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INTRODUCTION & CONTEXT



Context

This is a starting project with a group of physicists (second group
of names). The aim is to provide methods in order to compute
Dyson series based on a tractable (combinatorial) indexing. The
advantage of the presented method are the following

I Easy implementation

I Eased combinatorial analysis of the outputs, the basic
indexing being provided by noncommutative and (perspective)
partially commutative words

I Possible factorization in infinite products (Schützenberger’s
factorization)



Linear differential equations and Dyson series
Let us start with the simplest (linear) case:
∂z denotes d/dz and a0, . . . , an ∈ A (some full algebra of C-valued
functions).

We are in search of solutions of

an(z)∂nz y(z) + . . .+ a1(z)∂zy(z) + a0(z)y(z) = 0 (1)

Which can be written in matrix form as

(ED)

 ∂zq(z) = A(z)q(z),
q(z0) = η,
y(z) = λq(z),

(2)

with

A(z) = (Ai ,j(z))i ,j=1..n ∈Mn,n(A), λ ∈M1,n(k), η ∈Mn,1(k).

... and implies

q(z) = q(z0) +

∫ z

z0

A(s)q(s)ds (3)



Linear differential equations and Dyson series II

By successive Picard iterations w.r.t. the integral eq.3, we get

q0 ≡ q(z0); qk(z) = q(z0) +

∫ z

z0

A(s)qk−1(s)ds

with the initial point q0(z) = η, one gets y(z) = λU(z0; z)η,

where U(z0; z) is the solution of the differential system

(EDR)

{
∂zU(z0, z) = A(z)U(z0, z),

U(z0, z0) = In×n
(4)

and U satisfies the functional expansion

U(z0; z) =
∑
k≥0

∫ z

z0

A(s1)ds1

∫ s1

z0

A(s2)ds2 . . .

∫ sk−1

z0

A(sk)dsk (5)

also called Dyson series.
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An example with singularities (familiar to combinatorists)

Example (Hypergeometric equation)

Let a, b, c be parameters and

z(1− z)∂2z y(z) + [c − (a + b + 1)z ]∂zy(z)− aby(z) = 0.

Let q1(z) = y(z) and q2(z) = (1− z)∂zy(z). One has

A

(
q1

q2

)
=

 0
1

1− z
ab

z

a + b − c

1− z
− c

z

(q1

q2

)

=

[(
0 0
−ab −c

)
1

z
−
(

0 1
0 c − a− b

)
1

1− z

](
q1

q2

)
.

A0 =

(
0 0
−ab −c

)
, A1 =

(
0 1
0 c − a− b

)
.
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FORMAL SETTING



Drinfel’d’s symbolic calculus (iterated integrals and
exponential form)

The trick is to replace the matrices by (formal, noncommuting)
letters (in our example, it is {x0, x1}).
From the Dyson series of eq. 5, this replacement provides a formal
power series

S =
∑
w∈X
〈S |w〉w (6)

satisfying

S ′ = (
x0
z

+
x1

1− z
)S = MS (7)

where the coefficients 〈S |w〉 of S are analytic functions on a
(open, connected and simply connected) domain Ω ⊂ C
(Ω = C− (]−∞, 0] ∪ [1,+∞[) is usually considered).



Chen’s iterated integral along a path and polylogarithms
The iterated integral, along z0  z in C− (]−∞, 0] ∪ [1,+∞[)
and associated to w = xi1 · · · xik , over ω0(z) = z−1dz and
ω1(z) = (1− z)−1dz is defined by

αz
z0(1X∗) = 1 and αz

z0(xi1 . . . xik ) =

∫ z

z0

ωi1(z1) . . .

∫ zk−1

z0

ωik (zk).

For any w = x s1−1
0 x1 . . . x

sr−1
0 x1 ∈ X ∗x1,

αz
z0(w) =

∑
n1>...>nr>0

zn1

ns1
1 . . . n

sr
r

= Lis1,...,sr (z), |z |< 1.

Example (In this case, the word ending by x1, one can take z0 = 0)

αz
0(x0x1) = Li2(z) =

∫ z

0

ds1
s1

∫ s1

0

ds2
1− s2

=

∫ z

0

ds1
s1

∫ s1

0
ds2
∑
k≥0

sk2 =
∑
k≥1

∫ z

0
ds1

sk−11

k
=
∑
k≥1

zk

k2
.
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Iterated integrals and shuffle products
The symbols αz

z0 have a marvelous property: they are compatible
with the shuffle product of words.
Three equivalent ways to define shuffle products

I Recursive definition A〈X 〉 ⊗ A〈X 〉 → A〈X 〉

∀w ∈ X ∗, w tt1X∗ = 1X∗ ttw = w ,

∀x , y ∈ X , ∀u, v ∈ X ∗, xu ttyv = x(u ttyv) + y(xu ttv).

I Comultiplication A〈X 〉 → A〈X 〉 ⊗ A〈X 〉

∆tt(x) = x ⊗ 1 + 1⊗ x (8)

Extension by morphism, one finds for w ∈ X ∗

∆tt(x) =
∑

I+J=[1···|w |]

w [I ]⊗ w [J] (9)

I Evaluation of paths



a b c d e

s

r

q

p

Path which contributes apbqcdres in the shuffle product
abcde ttpqrs.

u ttv =
∑

π∈D(|u|,|v |)

ev(π, u, v)

D(p, q) = {π ∈ {n, e}∗ | |π|e = p, |π|n = q}



Iterated integrals and shuffle products (replay)

The symbols αz
z0 have a marvelous property: they are compatible

with the shuffle product of words.
Three ways to characterize shuffle products

I Recursive definition A〈X 〉 ⊗ A〈X 〉 → A〈X 〉

∀w ∈ X ∗, w tt1X∗ = 1X∗ ttw = w ,

∀x , y ∈ X , ∀u, v ∈ X ∗, xu ttyv = x(u ttyv) + y(xu ttv).

I Comultiplication A〈X 〉 → A〈X 〉 ⊗ A〈X 〉

∆tt(x) = x ⊗ 1 + 1⊗ x (10)

I Evaluation of paths

... all these objects extend to the ring of formal power series
A〈〈X 〉〉. Let us put on them a bit of structure.



ALGEBRAIC COMBINATORICS
OF NONCOMMUTATIVE GENERATING SERIES



Polynomials and power series on noncommutative variables
A : CAAU (commutative and associative algebra with unit) over Q.

The set of polynomials with coefficients in A over X (resp. Y = {yk}k≥1)
is denoted by A〈X 〉 (resp. A〈Y 〉). It is a A-module admitting {w}w∈X∗

(resp. {w}w∈Y ∗) as basis which is auto-dual for the self-duality pairing

∀u, v ∈ X ∗ (resp. Y ∗), 〈u|v〉 = δu,v .

A f.p.s S with coefficients in A over X (resp. Y ) is the following map
which can be identified to its graph

S : X ∗ (resp. Y ∗) −→ A,
w 7−→ 〈S |w〉. S =

∑
w∈X∗

〈S |w〉w .

A〈〈X 〉〉 := AX∗
(resp. A〈〈Y 〉〉 := AY ∗

). It is the (algebraic) dual of A〈X 〉
(resp. A〈Y 〉) and this can be realized through the pairing 〈−|−〉, i.e.
∀S ∈ A〈〈X 〉〉 (resp. A〈〈Y 〉〉),∀P ∈ A〈X 〉 (resp. A〈Y 〉) :

〈S |P〉 =
∑

w∈X∗ (resp. Y ∗)

〈S |w〉〈P|w〉.
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Density

If A is equipped with the discrete topology then

A〈〈X 〉〉 = Â〈X 〉 (resp. A〈〈Y 〉〉 = Â〈Y 〉).

for the pointwise convergence.
A family (Si )i∈I of formal power series is said summable iff, for all
word w ∈ X ∗

i 7→ 〈Si |w〉 (11)

has finite support. The sum is then∑
i∈I

Si =
∑
w∈X∗

(
∑
i∈I
〈Si |w〉)w (12)

This criterium adapts perfectly to infinite products and double
series.



Encoding the multi-indices by words
X ∗ and Y ∗ are generated by the totally ordered alphabets
X = {x0, x1} and Y = {yk}k≥1 admitting 1X∗ and 1Y ∗ ,
respectively, as neutral elements.

s = (s1, . . . , sr )↔ w = ys1 . . . ysr
πX


πY

w = x s1−1
0 x1 . . . x

sr−1
0 x1.

w is said convergent if s1 > 1. A divergent word is of the form

(1, . . . , 1︸ ︷︷ ︸
r times

, sk+1, . . . , sr )↔ yk
1 ysk+1

. . . ysr
πX


πY

xk
1 x

sk+1−1
0 x1 . . . x

sr−1
0 x1.

∀w ∈ Y ∗, Li• : w 7→ LiπX (w)(z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . n

sr
r
,

H• : w 7→ Hw (N) =
∑

N≥n1>...>nr>0

1

ns1
1 . . . n

sr
r
,

ζ : w 7→ ζ(w) =
∑

n1>...>nr>0

1

ns1
1 . . . n

sr
r
.
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1 ysk+1

. . . ysr
πX


πY

xk
1 x

sk+1−1
0 x1 . . . x

sr−1
0 x1.

∀w ∈ Y ∗, Li• : w 7→ LiπX (w)(z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . n

sr
r
,

H• : w 7→ Hw (N) =
∑

N≥n1>...>nr>0

1

ns1
1 . . . n

sr
r
,

ζ : w 7→ ζ(w) =
∑

n1>...>nr>0

1

ns1
1 . . . n

sr
r
.



(A〈X 〉, ., 1X ∗,∆tt, εX ) and (A〈Y 〉, ., 1Y ∗,∆ , εY )
A : commutative and associative algebra with unit over Q.

Let A〈X 〉 and A〈Y 〉 be equipped with the concatenation and the
associative commutative shuffle (Chen, 54, Ree, 56) and quasi-shuffle
(Knutson, 73) defined recursively respectively by

I (Fliess, 72) ∀w ∈ X ∗, w tt1X∗ = 1X∗ ttw = w ,

∀x , y ∈ X ,∀u, v ∈ X ∗, xu ttyv = x(u ttyv) + y(xu ttv).

I (Hoffman, 97)∀w ∈ Y ∗, w 1Y ∗ = 1Y ∗ w = w ,

∀yi , yj ∈ Y ,∀u, v ∈ Y ∗, yiu yjv = yi (u yjv) + yj(yiu v)

+yi+j(u v)

or by their associated coproduct, ∆tt and ∆ , defined as follows

〈u ttv |w〉 = 〈u ⊗ v |∆tt(w)〉 and 〈u v |w〉 = 〈u ⊗ v |∆ (w)〉

which are morphisms for the concatenation defined, on the letters, by

∀x ∈ X , ∆tt(x) = 1⊗ x + x ⊗ 1,

∀yk ∈ Y , ∆ (yk) = 1⊗ yk + yk ⊗ 1 +
∑
i+j=k

yi ⊗ yj .
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y3 y2 y5 y1 y4

y2

y4

y1

y3

Path which contributes y6y2y1y5y1y8y2 in the stuffle product
y3y2y5y1y4 y3y1y4y2.

u v =
∑

π∈M(|u|,|v |)

ev(π, u, v)

M(p, q) = {π ∈ {n, e, d}∗ | |π|e,d = p, |π|n,d = q}



Lyndon words as transcendence basis
I A word is a Lyndon word if it is primitive and less than each

of its right factor for ≺lex (Lyndon, 1954).

Example
X = {x0, x1}, x0 < x1. The Lyndon words of length ≤ 5 are

x0, x
4
0 x1, x

3
0 x1, x

3
0 x

2
1 , x

2
0 x1, x

2
0 x1x0x1, x

2
0 x

2
1 , x

2
0 x

3
1 , x0x1, x0x1x0x

2
1 , x0x

2
1 , x0x

3
1 , x0x

4
1 , x1.

I For any w ∈ X ∗,w = l i11 . . . l
ik
k , l1 > . . . > lk (Lyndon, 1954,

Šiřsov, 1962).

Example
x1x0x

2
1 x0x

2
1 x

2
0 x1 = x1.x0x

2
1 .x0x

2
1 .x

2
0 x1 = x1(x0x

2
1 )

2x20 x1.

I ∀l ∈ LynX − X , st(l) = (u, v), where u, v ∈ LynX such that
l = uv and v is the proper Lyndon longest right factor of l .
One then has u < uv < v .

Example
st(x20 x1x0x1) = (x20 x1, x0x1), st(x

2
0 x1x

2
0 x1x0x1) = (x20 x1, x

2
0 x1x0x1).

I (A〈X 〉,tt, 1X∗) is a polynomial ring and LynX forms a (pure)
transcendence basis for it over A (Radford, 1956).

Example
x0x1x

2
0 x1 = x0x1ttx20 x1 − 3 x20 x1x0x1 − 6 x30 x

2
1 ,

x30 x1x
4
0 x1 = x30 x1ttx

4
0 x1 − 5x40 x1x

3
0 x1 − 15x50 x1x

2
0 x1 − 35x60 x1x0x1 − 70x70 x

2
1 .
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Schützenberger’s factorization in (A〈X 〉, ., 1X ∗,∆tt, εX )

LynX (resp. LynY ) denotes the set of Lyndon words over X (resp. Y ).

I {Pl}l∈LynX : basis of LieA〈X 〉, where Pl is defined by
Pl = l if l ∈ X and Pl = [Pu,Pv ] if l ∈ LynX and st(l) = (u, v).

I {Pw}w∈X∗ : PBW-L basis of U(LieA〈X 〉) is obtained by putting
Pw = P i1

l1
. . .P ik

lk
for w = l i11 . . . l

ik
k , l1, . . . , lk ∈ LynX , l1 > . . . > lk .

I The dual basis {Sw}w∈X∗ of {Πw}w∈Y ∗ , i.e. :
∀u, v ∈ X ∗, 〈Pu|Sv 〉 = δu,v

can be obtained by putting

Sl = xSu, for l = xu ∈ LynX ,

Sw =
1

i1! . . . ik !
Stti1l1

tt . . . ttSttiklk
, for w = l i11 . . . l

ik
k , l1 > . . . > lk .

Theorem (Schützenberger, 1958, Reutenauer 1988)

DX :=
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl).
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ik
k , l1, . . . , lk ∈ LynX , l1 > . . . > lk .

I The dual basis {Sw}w∈X∗ of {Πw}w∈Y ∗ , i.e. :
∀u, v ∈ X ∗, 〈Pu|Sv 〉 = δu,v

can be obtained by putting

Sl = xSu, for l = xu ∈ LynX ,

Sw =
1

i1! . . . ik !
Stti1l1

tt . . . ttSttiklk
, for w = l i11 . . . l

ik
k , l1 > . . . > lk .

Theorem (Schützenberger, 1958, Reutenauer 1988)

DX :=
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl).



Computational examples

l Pl Sl
x0 x0 x0
x1 x1 x1

x0x1 [x0, x1] x0x1
x20 x1 [x0, [x0, x1]] x20 x1
x0x

2
1 [[x0, x1], x1] x0x

2
1

x30 x1 [x0, [x0, [x0, x1]]] x30 x1
x20 x

2
1 [x0, [[x0, x1], x1]] x20 x

2
1

x0x
3
1 [[[x0, x1], x1], x1] x0x

3
1

x40 x1 [x0, [x0, [x0, [x0, x1]]]] x40 x1
x30 x

2
1 [x0, [x0, [[x0, x1], x1]]] x30 x

2
1

x20 x1x0x1 [[x0, [x0, x1]], [x0, x1]] 2x30 x
2
1 + x20 x1x0x1

x20 x
3
1 [x0, [[[x0, x1], x1], x1]] x20 x

3
1

x0x1x0x
2
1 [[x0, x1], [[x0, x1], x1]] 3x20 x

3
1 + x0x1x0x

2
1

x0x
4
1 [[[[x0, x1], x1], x1], x1] x0x

4
1

x50 x1 [x0, [x0, [x0, [x0, [x0, x1]]]]] x50 x1
x40 x

2
1 [x0, [x0, [x0, [[x0, x1], x1]]]] x40 x

2
1

x30 x1x0x1 [x0, [[x0, [x0, x1]], [x0, x1]]] 2x40 x
2
1 + x30 x1x0x1

x30 x
3
1 [x0, [x0, [[[x0, x1], x1], x1]]] x30 x

3
1

x20 x1x0x
2
1 [x0, [[x0, x1], [[x0, x1], x1]]] 3x30 x

3
1 + x20 x1x0x

2
1

x20 x
2
1 x0x1 [[x0, [[x0, x1], x1]], [x0, x1]] 6x30 x

3
1 + 3x20 x1x0x

2
1 + x20 x

2
1 x0x1

x20 x
4
1 [x0, [[[[x0, x1], x1], x1], x1]] x20 x

4
1

x0x1x0x
3
1 [[x0, x1], [[[x0, x1], x1], x1]] 4x20 x

4
1 + x0x1x0x

3
1

x0x
5
1 [[[[[x0, x1], x1], x1], x1], x1] x0x

5
1



Drindfel’d equation and the Hausdorff group

In fact, one can initiate the first steps in the theory of
noncommutative differential equations. Let A = Cω(Ω,C). We
have the following

Proposition

For a series S ∈ A〈〈X 〉〉, set

∆tt(S) =
∑
w∈X∗

〈S |w〉∆tt(w) =
∑

u,v∈X∗
〈S |u ttv〉u ⊗ v (13)

For a series, the following are equivalent

1. for all u, v ∈ X ∗ one has 〈S |u ttv〉 = 〈S |u〉〈S |v〉
2. ∆tt(S) = S⊗̂S

We will say that such a series is group-like if, moreover
〈S |1X∗〉 = 1 it is not difficult to check that these series form a
group (called classically the Hausdorff group).



Drindfel’d equation and the Hausdorff group/2
With the formalism of derivations and coproduct, one gets at hand
a true differential (noncommutative) machinery. We can prove
that some solutions of S ′ = MS are group-like and can be
considered as a path drawn on the Hausdorff group.
One has the following (S is still a formal power series with
functional coefficients over a connected and simply connected
domain)

Proposition (D., Minh, Deneufchâtel (1))

Let S be a solution of S ′ = MS with ∆tt(M) = M⊗̂1 + 1⊗̂M
(one says that M is primitive). Then

I If S is once group-like, which means that
∆tt(S(z0)) = S(z0)⊗̂S(z0), 〈S(z0)|1X∗〉 for some z0 ∈ Ω
(Chen’s condition), then S is (always) group-like.

I If S is asymptotically group-like (means that it exists a
group-like element G (z) such that lim(S(z)G (z)) = 1) then S
is (always) group-like.



Unicity and the differential Galois group

If we have two solutions of the equation

S ′ = MS with ∆tt(M) = M⊗̂1 + 1⊗̂M (14)

they differ by a constant in the following way

Proposition

Let Si , i = 1, 2 be two solutions of eq. 14 and suppose that
〈S1(z0)|1X∗〉 6= 0 at some z0 ∈ Ω, then

1. 〈S1(z)|1X∗〉 6= 0 everywhere (so S can be inverted)

2. It exists G ∈ C〈〈X 〉〉 such that S2 = S1G

3. If, moreover, Si are group-like then so is G

So, one can legitimately call the group-like constant series, the
differential Galois group of the group-like solutions of eq. 14.



Condition of independence of the (coordinates of) the
solutions.

Theorem (D., Minh, Deneufchâtel (1))

Let (A, d) be a k-commutative associative differential algebra with
unit (ch(k) = 0) and C be a differential subfield of A (i.e.
d(C) ⊂ C). We suppose that S ∈ A〈〈X 〉〉 is a solution of the
differential equation

d(S) = MS ; 〈S |1〉 = 1 (15)

where the multiplier M is a homogeneous series (a polynomial in
the case of finite X ) of degree 1, i.e.

M =
∑
x∈X

uxx ∈ C〈〈X 〉〉 . (16)



Condition of independence of the (coordinates of) the
solutions (end of theorem).

Theorem (cont’d)

The following conditions are equivalent :

i) The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii) The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0) . (17)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(
(ux)x∈X

)
= {0} . (18)



Factorisation of group-like series
If a series T is group-like, the map T ⊗ Id is a continuous
morphism

A〈〈(X ∗ ⊗ X ∗)(iso)〉〉 → A〈〈X 〉〉

where (X ∗ ⊗ X ∗)(iso) is the monoid of isobaric bi-words (i.e.
(u, v)) with |u|x = |v |x for all x ∈ X ) and then we can apply it to
DX =

∑
w∈X∗ w ⊗ w and from the infinite product

(Schützenberger’s factorisation)

DX :=
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl) (19)

we get

T =
∑
w∈X∗

〈T |w〉w =

↘∏
l∈LynX

exp(〈T |Sl〉 ⊗ Pl) . (20)

The Lyndon words then constitute the labelling of a local system
of coordinates of the Hausdorff group.
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CONCLUSION



I Starting from the classical case of linear differential equations
with several singularities, we separated them and replaced the
multiplying matrices by noncommuting letters (it is afterwards
possible to re-specialise the letters to these matrices). We get
a noncommutative linear differential equation with multiplier.
Under certain tangency condition (the multiplier be primitive),
we get entirely group-like solutions, characterize the
(differential) Galois group of the equation and compute local
coordinates of them.

I Using special fields of functions, we could also give a necessary
and sufficient condition ensuring that the coordinates of the
solutions (i.e. the family of functions (z → 〈S |w〉)w∈X∗) be
linearly independant on enlarged fields of coefficients.

I The hope is to apply this formalism (which is equivalent to
that of Dyson, but much more tractable) to arithmetics and
physics.
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