{1}}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]\right]$	${ }_{x_{0}^{5} x_{1}}$
${ }_{3} x_{0}^{4} x_{1}^{2}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]\right]$	込
${ }^{\text {a }}{ }^{x_{0}^{3} x_{1} x_{0} x_{1}}$	$\left[x_{0},\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]\right]$ $\left.\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]\right]$	$2 x_{0}^{4} x_{1}^{2}+{ }_{0}^{3}{ }_{0}^{3} x_{1} x_{0} x_{1}$
$x_{0}^{x_{0}^{2} x_{0}^{3} x_{1}^{3} x_{0} x_{1}^{2}}$	$\left[x_{0},\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]\right]$ $\left[x_{0},\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]$	
${ }_{0} x_{0}^{2} x_{1}^{2} \times x_{0} x_{1}$	$\left[\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$6 x_{0}^{3} x_{1}^{3}+3 x_{0}^{2} x_{1} x_{0} x_{1}^{2}+x_{0}^{2} x_{1}^{2} x_{0} x_{1}$
$x_{0}^{2} x_{1}^{4}$	$\left[x_{0},\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{4}$
$\begin{gathered} x_{0} x_{1} x_{0} x_{1}^{3} \\ x_{0} x_{1}^{5} \end{gathered}$	a $\begin{aligned} & {\left[\left[x_{0}, x_{1}\right],\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]} \\ & \left.\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]\end{aligned}$	$4 x_{0}^{2} x_{1}^{4}+x_{0} x_{1} x_{0} x_{1}^{3}$

Drindfel'd equation and the Hausdorff group

In fact, one can initiate the first steps in the theory of noncommutative differential equations. Let $\mathcal{A}=C^{\omega}(\Omega, \mathbb{C})$. We have the following

Proposition

For a series $S \in \mathcal{A}\langle\langle X\rangle\rangle$, set

$$
\begin{equation*}
\Delta_{\amalg}(S)=\sum_{w \in X^{*}}\langle S \mid w\rangle \Delta_{\amalg}(w)=\sum_{u, v \in X^{*}}\langle S \mid u \sqcup v\rangle u \otimes v \tag{13}
\end{equation*}
$$

For a series, the following are equivalent

$$
\begin{aligned}
& \text { 1. for all } u, v \in X^{*} \text { one has }\langle S \mid u \sqcup v\rangle=\langle S \mid u\rangle\langle S \mid v\rangle \\
& \text { 2. } \Delta_{\amalg}(S)=S \hat{\otimes} S
\end{aligned}
$$

We will say that such a series is group-like if, moreover $\left\langle S \mid 1_{X^{*}}\right\rangle=1$ it is not difficult to check that these series form a group (called classically the Hausdorff group).

Drindfel'd equation and the Hausdorff group/2

With the formalism of derivations and coproduct, one gets at hand a true differential (noncommutative) machinery. We can prove that some solutions of $S^{\prime}=M S$ are group-like and can be considered as a path drawn on the Hausdorff group.
One has the following (S is still a formal power series with functional coefficients over a connected and simply connected domain)

Proposition (D., Minh, Deneufchâtel (1))

Let S be a solution of $S^{\prime}=M S$ with $\Delta_{\amalg}(M)=M \hat{\otimes} 1+1 \hat{\otimes} M$ (one says that M is primitive). Then

- If S is once group-like, which means that $\Delta_{\amalg}\left(S\left(z_{0}\right)\right)=S\left(z_{0}\right) \hat{\otimes} S\left(z_{0}\right),\left\langle S\left(z_{0}\right) \mid 1_{X^{*}}\right\rangle$ for some $z_{0} \in \Omega$ (Chen's condition), then S is (always) group-like.
- If S is asymptotically group-like (means that it exists a group-like element $G(z)$ such that $\lim (S(z) G(z))=1)$ then S is (always) group-like.

Unicity and the differential Galois group

If we have two solutions of the equation

$$
\begin{equation*}
S^{\prime}=M S \text { with } \Delta_{\amalg}(M)=M \hat{\otimes} 1+1 \hat{\otimes} M \tag{14}
\end{equation*}
$$

they differ by a constant in the following way

Proposition

Let $S_{i}, i=1,2$ be two solutions of eq. 14 and suppose that $\left\langle S_{1}\left(z_{0}\right) \mid 1_{X^{*}}\right\rangle \neq 0$ at some $z_{0} \in \Omega$, then

1. $\left\langle S_{1}(z) \mid 1_{X^{*}}\right\rangle \neq 0$ everywhere (so S can be inverted)
2. It exists $G \in \mathbb{C}\langle\langle X\rangle\rangle$ such that $S_{2}=S_{1} G$
3. If, moreover, S_{i} are group-like then so is G

So, one can legitimately call the group-like constant series, the differential Galois group of the group-like solutions of eq. 14.

Condition of independence of the (coordinates of) the solutions.

Theorem (D., Minh, Deneufchâtel (1))
Let (\mathcal{A}, d) be a k-commutative associative differential algebra with unit $(c h(k)=0)$ and \mathcal{C} be a differential subfield of \mathcal{A} (i.e. $d(\mathcal{C}) \subset \mathcal{C})$. We suppose that $S \in \mathcal{A}\langle\langle X\rangle\rangle$ is a solution of the differential equation

$$
\begin{equation*}
\mathbf{d}(S)=M S ;\langle S \mid 1\rangle=1 \tag{15}
\end{equation*}
$$

where the multiplier M is a homogeneous series (a polynomial in the case of finite X) of degree 1, i.e.

$$
\begin{equation*}
M=\sum_{x \in X} u_{x} x \in \mathcal{C}\langle\langle X\rangle\rangle . \tag{16}
\end{equation*}
$$

Condition of independence of the (coordinates of) the solutions (end of theorem).

Theorem (cont'd)
The following conditions are equivalent:
i) The family $(\langle S \mid w\rangle)_{w \in X^{*}}$ of coefficients of S is free over \mathcal{C}.
ii) The family of coefficients $(\langle S \mid y\rangle)_{y \in X \cup\left\{1_{x^{*}}\right\}}$ is free over \mathcal{C}.
iii) The family $\left(u_{x}\right)_{x \in X}$ is such that, for $f \in \mathcal{C}$ and $\alpha_{x} \in k$

$$
\begin{equation*}
d(f)=\sum_{x \in X} \alpha_{x} u_{x} \Longrightarrow(\forall x \in X)\left(\alpha_{x}=0\right) \tag{17}
\end{equation*}
$$

iv) The family $\left(u_{x}\right)_{x \in X}$ is free over k and

$$
\begin{equation*}
d(\mathcal{C}) \cap \operatorname{span}_{k}\left(\left(u_{x}\right)_{x \in X}\right)=\{0\} \tag{18}
\end{equation*}
$$

Factorisation of group-like series

If a series T is group-like, the map $T \otimes I d$ is a continuous morphism

$$
\left.\mathcal{A}\left\langle\left(X^{*} \otimes X^{*}\right)^{(i s o)}\right\rangle\right\rangle \rightarrow \mathcal{A}\langle\langle X\rangle\rangle
$$

where $\left(X^{*} \otimes X^{*}\right)^{(i s o)}$ is the monoid of isobaric bi-words (i.e. $(u, v))$ with $|u|_{x}=|v|_{x}$ for all $x \in X$) and then we can apply it to $\mathcal{D}_{X}=\sum_{w \in X^{*}} w \otimes w$ and from the infinite product
(Schützenberger's factorisation)

$$
\begin{equation*}
\mathcal{D}_{X}:=\sum_{w \in X^{*}} w \otimes w=\sum_{w \in X^{*}} S_{w} \otimes P_{w}=\prod_{l \in \mathcal{L} y n X}^{\downarrow} \exp \left(S_{l} \otimes P_{l}\right) \tag{19}
\end{equation*}
$$

we get

$$
\begin{equation*}
T=\sum_{w \in X^{*}}\langle T \mid w\rangle w=\prod_{l \in \mathcal{L y n X}}^{\rangle} \exp \left(\left\langle T \mid S_{l}\right\rangle \otimes P_{l}\right) . \tag{20}
\end{equation*}
$$

The Lyndon words then constitute the labelling of a local system of coordinates of the Hausdorff group.

Bibliography

M. Deneufchtel, G. H. E. Duchamp, Hoang Ngoc Minh, A. I. Solomon, Independence of hyperlogarithms over function fields via algebraic combinatorics, Lecture Notes in Computer Science (2011), Volume 6742 (2011), 127-139. arXiv:1101.4497v1 [math.CO]

CONCLUSION

- Starting from the classical case of linear differential equations with several singularities, we separated them and replaced the multiplying matrices by noncommuting letters (it is afterwards possible to re-specialise the letters to these matrices). We get a noncommutative linear differential equation with multiplier. Under certain tangency condition (the multiplier be primitive), we get entirely group-like solutions, characterize the (differential) Galois group of the equation and compute local coordinates of them.
- Using special fields of functions, we could also give a necessary and sufficient condition ensuring that the coordinates of the solutions (i.e. the family of functions $\left.(z \rightarrow\langle S \mid w\rangle)_{w \in X^{*}}\right)$ be linearly independant on enlarged fields of coefficients.
- The hope is to apply this formalism (which is equivalent to that of Dyson, but much more tractable) to arithmetics and physics.

THANK YOU FOR YOUR ATTENTION!

