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Tangent numbers

Taylor expansion of tanu:

tanu =
∑

n≥0

u2n+1

(2n+ 1)!
T2n+1

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 + · · ·

The coefficients T2n+1 (n ≥ 0) are called the tangent numbers
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Secant numbers

Taylor expansion of secu:

secu =
1

cosu
=

∑

n≥0

u2n

(2n)!
E2n

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·

The coefficients E2n (n ≥ 0) are called the secant numbers
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Alternating permutations

Désiré André’s (1879):

A permutation
σ = σ(1)σ(2) · · ·σ(n)

of 12 · · ·n with the property that

σ(1) > σ(2), σ(2) < σ(3), σ(3) > σ(4), etc.

in an alternating way is called alternating permutation.

Let An denote the set of all alternating permutations of 12 · · ·n.
Theorem:

#A2n−1 = T2n−1, #A2n = E2n.
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Tangent tree
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❆
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2n+ 1 vertices,

complete,

binary, rooted, planar, labeled, increasing

The set all off tangent trees : T2n+1.

#A2n+1 = #T2n+1 = T2n+1
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Secant tree

75 8
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2n vertices,

complete (execpt that the rightmost vertice is missing),

binary, rooted, planar, labeled, increasing

The set all off tangent trees : T2n.

#A2n = #T2n = E2n.
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Bijection
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6 1 5 4 8 2 7 3σ2 =

t2 =

Tangent, secant trees and alternating permutations
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Poupard statistics: eoc

Poupard (1989)

Let 1 = a1 → a2 → a3 → · · · → aj−1 → aj be the minimal
chain of a tree t ∈ Tn, the “end of the minimal chain” of t is
defined to be eoc(t) := aj .
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For example, the minimal chain of the tree t is 1 → 2 → 3 → 7,
so that eoc(t) = 7
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Poupard statistics: pom

If the leaf with the maximum label n is incident to a node
labeled k, define its “parent of the maximum leaf” to be
pom(t) := k.
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The parent of its maximum leaf (equal to n = 9) is pom(t) = 4
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5 secant trees with 4 vertices

3

4

1

2❅❅✟✟
✟❅
❅

4 1 3 2

4

3

1

2❅❅✟✟
✟❅
❅

3 1 4 2

2
4

1

3◗
◗
◗
◗◗

✟✟

4 2 3 1

2
3

1

4◗
◗
◗
◗◗

✟✟
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1

3❅❅✟✟
✟❅
❅

2 1 4 3

eoc = 3 4 3 3 2

pom = 1 2 2 2 3
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16 tangent trees with 5 vertices
There 16 tangent trees from T5. Only 4 of them (reduced trees)
are displayed, but each of them gives rise to three other tangent
trees, having the same “eoc” and “pom” statistics, by pivoting
each pair of subtrees.
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5 1 3 2 4

eoc = 2 4 3 3

pom = 3 2 2 1
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Equidistribution

Theorem.
The statistics “eoc−1” and “pom” are equidistributed on each
set Tn.

The tangent tree case was obtained by Poupard (1989). Her
original proof, not of combinatorial nature, makes use of a clever
finite difference analysis argument.

Our proof: Bijection inspired from the classical “jeu de taquin”
on directed acyclic graphs, (Schützenberger, 1972)
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Proof
Let 1 = a1 → a2 → a3 → · · · → aj−1 → aj be the minimal
chain of t.
(i) for i = 1, 2, . . . , j − 1 replace each node label ai of the
minimal chain by ai+1 − 1;
(ii) replace the node label aj by n;
(iii) replace each other node label b by b− 1.

1

23

45

6 7

89

1

32

54

9 6

78

eoc=6 pom=5
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Poupard numbers for tagent trees: gn(k)

gn(k) := #{t ∈ T2n−1 :pom(t) = k}
= #{t ∈ T2n−1 : eoc(t) = k + 1}

k = 1 2 3 4 5 6 7 Sum
n = 1 1 1 = T1

2 0 2 0 2 = T3

3 0 4 8 4 0 16 = T5

4 0 32 64 80 64 32 0 272 = T7

Theorem (Poupard, 1989).

1+
∑

n≥1

∑

1≤k≤2n+1

gn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!
=

cos(x− y)

cos(x+ y)
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Poupard numbers for secant trees: hn(k)

hn(k) := #{t ∈ T2n :pom(t) = k}
= #{t ∈ T2n : eoc(t) = k + 1}

k = 1 2 3 4 5 6 7 Sum
n = 1 1 1 = E2

2 1 3 1 5 = E4

3 5 15 21 15 5 61 = E6

4 61 183 285 327 285 183 61 1385 = E8

Theorem (Foata-H., 2013).

1+
∑

n≥1

∑

1≤k≤2n+1

hn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!
=

cos(x− y)

cos2(x+ y)
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Proof

Lemma.

Let Z(x, y) :=
∑

i≥0, j≥0

γi,j
xi

i!

yj

j!
satisfying the partial differen-

tial equation

∂2Z(x, y)

∂x ∂y
= 2Z(x, y) +

1

2

∂2Z(x, y)

∂x2
+

1

2

∂2Z(x, y)

∂y2
.

Then,

Z(x, y) = f(x+ y) sec(x+ y) cos(x− y)

for some formal power series in one variable f(x) = 1+
∑

n≥1

f2n
x2n

(2n)!
.
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Reduced tangent trees

We will work with the reduced tangent trees.

Recycle the notation:

T2n+1 :=
T2n+1

2n

fn(k) := #{t ∈ T2n+1 | pom(t) = k}
= #{t ∈ T2n+1 | eoc(t) = k + 1}
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gn(k) :

k = 1 2 3 4 5 6 7 Sum
n = 1 1 1 = T1

2 0 2 0 2 = T3

3 0 4 8 4 0 16 = T5

4 0 32 64 80 64 32 0 272 = T7

fn(k) = gn+1(k)/2
n :

k = 1 2 3 4 5 6 7 Sum
n = 0 1 1 = T1/2

0

1 0 1 0 1 = T3/2
1

2 0 1 2 1 0 4 = T5/2
2

3 0 4 8 10 8 4 0 34 = T7/2
3
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2D-Distribution on reduced tangent trees

fn(m, k) := #{t ∈ T2n+1 : eoc(t) = m, pom(t) = k}

Matrix
Mn := (fn(m, k))1≤m,k≤2n
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M1 :=

(

0 0
1 0

)

M2 =







0 0 0 0
0 0 1 0
1 1 0 0
0 1 0 0







M3=















0 0 0 0 0 0
0 0 1 2 1 0
1 1 0 4 2 0
2 3 4 0 1 0
1 3 3 1 0 0
0 1 2 1 0 0
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M4=























0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
4 4 0 16 20 16 8 0
8 12 16 0 28 20 10 0
10 18 24 28 0 16 8 0
8 18 24 24 16 0 4 0
4 12 18 18 12 4 0 0
0 4 8 10 8 4 0 0
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M5 =































0 0 0 0 0 0 0 0 0 0
0 0 34 68 94 104 94 68 34 0
34 34 0 136 188 208 188 136 68 0
68 102 136 0 274 296 262 188 94 0
94 162 222 274 0 352 296 208 104 0
104 198 276 330 352 0 274 188 94 0
94 198 282 330 330 274 0 136 68 0
68 162 240 282 276 222 136 0 34 0
34 102 162 198 198 162 102 34 0 0
0 34 68 94 104 94 68 34 0 0
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Guess’n’Prove
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Guess’n’Prove

M3 M4















0 0 0 0 0 0
0 0 1 2 1 0
1 1 0 4 2 0
2 3 4 0 1 0
1 3 3 1 0 0
0 1 2 1 0 0





































0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
4 4 0 16 20 16 8 0
8 12 16 0 28 20 10 0
10 18 24 28 0 16 8 0
8 18 24 24 16 0 4 0
4 12 18 18 12 4 0 0
0 4 8 10 8 4 0 0
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Guess’n’Prove

M3 M4















0 0 0 0 0 0
0 0 1 2 1 0
1 1 0 4 2 0
2 3 4 0 1 0
1 3 3 1 0 0
0 1 2 1 0 0





































0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
4 4 0 16 20 16 8 0
8 12 16 0 28 20 10 0
10 18 24 28 0 16 8 0
8 18 24 24 16 0 4 0
4 12 18 18 12 4 0 0
0 4 8 10 8 4 0 0
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Guess’n’Prove

M3 M4















0 0 0 0 0 0
0 0 1 2 1 0
1 1 0 4 2 0
2 3 4 0 1 0
1 3 3 1 0 0
0 1 2 1 0 0





































0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
4 4 0 16 20 16 8 0
8 12 16 0 28 20 10 0
10 18 24 28 0 16 8 0
8 18 24 24 16 0 4 0
4 12 18 18 12 4 0 0
0 4 8 10 8 4 0 0























∆
k

2fn(m, k) + 2 fn−1(m, k) = 0
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Difference operators

The partial difference operators ∆
m
, ∆

k
, act as follows on the

entries of the matrices Mn:

∆
m
fn(m, k) := fn(m+ 1, k)− fn(m, k);

∆
k
fn(m, k) := fn(m, k + 1)− fn(m, k).

Consider the following four triangles of each square {(m, k) :
1 ≤ m, k ≤ 2n}:

L(1)
n := {2 ≤ k + 1 ≤ m ≤ 2n− 2};

L(2)
n := {4 ≤ k + 3 ≤ m ≤ 2n};

U (1)
n := {2 ≤ m+ 1 ≤ k ≤ 2n− 2};

U (2)
n := {4 ≤ m+ 3 ≤ k ≤ 2n}.
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Fundamental relations

Theorem

∆
m

2fn(m, k) + 2 fn−1(m, k) = 0 ((m, k) ∈ L(1)
n );(R1)

∆
k

2fn(m, k) + 2 fn−1(m, k) = 0 ((m, k) ∈ U (1)
n ).(R2)

∆
m

2fn(m, k) + 2 fn−1(m, k − 2) = 0 ((k,m) ∈ U (2)
n );(R3)

∆
k

2fn(m, k) + 2 fn−1(m− 2, k) = 0 ((k,m) ∈ L(2)
n );(R4)
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Generating function: lower triangle

Theorem.

The triple exponential generating function for the lower trian-
gles of the matrices Mn is given by

∑

2≤k+1≤m≤2n

fn(m, k)
xm−k−1

(m− k − 1)!

yk−1

(k − 1)!

z2n−m

(2n−m)!

=
cos(

√
2x) + cos(

√
2 y) cos(

√
2 z)

2 cos2
(x+ y + z√

2

) .
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Generating function: upper triangle

Theorem

The triple exponential generating function for the upper trian-
gles of the matrices Mn is given by

∑

2≤m+1≤k≤2n−1

fn(m, k)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm−1

(m− 1)!

= sin(
√
2x) sin(

√
2 z)

1

2 cos2
(x+ y + z√

2

) .
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Symmetry property

Theorem

The matrices Mn are symmetric with respect to their counter-
diagonals:

fn(m, k) = fn(2n+ 1− k, 2n+ 1−m).
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Symmetry property
Theorem

The matrices Mn are symmetric with respect to their counter-
diagonals:

fn(m, k) = fn(2n+ 1− k, 2n+ 1−m).

Open problem: Find a direct proof:

1

23

45

6 7

89

1

32

54

9 6

78

eoc=6 (pom=3) (eoc=7) pom=5
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I strongly think that the fundamental relations are a miracle of
the tree structure.

Our proof is
• primitive,
• tedious,
• error-prone.

It would be interesting to
• find a “nice” short proof that explains the nature of the fun-
damental relations,
• develop an algebraic structure based on them (I think of Cox-
eter group, of the “121=212” relation:

(k, k+1)(k+1, k+2)(k, k+1) = (k+1, k+2)(k, k+1)(k+1, k+2)
... ),
• find a computer-assisted proof.
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Family of trees
• Subtrees (possibly leaves) are indicated by “©,” “▽”, “ .”

• The end of the minimal chain in each tree is represented by
a bullet “•.”
• Letters occurring below or next to subtrees are labels of their
roots.

Example 1.

��❅❅a
•m

b

designate the family of all trees t from the underlying set T2n+1

having a node labeled b [in short, a node b], parent of both a
subtree of root a and the leaf m, which is also the end of the
minimal chain;
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Example 2.

[
��❅❅a

•m

b
, c ]

designate the family of all trees t from the underlying set T2n+1

having a node labeled b [in short, a node b], parent of both a
subtree of root a and the leaf m, which is also the end of the
minimal chain;

moreover, the symbol on the right has the further property that
the node labeled c does not belong, either to the subtree of
root b, or to the path going from root 1 to b.

Notation. In the sequel, the letter “m” is always used to des-
ignate the end of the minimal chain, unless explicitly indicated
by a letter next to •.

35



Tree Calculus consists of two steps:

• decomposing the sets T2n+1,m,k into smaller subsets by con-
sidering the mutual positions of the nodes m, (m+1), (m+2)
(resp. k, (k + 1), (k + 2));

• setting up bijections between those subsets by a simple display
of certain subtrees. Example:

A :=
��❅

❅❅��
• ©

m

m+1

m+2

B :=
❅❅�
��❅❅

m+2
•

©

m m+1

To each pair (
m+2 ,

©) there correspond a unique tree from A
and a unique tree from B. This defines a bijection of A onto B.
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Proof of the fundamental relations

∆
k

2
T2n+1,m,k + 2T2n−1,m−2,k = 0, if (m, k) ∈ L(2)

n
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Proof.

T2n+1,m,k = [
��❅❅k+1

2n+1

k

©

,m] + [
��❅❅

2n+1

k

©

,m, k + 1]

+
��❅❅k+1

2n+1

k

•©
m

+ [
��❅❅

2n+1

k

•©
m

, k + 1]

:= A1 +A2 +A3 +A4,

meaning that each tree from T2n+1,m,k has one of the four
forms: either k+1 is incident to k, or not, and m is outside or
not the subtree of root k; furthermore, the leaf m is the end of
the minimal chain.
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T2n+1,m,k = A1 +A2 +A3 +A4

Replace k by k + 1:

T2n+1,m,k+1 = [
��❅

❅❅��
©

k+1

2n+1

k ,m] + [
��❅❅

2n+1

k+1

©

,m, k]

+
��❅

❅❅��

•©
m

k+1

2n+1

k + [
��❅❅

2n+1

k+1

•©
m

, k]

:= B1 +B2 +B3 +B4.
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A4 = [
��❅❅

2n+1

k

•©
m

, k + 1] B4 = [
��❅❅

2n+1

k+1

•©
m

, k]

Exercise: Which is bigger, A4 or B4 ?
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A4 = [
��❅❅

2n+1

k

•©
m

, k + 1] B4 = [
��❅❅

2n+1

k+1

•©
m

, k]

Answer: A4 is bigger.

Consider the subsets A′
4 :=

��❅
❅❅��

•©
m

k+1k

2n+1

of A4

The transposition (k, k+1) maps A4\A′
4 onto B4 in a bijective

manner.
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A2 = [
��❅❅

2n+1

k

©

,m, k + 1] B2 = [
��❅❅

2n+1

k+1

©

,m, k]

B′
2 :=

��❅
❅❅��

©

kk+1

2n+1
• m

subset of B2.

The transposition (k, k+1) maps A2 onto B2\B′
2 in a bijective

manner.
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Difference:
T2n+1,m,k+1 − T2n+1,m,k

= (B1 −A1) + (B2 −A2) + (B3 −A3) + (B4 −A4)

= (B1 −A1) + ((B2 −B′
2 −A2) +B′

2)

+ (B3 −A3) + (B4 − (A4 −A′
4)−A′

4)

= B1 −A1 +B′
2 +B3 −A3 −A′

4

= [
��❅

❅❅��
©

k+1

2n+1

k ,m] − [
��❅❅k+1

2n+1

k

©

,m] +
��❅

❅❅��
©

kk+1

2n+1
• m

+
��❅

❅❅��

•©
m

k+1

2n+1

k −
��❅❅k+1

2n+1

k

•©
m

−
��❅

❅❅��

•©
m

k+1k

2n+1
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T2n+1,m,k+1 − T2n+1,m,k = B1 −A1 +B′
2 +B3 −A3 −A′

4

Replace k by k + 1:

T2n+1,m,k+2 − T2n+1,m,k+1

= [
��❅

❅❅��
©

k+2

2n+1

k+1 ,m] − [
��❅❅k+2

2n+1

k+1

©

,m] +
��❅

❅❅��
©

k+1k+2

2n+1
• m

+
��❅

❅❅��

•©
m

k+2

2n+1

k+1 −
��❅❅k+2

2n+1

k+1

•©
m

−
��❅

❅❅��

•©
m

k+2k+1

2n+1

:= D1 − C1 +D′
2 +D3 − C3 − C ′

4.
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Difference of the difference :

∆
k

2
T2n+1,m,k

=
(

T2n+1,m,k+2 − T2n+1,m,k+1

)

−
(

T2n+1,m,k+1 − T2n+1,m,k

)

= D1 − C1 +D′
2 +D3 − C3 − C ′

4

−B1 +A1 −B′
2 −B3 +A3 +A′

4.

The further decompositions of the components of the previous
sum depend on the mutual positions of the nodes k, (k + 1),
(k + 2).
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First, evaluate the subsum: S1 := D1 − C1 −B1 +A1:

[
��❅

❅❅��
©

k+2

2n+1

k+1 , m] = [
��❅

❅❅��
©

k+2

2n+1

k+1 , m, k ] + [
��

��❅
❅❅

❅❅

��
©

k+2

2n+1

k+1
▽
k ,m]

D1 = D1,1 +D1,2;

[
��❅❅k+2

2n+1

k+1

©

, m] = [
��❅❅k+2

2n+1

k+1

©

, m, k ] + [
��❅

❅❅��
©

k+1

k+2
2n+1

k , m]

C1 = C1,1 + C1,2;
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[
��❅

❅❅��
©

k+1

2n+1

k , m] = [
��❅

❅❅��
©

k+1

2n+1

k , m, k + 2] + [
��❅

❅❅��
k+1

k+2
2n+1

k ,m]

+ [
��

��❅
❅❅

❅❅

��
© ▽

k+2
k+1

2n+1

k ,m] + [
��❅

❅❅��
k+1

2n+1

k

k+2

,m] + [
�
�
�❅❅

❅
❅❅�� k+2

k+1

2n+1
©

k

▽

,m]

B1 = B1,1 +B1,2

+B1,3 +B1,4 +B1,5;

[
��❅❅k+1

2n+1

k

©

, m] = [
��❅❅k+1

2n+1

k

©

, m, k + 2 ] + [
��❅

❅❅��
©

k+1

k+2

k

2n+1

,m]

A1 = A1,1 +A1,2.

47



D1,1 = [
��❅

❅❅��
©

k+2

2n+1

k+1 , m, k ] B1,1 = [
��❅

❅❅��
©

k+1

2n+1

k , m, k+2]

Also, let

D′
1,1 :=

��
��❅

❅❅

❅❅

��
©

k+2

2n+1

k+1
▽•

m

k

;

The permutation
(

k k+1 k+2
k+2 k k+1

)

maps D1,1 \D′
1,1 onto B1,1
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A1,1 = [
��❅❅k+1

2n+1

k

©

, m, k+2 ] C1,1 = [
��❅❅k+2

2n+1

k+1

©

, m, k ]

Also, let

C ′
1,1 :=

��❅
❅❅��

©
▽•

m

k+1

k+2
2n+1

k

.

The permutation
(

k k+1 k+2
k+2 k k+1

)

maps C1,1 \ C ′
1,1 onto A1,1.
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Evaluate S1

Hence, D1,1 = B1,1 +D′
1,1, C1,1 = A1,1 + C ′

1,1.
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Evaluate S1

Hence, D1,1 = B1,1 +D′
1,1, C1,1 = A1,1 + C ′

1,1.

Moreover,

D1,2 = 2B1,3, C1,2 = A1,2, B1,2 = B1,4, B1,3 = B1,5.
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Evaluate S1

Hence, D1,1 = B1,1 +D′
1,1, C1,1 = A1,1 + C ′

1,1.

Moreover,

D1,2 = 2B1,3, C1,2 = A1,2, B1,2 = B1,4, B1,3 = B1,5.

Altogether, S1 = D1−C1−B1+A1 = (B1,1+D′
1,1+2B1,3)−

(A1,1 + C ′
1,1 + A1,2) − (B1,1 + B1,2 + B1,3 + B1,2 + B1,3) +

(A1,1 +A1,2).
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Evaluate S1

Hence, D1,1 = B1,1 +D′
1,1, C1,1 = A1,1 + C ′

1,1.

Moreover,

D1,2 = 2B1,3, C1,2 = A1,2, B1,2 = B1,4, B1,3 = B1,5.

Altogether, S1 = D1−C1−B1+A1 = (B1,1+D′
1,1+2B1,3)−

(A1,1 + C ′
1,1 + A1,2) − (B1,1 + B1,2 + B1,3 + B1,2 + B1,3) +

(A1,1 +A1,2).

Thus,
S1 = −2B1,2 +D′

1,1 − C ′
1,1.
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Next, evaluate the sum S2 := D′
2+D3−C3−C ′

4−B′
2−B3+

A3 +A′
4

��❅
❅❅��

©

k+1k+2

2n+1
• m

= [
��❅

❅❅��
©

k+1k+2

2n+1
• m

, k] +
��❅

❅❅��
©

k+1k+2

2n+1

k

• m

D′
2 = D′

2,1 +D′
2,2

��❅
❅❅��

•©
m

k+2

2n+1

k+1 = [
��❅

❅❅��

•©
m

k+2

2n+1

k+1, k] +
��

��❅
❅❅

❅❅

��

•©
m

k+2

2n+1

k+1
▽

k

D3 = D3,1 +D3,2
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��❅❅k+2
2n+1

k+1

•©
m

= [
��❅❅k+2

2n+1

k+1

•©
m

, k] +
��❅

❅❅��

•©
m

k+1

k+2
2n+1

k

C3 = C3,1 + C3,2;

��❅
❅❅��

•©
m

k+2k+1

2n+1

= [
��❅

❅❅��

•©
m

k+2k+1

2n+1

, k] +
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k +
�
�
�❅❅

❅
❅❅��

•©
m

k+2
k+1

2n+1

k

▽

C ′
4 = C ′

4,1 + C ′
4,2 + C ′

4,3;
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��❅
❅❅��

©

kk+1

2n+1
• m

= [
��❅

❅❅��
©

kk+1

2n+1
• m

, k + 2] +
��❅

❅❅��
©

kk+1

k+2
2n+1

• m

+
�
�
�❅❅

❅
❅❅�� k

k+1

2n+1
© ▽•

m

k+2

B′
2 = B′

2,1 +B′
2,2 +B′

2,3;

��❅
❅❅��

•©
m

k+1

2n+1

k = [
��❅

❅❅��

•©
m

k+1

2n+1

k , k + 2] +
��❅

❅❅��

•©
m

k+1

k+2
2n+1

k +
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k +
�
�
�❅❅

❅
❅❅��

•©
m

k+2
k+1

2n+1

k

▽

B3 = B3,1 +B3,2 +B3,3 +B3,4;
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��❅❅k+1
2n+1

k

•©
m

= [
��❅❅k+1

2n+1

k

•©
m

, k + 2] +
��❅

❅❅��

•©
m

2n+1

k+1

k+2

k

A3 = A3,1 +A3,2;

��❅
❅❅��

•©
m

k+1k

2n+1

= [
��❅

❅❅��

•©
m

k+1k

2n+1

, k + 2] +
��❅

❅❅��

•©
m

k+1k

k+2
2n+1

+
�
�
�❅❅

❅
❅❅��

•©
m

k+1
k

2n+1 ▽
k+2

A′
4 = A′

4,1 +A′
4,2 +A′

4,3.
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Within the sum S2 there are numerous cancellations we now
describe.
(a) Components of the form [t, k] or [t, k + 2], where t is a

subtree, whose root is labeled. There are four of them: D3,1,
−C3,1, −B3,1, A3,1. Consider the subsets:

B3,1,1 :=
��

��❅
❅❅

❅❅

��

•©
m

k+1

2n+1

k
▽
k+2

; A3,1,1 :=
��❅

❅❅��

•©
m

k

k+1
2n+1

▽
k+2

;

of B3,1 and A3,1, respectively. The permutation
(

k k+1 k+2
k+2 k k+1

)

mapsD3,1 onto B3,1\B3,1,1 and C3,1 onto A3,1\A3,1,1. Hence,
D3,1−C3,1−B3,1+A3,1 = (B3,1−B3,1,1)− (A3,1−A3,1,1)−
B3,1 +A3,1 = −B3,1,1 +A3,1,1.
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(b) Components of the form [t, k] or [t, k+2], where t is a sub-

tree, whose root is not labeled. There are four of them: D′
2,1,

−C ′
4,1, −B′

2,1, A′
4,1. Again, the permutation

(

k k+1 k+2
k+2 k k+1

)

mapsD′
2,1 onto B

′
2,1, and C

′
4,1 onto A

′
4,1. Hence, D

′
2,1−B′

2,1 =
−C ′

4,1 +A′
4,1 = 0. Their sum vanish.

(c) Components represented by a tree t, whose root is unla-

beled. There are four of them: −B′
2,2, −B′

2,3, −A′
4,2, A

′
4,3.

As B′
2,2 = A′

4,2, the contribution of those components to S2 is
then −B′

2,3 +A′
4,3.
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(d) Components represented by a tree t, whose root is labeled.
There are nine of them: D′

2,2, D3,2, −C3,2, −C ′
4,2, −C ′

4,3

−B3,2, −B3,3, −B3,4, A3,2. By simply comparing the subtree
contents we have: D′

2,2 − C3,2 = −B3,2 + A3,2 = 0, D3,2 −
(C ′

4,3 +B3,4) = 0 and C ′
4,2 = B3,3. The contribution of those

terms is then −2C ′
4,2.

Hence, S1+S2 = (−2B1,2+D′
1,1−C ′

1,1)+
(

(−B3,1,1+A3,1,1)+

(−B′
2,3 + A′

4,3) + (−2C ′
4,2)

)

. As D′
1,1 = B′

2,3, C
′
1,1 = A3,1,1

and B3,1,1 = A′
4,3, we get

S1 + S2 = −2B1,2 − 2C ′
4,2
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S1 + S2 = −2B1,2 − 2C ′
4,2

∆
k

2
T2n+1,m,k = −2 [

��❅
❅❅��

k+1

k+2
2n+1

k ,m] − 2
��❅

❅❅��

•©
m

k+2

k+1

2n+1

k

= −2[
��❅❅2n−1
k

,m− 2] −2
��❅❅

•©m−2
2n−1

k

= −2T2n−1,m−2,k.
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Seidel Triangle Sequences

Infinite matrix A = (a(m, k))m,k≥0

Exponential generating functions

A(x, y) :=
∑

m,k≥0

a(m, k)
xm

m!

yk

k!
;

Am,•(y) :=
∑

k≥0

a(m, k)
yk

k!
;

A
•,k(x) :=

∑

m≥0

a(m, k)
xm

m!
;

for A itself, its m-th row, its k-th column.
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• A Seidel matrix A = (a(m, k)) (m, k ≥ 0) is defined to be
an infinite matrix, whose entries belong to some ring, and obey
the following relation holds:

a(m, k) = a(m− 1, k) + a(m− 1, k + 1).

• the sequence of the entries from the top row a(0, 0), a(0, 1),
a(0, 2), . . . is given; it is called the initial sequence;

• The leftmost column a(0, 0), a(1, 0), a(2, 0), . . . is called the
final sequence.

Theorem. Let A = (ai,j) (i, j ≥ 0) be a Seidel matrix. Then,

A
•,0(x) = exA0,•(x) and A(x, y) = exA0,•(x+ y).
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A sequence of square matrices (An) (n ≥ 1) is called a Seidel

triangle sequence if the following three conditions are fulfilled:

• each matrix An is of dimension n;

• each matrix An has null entries along and below its diagonal;
let (an(m, k) (0 ≤ m < k ≤ n − 1) denote its entries strictly
above its diagonal, so that

A1 = ( · ) ; A2 =

(

· a2(0, 1)
· ·

)

; A3 =





· a3(0, 1) a3(0, 2)
· · a3(1, 2)
· · ·



 ;
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An=
















· an(0, 1) an(0, 2) · · · an(0, n− 2) an(0, n− 1)
· · an(1, 2) · · · an(1, n− 2) an(1, n− 1)
...

...
...

. . .
...

...
· · · · · · an(n− 3, n− 2) an(n− 3, n− 1)
· · · · · · · an(n− 2, n− 1)
· · · · · · · ·

















;

the dots “·” along and below the diagonal referring to null en-
tries.

• for each n ≥ 2, the following relation holds:

an(m, k)− an(m, k + 1) = an−1(m, k) (m < k).
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Record the last columns of the triangles A2, A3, A4, A5, . . . ,
read from top to bottom, as counter-diagonals of an infinite
matrix H = (hi,j)i,j≥0, as shown next:

H :=



















0 1 2 3 4

0 a2(0, 1) a3(1, 2) a4(2, 3) a5(3, 4) a6(4, 5) · · ·
1 a3(0, 2) a4(1, 3) a5(2, 4) a6(3, 5)
2 a4(0, 3) a5(1, 4) a6(2, 5)
3 a5(0, 4) a6(1, 5)
4 a6(0, 5)

...



















In an equivalent manner, the entries of H are defined by:

hi,j = ai+j+2(j, i+ j + 1).
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Theorem.

The three-variable generating function for the Seidel triangle
sequence (An = (an(m, k)))n≥1 is equal to

∑

1≤m+1≤k≤n−1

an(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

= exH(x+ y, z).
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Generating functions for Poupard statistics

Take the matrices Mn with the following modifications:
(W1) delete the lower triangle;
(W2) divide by (−1)n2n−1 for each coefficient in Mn

(W3) replace Mn by W2n

W2 = − 1

20

(

0 0
0 0

)

W4 =
1

21







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
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W6=− 1

22















0 0 0 0 0 0
0 0 1 2 1 0
0 . 0 4 2 0
0 . . 0 1 0
0 0 0 0 0 0
0 . . . 0 0















W8=
1

23























0 0 0 0 0 0 0 0
0 0 4 8 10 8 4 0
0 . 0 16 20 16 8 0
0 . . 0 28 20 10 0
0 . . . 0 16 8 0
0 . . . . 0 4 0
0 0 0 0 0 0 0 0
0 . . . . . 0 0























;
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We have only the even-part of the sequence. However, we can
define odd W2n−1 such that (Wn) is a Seidel triangle sequence:

M3 =
1

21





0 0 0
0 0 1
0 0 0





W5=− 1

22











0 . . 0 0
0 0 −1 1 1
0 . 0 2 2
0 . . 0 1
0 . . 0 0











;
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W7=
1

23



















0 . . . . 0 0
0 0 −4 −2 2 4 4
0 . 0 −4 4 8 8
0 . . 0 8 10 10
0 . . . 0 8 8
0 . . . . 0 4
0 . . . . 0 0



















;

W9 = − 1

24



























0 . . . . . . 0 0
0 0 −34 −26 −10 10 26 34 34
0 . 0 −52 −20 20 52 68 68
0 . . 0 −22 34 74 94 94
0 . . . 0 56 88 104 104
0 . . . . 0 86 94 94
0 . . . . . 0 68 68
0 . . . . . . 0 34
0 . . . . . . 0 0
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The infinite matrix H is equal to

H =





















0 1
2 0 − 1

22 0 4
23

0 0 − 2
22 0 8

23

0 − 1
22 0 10

23

0 0 8
23

0 4
23

0
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By the generating function for the 1D Poupard statistics:

H(x, y) =
∂

∂x

cos(xI/2− yI/2)

cos(xI/2 + yI/2)
=

−I sin(yI)

1 + cos(xI + yI)
.

So that the generating function for the 2D Poupard statistics
Wn is

Ω(x, y, z) = exH(x+ y, z) =
−Iex sin(zI)

1 + cos(xI + yI + zI)
.

The real part of Ω(xI, yI, zI) is equal to

sin(x) sin(z)

1 + cos(x+ y + z)
=

sin(x) sin(z)

2 cos2((x+ y + z)/2)
.
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Secant trees

hn(m, k) := #{t ∈ T2n : eoc(t) = m and pom(t) = k}.

M2 =

k = 1 h1(m, .)

m = 2 1 1

h1(., k) 1 E2 = 1

M4 =

k = 1 2 3 h2(m, .)

m = 2 . . 1 1

3 1 2 . 3

4 . 1 . 1

h2(., k) 1 3 1 E4 = 5
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M6 =

k = 1 2 3 4 5 h3(m, .)

m = 2 . . 1 3 1 5

3 1 2 . 9 3 15

4 3 7 10 . 1 21

5 1 4 8 2 . 15

6 . 2 2 1 . 5

h3(., k) 5 15 21 15 5 E6 = 61
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M8 =

k = 1 2 3 4 5 6 7 h4(m, .)

m = 2 . . 5 15 21 15 5 61

3 5 10 . 45 63 45 15 183

4 15 35 50 . 101 63 21 285

5 21 54 86 106 . 45 15 327

6 15 46 82 87 50 . 5 285

7 5 22 46 60 40 10 . 183

8 . 16 16 14 10 5 . 61

h4(., k) 61 183 285 327 285 183 61 E8 = 1385
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Fundamental recurrences for secant trees
Theorem.

The finite difference equation systems hold:

∆
m

2hn(m, k) + 4hn−1(m, k − 2) = 0

(2 ≤ m ≤ k − 3 < k ≤ 2n− 1);

∆
k

2hn(m, k) + 4hn−1(m, k) = 0

(2 ≤ m ≤ k − 1 < k ≤ 2n− 3).

Proof.
Secant Tree calculus (more complicate than tangent tree be-
cause the missing vertice ).
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Generating function for secant trees

Theorem.

The triple exponential generating function for the upper trian-
gles of the matrices (hn(m, k)) is given by

∑

2≤m<k≤2n−1

hn(m, k)
x2n−k−1

(2n− k − 1)!

yk−m−1

(k −m− 1)!

zm−2

(m− 2)!

=
cos(2y) + 2 cos(2(x− z))− cos(2(z + x))

2 cos3(x+ y + z)
.

Remark. No formula for the lower triangles {hn(m, k) : 1 ≤
k < m ≤ 2n}
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Other subsets of trees

André Permutation
André Tree
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Thank you!
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