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Tangent numbers

Taylor expansion of tan u:
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The coefficients T5, 11 (n > 0) are called the tangent numbers



Secant numbers

Taylor expansion of sec u:
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The coefficients F5,, (n > 0) are called the secant numbers



Alternating permutations
Désiré André’'s (1879):

A permutation
oc=o0(1)o(2)---0(n)

of 12---n with the property that
o(l) > 0(2), 0(2) <0a(3), o(3) > c(4), etc.

in an alternating way is called alternating permutation.

Let 2I,, denote the set of all alternating permutations of 12 - -

Theorem:

#H2Aon_1 = Topn_1, #2o, = Eay,.

M.



Tangent tree

2n + 1 vertices,
complete,

binary, rooted, planar, labeled, increasing

The set all off tangent trees : %o, 1 1.
#Aon11 = #Lon+1 = Tont1



Secant tree

2n vertices,
complete (execpt that the rightmost vertice is missing),

binary, rooted, planar, labeled, increasing

The set all off tangent trees : ‘%5,.

#o, = #%9, = Loy



Bijection

ocr=6 1 5 4 7 2 3 oo=6 1 5 4 8 2 7 3

Tangent, secant trees and alternating permutations



Poupard statistics: eoc

Poupard (1989)

Let 1 = a; — a2 = a3 — -+ — a;—1 — a; be the minimal
chain of a tree t € %,,, the “end of the minimal chain” of t is
defined to be eoc(t) := a;.

For example, the minimal chain of thetreetisl — 2 — 3 — 7,
so that eoc(t) =7



Poupard statistics: pom

If the leaf with the maximum label n is incident to a node
labeled k, define its “parent of the maximum leaf” to be
pom(t) := k.

The parent of its maximum leaf (equal to n = 9) is pom(t) = 4



5 secant trees with 4 vertices

3 4 4
4 3 4 3 3 4 2
2 2 21 21 3
1 1 1

41 3 2 3 142 4231 3 2 41 2 1 4 3

coc= 3 4
pom = 1 2 2 2



16 tangent trees with 5 vertices

There 16 tangent trees from T5. Only 4 of them (reduced trees)
are displayed, but each of them gives rise to three other tangent
trees, having the same “eoc” and “pom’ statistics, by pivoting
each pair of subtrees.

4 D 4 D 3 D 3 D
2 3 4 D
3 2 2 2
1 1 1 1

21 4 3 5 31425 413 25 51 3 2 4

eoc = 2 4 3 3

pom = 3 2



Equidistribution

Theorem.
The statistics “eoc —1" and “pom’" are equidistributed on each
set °T,,.

The tangent tree case was obtained by Poupard (1989). Her
original proof, not of combinatorial nature, makes use of a clever
finite difference analysis argument.

Our proof: Bijection inspired from the classical “jeu de taquin”
on directed acyclic graphs, (Schitzenberger, 1972)



Proof

Let 1 = ap —» Qa2 — a3z —7 - —7 A1 — Q; be the minimal
chain of ¢.

(i) for « = 1,2,...,7 — 1 replace each node label a; of the
minimal chain by a;11 — 1;

(i) replace the node label a; by n;

(iii) replace each other node label b by b — 1.




Poupard numbers for tagent trees: g, (k)

Gn(k) == #{t € Tap_1:pom(t) = k}
= #{t € Typ_q:eoc(t) = k + 1}

k = 1 2 3 4 5 6 7 |Sum
n=1 1 1 =13
2 0 2 0 2 =13
3 0O 4 &8 4 0 16 =15
4 0 32 64 80 64 32 0 272 =17

Theorem (Poupard, 1989).

xQn—l—l—k k—1

1+ >, gnma(k) Gn 1k (,3_ 0~ cost — v)

n>11<k<2n4+1 cos( + y)



Poupard numbers for secant trees: h, (k)

hn(k) := #{t € To, :pom(t) = k}
= #{t € Ty :eoc(t) =k + 1}
k = 1 2 3 4 5 6 7 | Sum
n=1 | 1 1 = &,
2 1 3 1 5! Ey
3 b 15 21 15 5 61 Ee
4 61 183 285 327 285 183 61 |1385 = Ejg
Theorem (Foata-H., 2013).
p2nti=k gk cos(x — y)
1 B (k _
+Z: §: *”C%m+¢—kﬂ%—1ﬂ cos?(z + y)

n>11<k<2n+1




Proof

Lemma.
Let Z(x,y) Z 71]—'— satlsfylng the partial differen-
1>0,9>0
tial equation
07 (x, 10%Z(x, 10°Z(x,
( y)zzz@y”_ (@.y) | (2, y)

2 Ox? 2 Oy2

Z(z,y) = f(x +y)sec(z +y) cos(x — y)

2n

for some formal power series in one variable f(xz) = 14+ Y fo, ﬁ
n>1 2n)!



Reduced tangent trees

We will work with the reduced tangent trees.

Recycle the notation:

fr(k) == #{t € Top+1 | pom(t) = k}
= #{t € To,11 | eoc(t) =k + 1}



k = 1 2 3 4 5 7 | Sum
n=1 1 1 =T1Tj
2 0 2 0 2 15
3 0O 4 &8 4 0 16 Tx
4 0 32 64 80 64 32 0 272 =1T%
fru(k) = gni1(k)/2
k = 1 2 3 4 5 Sum
n=~0 1 1 = T1/20
1 0 1 0 1 =1T3/2!
2 01 2 1 0 4 =T5/2°
3 0 4 8 10 8 34 =1T5/2°




2D-Distribution on reduced tangent trees

fo(m, k) := #{t € To,11 : eoc(t) = m, pom(t) =k}

Matrix
Mn = (fn(m7 k))lgm,k§2n
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Guess'n'Prove
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Difference operators

The partial difference operators A % act as follows on the
entries of the matrices M,,:

%fn(ma k)= fa(m+1,k) — fn(m, k);
A fu(m, k) = fo(m, k+1) = fo(m, k).

Consider the following four triangles of each square {(m,k) :
1 <m,k<2n}:

L,fll) ={2<k+1<m<2n-—2}
L@ :={4<k+3<m<2n);
UV :={2<m+1<k<2n—2}
U7§2) ={4<m+3<k<2n}.



Fundamental relations

Theorem

(R1) A*fu(m, k) +2 fuo1(m,k) =0 ((m,k) € LiV);
(R2) A?fn(m. k) +2 foi(m k) =0 ((m,k) € UD),

(R3) A*fu(m, k) +2 far(m,k—2)=0  ((k;m) € UP);
(R4) A fu(m. k) +2 fua(m—2.k) =0  ((k,;m) € L)



Generating function: lower triangle
Theorem.

The triple exponential generating function for the lower trian-
gles of the matrices M, is given by

m—k—1 yk—l ZZn—m

Z fn(m, k) (m—Fk—1!(k—1)!(2n —m)!

2<k+1<m<2n

cos(vV2x) + cos(vV2y) cos(v2 z)

26082(33+y+z)
V2




Generating function: upper triangle
Theorem

The triple exponential generating function for the upper trian-
gles of the matrices M, is given by

xZn—k yk—m—l Zm—l

2 Jnlms B) G 1 T —m = 1)1 (m = 1!

2<m+1<k<2n-—1

1

26082(:1:+y—|—z)'
V2

= sin(v2 ) sin(v/2 2)




Symmetry property
Theorem

The matrices M,, are symmetric with respect to their counter-
diagonals:

fo(m, k) = fr2n+1—k,2n+1—m).



Symmetry property
Theorem

The matrices M,, are symmetric with respect to their counter-
diagonals:

fa(m, k) = fr(2n+1—Fk,2n+1—m).

Open problem: Find a direct proof:

eoc=6 (pom=3)



| strongly think that the fundamental relations are a miracle of
the tree structure.

Our proof is
e primitive,

e tedious,

® error-prone.

It would be interesting to

e find a “nice” short proof that explains the nature of the fun-
damental relations,

e develop an algebraic structure based on them (I think of Cox-
eter group, of the “121=212" relation:

(k, k+1) (k+1, k+2) (k, k+1) = (k+1, k+2)(k, k+1)(k+1, k+2)
),

e find a computer-assisted proof.



Family of trees
e Subtrees (possibly leaves) are indicated by “Q),” "V, *“

e The end of the minimal chain in each tree is represented by
a bullet “o.”

e Letters occurring below or next to subtrees are labels of their
roots.

Example 1.

Y
designate the family of all trees ¢t from the underlying set To,,1 4
having a node labeled b [in short, a node b], parent of both a

subtree of root a and the leaf m, which is also the end of the
minimal chain;



Example 2.

| a\b/m,c]

designate the family of all trees ¢t from the underlying set To,,1 4
having a node labeled b [in short, a node b], parent of both a
subtree of root a and the leaf m, which is also the end of the
minimal chain;

moreover, the symbol on the right has the further property that
the node labeled ¢ does not belong, either to the subtree of
root b, or to the path going from root 1 to b.

Notation. In the sequel, the letter “m" is always used to des-
ignate the end of the minimal chain, unless explicitly indicated
by a letter next to e.



Tree Calculus consists of two steps:

e decomposing the sets To,, 11 m.k Into smaller subsets by con-
sidering the mutual positions of the nodes m, (m—+1), (m+ 2)

(resp. k, (k+1), (k+2));

e setting up bijections between those subsets by a simple display
of certain subtrees. Example:

To each pair (m+2,Q) there correspond a unique tree from A
and a unique tree from B. This defines a bijection of A onto B.



Proof of the fundamental relations

%2 Tonttmi +2Ton—1mor =0, if (m,k) € LZ



Proof.

2n—+1 2n—+1
k-+1
k
Tont1mk = | , M| m, k+1

m m

2n—+1 2n—+1
k-+1
k

= Ay + Ay + Az + Ay,

meaning that each tree from %9, 41, 1 has one of the four
forms: either k + 1 is incident to k, or not, and m is outside or
not the subtree of root k: furthermore, the leaf m i1s the end of

the minimal chain.



Lont1mik = A1 +As + A3+ Ay

Replace k£ by k + 1:

2n—+1
k+1
I L k
2n+1,m,k+1 — [ 7m] +

m
2n—+1

k+1
k

+ +

= B1 + B2 + B3 + By.



m m

Q/Qn—l—l %/272,4—1
A k k+1
4 = [ , k+ 1] By = [ ; k]

Exercise: Which is bigger, A4 or By 7



m m

%/271—1—1 Q/Qn—i—l
Ag=1 1" k+1] By=[ "7 ]

)

Answer: A, is bigger.

2n—+1

Consider the subsets A} := of Ay

The transposition (k, k+1) maps A4\ A} onto By in a bijective
manner.



B = subset of Bs.

The transposition (k, k+1) maps A5 onto B\ Bj in a bijective
manner.



Difference:
Zén+1m%k+1__zén+1m%k

= (B1 — A1) + (B2 — A2) + (B3 — A3) + (Bs — A4)

= (B1 — A1) + ((B2 — By — A2) + By)

+(Bs — A3) + (Bs — (As — A}) — A})

= B; — A1+ B, + Bs — A3 — A}

2n—+1

Czw//2n+1
k-+1 k-+1

k

:[ " 7m] - [ 7m]

™m

2n—+1 m

2n—+1
k-+1 k-+1
L k
+ _ _

k+1

2n—+1

2n—+1

+1



Tontlmk+1 — Ton+1mk = B1 — A1 + By + By — A3 — A

Replace k£ by k£ + 1:

Lon+1,m k+2 — Lon+1,m k+1

2n-+1 2n-+1
2n—+1
k-+2 k-+2 k-2 +1
_ k+1 k-+1
— [ ’ m] - [ ) m] T
m m
2n—+1 m 2n—+1
2n—+1
k-+2 k-2 k-+1 +2
4 k+1 k+1 B

Z:Dl—Cl—I—D/Q—I—Dg—Cg—Ci.



Difference of the difference :

2
% ‘ZZn—Fl,m,k

(Tont1,mk+2 — Tontt,mkt1) — (Fontt,mkt1 — Fonttm.k)
ZDl—Cl—I—D,Q—I—Dg—Cg—CL’L
— By + Ay — B, — B3+ A3 + Al.

The further decompositions of the components of the previous

sum depend on the mutual positions of the nodes k, (k + 1),
(k+2).



First, evaluate the subsum: S| := Dy — C7 — By + Aq:

2n—+1 2n—+1

k42 k42




k+




Also, let

/ °
1,1 -

k k+1 k42

The permutation (k+2 ko ket

) maps Dy 1 \ D}, onto By



Also, let 2n+1m
k42
\Vad
k+1 %
r.
01,1 =

k' k+1 k+2

The permutation (k+2 b kg

) maps Cy,1 \ C1, onto Ay ;.



Evaluate s,

Hence, Dl,l — Bl,l —+ D,l,l' Cl,l = A1’1 —+ Ci,l'



Evaluate s,

/ /
Hence, D11 =B11+ D14, Cip=411+C1 5.
Moreover,

Di9=2B13, Cia==A12, Bi2=DB14, Bi3= DBi5.



Evaluate s,

Hence, Dl,l — Bl,l —+ D,l,l' Cl,l = A1’1 —+ Ci,l'
Moreover,
Dio=2B13, Cioa==A12 Bi2=D14, Bi3=DB5.

Altogether, S; = D1 —C1 —B1+A; = (B11+D} 1 +2 DB 3) -
(A11+C1 1+ A12) — (Bi1+ B2+ Biz+ Bia+ Bi3g) +
(A11+ Ai2).



Evaluate s,

Hence, Dl,l — Bl,l —+ D,l,l' Cl,l = A1’1 —+ Ci,l'

Moreover,
Dio=2B13, Cioa==A12 Bi2=D14, Bi3=DB5.

Altogether, S; = D1 —C1 —B1+A; = (B11+D} 1 +2 DB 3) -
(A11+C1 1+ A12) — (Bi1+ B2+ Biz+ Bia+ Bi3g) +
(A11+ Ai2).

Thus,



Next, evaluate the sum Sy := D5+ D3 —C3—C), — B, — B3 +
Az + A

D, =
m

2n-+1
k-+2

k+1 L




m m 2n—+1
k+2
2n—+1 2n-+1
k+2 k+2 k+1
k-+1 k-+1 L
— [ 9 k] T
C3 =C3 1+ Cs9;
m m m
2n—+1 2n—+1
k+1 +2 k+1 +2 k+1
— [ 9 k] +

Cy=Cy1+Cuo+Cla;



k+1

k+1




2n—+1

+1

A




Within the sum S5 there are numerous cancellations we now
describe.

(a) Components of the form [t, k] or [t,k + 2|, where t is a
subtree, whose root is labeled. There are four of them: Dj 1,
—C31, —Bs 1, A%l. Consider the subsets:

on41 S
bt T 2n—+1
\
k-2 k k-+2

Bs11:= ; Az = 3

of B3 1 and Ajz ;, respectively. The permutation (:JFQ Ifrl ::12)

maps D3 1 onto B3 1\B3.1.1 and C5 1 onto A3 1\ A31,1. Hence,
D31 —C31—Bs1+A31 =(Bs1—Bs11)—(As1—A31.1)—



(b) Components of the form [t, k] or [t, k42|, wheret is a sub-

tree, whose root is not labeled. There are four of them: D5 4,

—Ch1, —Bs 1, A} 1. Again, the permutation (,fJFQiH ,filz)

maps D5, , onto BS 1, and C} ; onto A/, ;. Hence, D} {—B} | =
—C% 1+ A ; = 0. Their sum vanish.

(c) Components represented by a tree t, whose root is unla-
beled. There are four of them: —B5,, —Bs3, —A),, A} 3.
As Bj 5, = Aj 5, the contribution of those components to S5 is
then —Bj 5 + A} 5.



(d) Components represented by a tree t, whose root is labeled.
There are nine of them: Dj,, D3a, —C32, —Cy,, —C 3
—B3 2, —B3 3, —Bs 4, A3 2. By simply comparing the subtree
contents we have: D’272 —C39 = —B3o+ A32 =0, D3y —
(Cis+ B3a)=0and Cj 5 = Bs 3. The contribution of those
terms is then —2C7 ,.

Hence, S1+52 = (=2 By o+D} 1 —Cf 1)+ ((—Bs,1,1+As31.1)+
(_Bé,s + AZL,?)) + (=2 CA/L,Q))' As /1,1 — Bé,sv 01,1 = A3
and 33’1,1 = AZL,S' we get

S1+ 5 = -2 Bljg — 204/1,2



S1+ 59 = -2 Bl’g — 204/1’2

2n—+1 2n—+1
k-+2

k+2
k+1 k+1
2 k k
4% zén+1m%k::'_2[ 7”” — 2

m—2
%/2711
2n—1
= 2 Fm—2] =2 "

= —2%n-1m-2k U




Seidel Triangle Sequences

Infinite matrix A = (a(m, k))m k>0

Exponential generating functions

m yk
A(iC, y) — mzkgoa(ma k)ﬁﬁa
- k
Ama(y) =Y alm, k) 5
k>0
A, k(x) = mz;oa(m, k)%,

for A itself, its m-th row, its k-th column.



e A Seidel matrix A = (a(m,k)) (m,k > 0) is defined to be
an infinite matrix, whose entries belong to some ring, and obey
the following relation holds:

a(m,k) =a(m—1,k)+a(m—1,k+1).

e the sequence of the entries from the top row a(0,0), a(0,1),
a(0,2), ... is given; it is called the initial sequence;

e The leftmost column a(0,0), a(1,0), a(2,0), ... is called the
final sequence.

Theorem. Let A = (a; ;) (¢,7 > 0) be a Seidel matrix. Then,

A, o(x) =€e"Ap.(x) and A(x,y)=e"Ap.(x+y).



A sequence of square matrices (A,) (n > 1) is called a Seidel
triangle sequence if the following three conditions are fulfilled:

e each matrix A,, is of dimension n;

e each matrix A,, has null entries along and below its diagonal;
let (an(m, k) (0 < m < k < n—1) denote its entries strictly
above its diagonal, so that



an(0,1) ay,(0,2) an(0,n —2) an(0,n —1) \
: an(1,2) an(l,n —2) an(l,n—1)
an(n—3,n—2) ap(n—3,n—1)
: an(n—Q,n—l))
the dots “-" along and below the diagonal referring to null en-
tries.

e for each n > 2, the following relation holds:

an(m,k) —ap(m,k+1)=a,_1(m,k) (m <k).



Record the last columns of the triangles Ay, As, A4, A5, ...,
read from top to bottom, as counter-diagonals of an infinite
matrix H = (h; ;)i j>0, as shown next:

0 1 2 3 4
0 (CLZ (07 1) a3(17 2) a4(27 3) CL5(3, 4) ae (47 5)
1 CL3(O,2) CL4(1,3) a’5(274) a6(375)
2| a4(0,3) a5(1,4) ag(2,5)
H = 3 CL5(O, 4) a6(17 5)
4 a6(07 5)

In an equivalent manner, the entries of H are defined by:

hij = Givjr2(J,1+7+1).




Theorem.

The three-variable generating function for the Seidel triangle
sequence (A, = (an(m, k)))n>1 is equal to

n—k—1 yk—m—l UL

2 SAULL ey i s Ap——

1<m—+1<k<n—1

=e"H(zx +y, 2).



Generating functions for Poupard statistics

Take the matrices M,, with the following modifications:
(W1) delete the lower triangle;

(W2) divide by (—1)"2"~! for each coefficient in M,
(W3) replace M,, by Wy,

1 (0 0
WQ__E<0 0)

S
|
o O O O
o O O O
oS O~ O
o O O O



0O 0 0 0 0 0
0 0 1 2 1 O

[

o O

AN

< O

0/

0O 0 0 0 0 O
0

\0

)

— —~~
SO0 O OO
O < wS oo
cw & L oo
S288c .o
o w S o e
o< O . O
o o . O
SO0 OO
~— _



We have only the even-part of the sequence. However, we can
define odd W5,, 1 such that (W,,) is a Seidel triangle sequence:

1 0 0 O
Mg—ﬁ 0 0 1
0 0 O

0 . 0 0

1 0O 0 -1 1 1

Wi o2 0 0 2 21 ;
0 0 1
0 0 O)



0 —4
0

—2
—4

0 —34 —-26 -—10

0

—5H2
0

—20
—22
0

S OO0 = DN -

10
20
34
56

26
H2
74
88
86
0

0 0
34 34
68 68
94 94

104 104
94 94
68 68

0 34

0 0



The infinite matrix H is equal to

1 1 4
0 0 -2 0 %
a0 % 0 3
0 0 X
0 &
\0 )



By the generating function for the 1D Poupard statistics:

H(x.y) — 0 cos(xl/2—yl/2) —Isin(yl)
©I = B cos(xl/2+yl/2) 1+ cos(zl +yl)

So that the generating function for the 2D Poupard statistics
W, is

—Ie® sin(z[)
0 =e'H - |
(I,y,Z) € (SIZ"|‘y72> 1‘|—COS($I‘|‘yI+ZI)

The real part of Q(xI,yl, 1) is equal to

sin(x) sin(z) _ sin(x) sin(z)
l+cos(z+y+2z) 2cos?2((x+y+2)/2)




Secant trees

ho(m, k) := #{t € To,,:eoc(t) = m and pom(t) = k}.

k=|1 2 3|ha(m,.)
m=2. .1 1
311 2 3
41 . 1 . 1
ho(.,k)|1 3 1| Ey4=5




A~
- Ne)
0 — 10

/W\ 0 = N ]
™ Ne)
< L3
0| — M — Yo
<t | O * N LO)
o

o | — o o0 —
— o\

N N D~ <t Yo
L

— — N — Yoo
o Yo —~

| ~ o
< | |l o
N——"

™

<

Mg =




I

3
O g O Ot = W N
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1 2 3 4 5 6 7| haim,.)
: : 5 15 21 15 5 61
5 10 .45 63 45 15 183
15 35 50 . 101 63 21 285
21 54 86 106 .45 15 327
15 46 82 &7 50 . D 289
5 22 46 60 40 10 . 183
. 16 16 14 10 5 . 61
61 183 285 327 285 183 61 |kg = 1385




Fundamental recurrences for secant trees
Theorem.

The finite difference equation systems hold:
A?hy,(m, k) +4hp_1(m,k—2)=0

2<m<k—-3<k<2n-1);

%%n(m, k) +4hy,_1(m,k)=0

2<m<k—-1<k<2n-23).

Proof.
Secant Tree calculus (more complicate than tangent tree be-
cause the missing vertice ).



Generating function for secant trees
Theorem.

The triple exponential generating function for the upper trian-
gles of the matrices (h,(m,k)) is given by

2n—k—1 k—m—1 m—2

L Y 2
hop(m, k)
2<m<z/€;2n—1 2n—k-1)!(k—m—-1)! (m—2)!

cos(2y) + 2 cos(2(x — z)) — cos(2(z + x))
2 cos?(x +y + 2) '

Remark. No formula for the lower triangles {h,(m,k) : 1 <
k<m<2n}



Other subsets of trees

André Permutation
André Tree
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