On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin Partitions

Nonnestin; Partitions

Tamari Lattices

Outlook

Tamari Lattices for Parabolic Quotients of the Symmetric Group

Henri Mühle¹ and Nathan Williams²

¹LIAFA (Université Paris Diderot) ²LaCIM (Université du Québéc à Montréal)

March 23, 2015

Catalan Objects

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossing Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- **Catalan numbers**: $\operatorname{Cat}(n) = \frac{1}{n+1} \binom{2n}{n}$
- Catalan objects:
 - 231-avoiding permutations of [n]
 - triangulations of a (n+2)-gon
 - noncrossing set partitions of [n]
 - nonnesting set partitions of [n]
 - ...
- they are robust enough to be generalized to all Coxeter groups
 - via the factorization $Cat(n) = \prod_{i=1}^{n-1} \frac{n+i+1}{i+1}$

Catalan Objects

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossing Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- **Catalan numbers**: $\operatorname{Cat}(n) = \frac{1}{n+1} \binom{2n}{n}$
- Catalan objects:
 - 231-avoiding permutations of [n]
 - triangulations of a (n+2)-gon
 - noncrossing set partitions of [n]
 - nonnesting set partitions of [n]
 - ...
- they are robust enough to be generalized to all Coxeter groups
 - via the factorization $\operatorname{Cat}(n) = \prod_{i=1}^{n-1} \frac{n+i+1}{i+1}$

Coxeter-Catalan Objects

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Ocxeter-Catalan numbers: Cat(W) = ∏ⁿ_{i=1} d_{n+d_i}/d_i
Coxeter-Catalan objects:

- sortable elements of W
- W-clusters
- noncrossing *W*-partitions
- order ideals in the root poset of W

• ...

- are they robust enough to survive further generalizations?
 - not in general, but possibly for the "coincidental groups" *A*_n, *B*_n, *I*₂(*k*), *H*₃

Coxeter-Catalan Objects

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Ocxeter-Catalan numbers: Cat(W) = ∏ⁿ_{i=1} d_{n+d_i}/d_i
Coxeter-Catalan objects:

- sortable elements of W
- W-clusters
- noncrossing *W*-partitions
- order ideals in the root poset of W
- ...
- are they robust enough to survive further generalizations? to parabolic quotients?
 - not in general, but possibly for the "coincidental groups" *A*_n, *B*_n, *I*₂(*k*), *H*₃

Coxeter-Catalan Objects

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Ocxeter-Catalan numbers: Cat(W) = ∏ⁿ_{i=1} d_{n+d_i}/d_i
Coxeter-Catalan objects:

- sortable elements of W
- W-clusters
- noncrossing *W*-partitions
- order ideals in the root poset of W

• ...

- are they robust enough to survive further generalizations? to parabolic quotients?
 - not in general, but possibly for the "coincidental groups" *A*_n, *B*_n, *I*₂(*k*), *H*₃

Parabolic Coxeter-Catalan Combinatorics

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossin; Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- define parabolic Coxeter-Catalan objects
 - parabolic Coxeter-Catalan numbers?
 - bijections?
 - we start with

Parabolic Coxeter-Catalan Combinatorics

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossinį Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- define parabolic Coxeter-Catalan objects
 - parabolic Coxeter-Catalan numbers?
 - bijections?
- we start with type *A*

Parabolic Coxeter-Catalan Combinatorics

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossinį Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- define parabolic Coxeter-Catalan objects
 - parabolic Coxeter-Catalan numbers?
 - bijections?
- we start with the symmetric group

The Symmetric Group \mathfrak{S}_n

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossinį Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- symmetric group \mathfrak{S}_n : group of permutations of [n]
- generators: $s_i = (i i+1), i \in [n-1]$
- $S = \{s_1, s_2, \dots, s_{n-1}\}$
- inversion set: $inv(w) = \{(i,j) \mid i < j, w_i > w_j\}$

Parabolic Quotients of \mathfrak{S}_n

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

Motivation

- 231-Avoiding Permutations
- Noncrossing Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

• (standard) parabolic subgroup: subgroup $(\mathfrak{S}_n)_J$ generated by $J \subseteq S$

• (standard) parabolic quotient: $\mathfrak{S}_n^J = \{ w \in \mathfrak{S}_n \mid \operatorname{inv}(w) \subsetneq \operatorname{inv}(ws) \text{ for all } s \in J \}$

Parabolic Quotients of \mathfrak{S}_n

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

- 231-Avoiding Permutations
- Noncrossin Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- $J = S \setminus \{s_{i_1}, s_{i_2}, \ldots, s_{i_k}\}$
- one-line notation for $w \in \mathfrak{S}_n^J$: $w_1 < \cdots < w_{i_1} | w_{i_1+1} < \cdots < w_{i_2} | \cdots | w_{i_k+1} < \cdots < w_n$

Outline

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

2 231-Avoiding Permutations

- Oncrossing Partitions
- 4 Nonnesting Partitions

Tamari Lattices

Outline

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

231-Avoiding Permutations

Nonnesting Partitions

Tamari Lattices

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

$1 \quad 2 \quad 10 \quad 11 \quad 8 \quad 4 \quad 3 \quad 6 \quad 7 \quad 5 \quad 9$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 10 11 8 4 3 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 8 11 10 4 3 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 8 11 10 4 3 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 4 11 10 8 3 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 4 11 10 8 3 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 3 11 10 8 4 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 3 11 10 8 4 6 7 5 9

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• 231-avoiding permutation

1 2 3 11 10 8 4 5 7 6 9

Nonnesting Partitions

Tamari Lattices

Outlook

• *J*-231-avoiding permutation

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• *J*-231-avoiding permutation

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin; Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• *J*-231-avoiding permutation

Outline

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

231-Avoiding Permutations

- Oncrossing Partitions
 - Nonnesting Partition

Tamari Lattices

Noncrossing Partitions

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• noncrossing (set) partition

Noncrossing Partitions

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• noncrossing (set) partition

Noncrossing Partitions

A Bijection

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Theorem (🏅 & Williams, 2015)

For n > 0 and $J \subseteq S$, we have $|NC_n^J| = |\mathfrak{S}_n^J(231)|$.

associate bumps with descents

A Bijection

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Theorem (🏅 & Williams, 2015)

For n > 0 and $J \subseteq S$, we have $|NC_n^J| = |\mathfrak{S}_n^J(231)|$.

• associate bumps with descents

Example

Example

11 / 27

Outline

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

231-Avoiding Permutations

- Noncrossing Partitions
- 4 Nonnesting Partitions

Tamari Lattices

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• nonnesting (set) partition

• nonnesting (set) partition

1

On Parabolic Tamari Lattices

and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• order ideals in the root poset

Tamari Lattices

and Nathar Williams

Motivation

231-Avoiding Permutations

Noncrossin Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• order ideals in the root poset

Tamari Lattices Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossin Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• order ideals in the root poset

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• J-nonnesting (set) partition

 $\rightsquigarrow NN_n^J$

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• J-nonnesting (set) partition

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• J-nonnesting (set) partition

Tamari Lattices Henri Mühle

and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• order ideals in the parabolic root poset

(15) 3

• order ideals in the parabolic root poset

A Bijection

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Theorem (🏅 & Williams, 2015)

For n > 0 and $J \subseteq S$, we have $|NN_n^J| = |NC_n^J|$.

Partitions

Tamari Lattices

Outlook

(7,8) (9,10) (9,11) (8,10) (0,11)

Outline

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnestinș Partitions

Tamari Lattices

Outlook

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Weak Order

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivatior

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

inversion set: inv(w) = {(i,j) | i < j, w_i > w_j}
weak order: u ≤_S v if and only if inv(u) ⊆ inv(v) ~→ Weak(𝔅_n)

• **longest element**: $w_o = n \cdots 21$

Example: Weak (\mathfrak{S}_4)

The Tamari Lattices

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Theorem (Björner & Wachs, 1997)

For n > 0 the Tamari lattice \mathcal{T}_n is isomorphic to the weak order on the 231-avoiding permutations of \mathfrak{S}_n , i.e. $\mathcal{T}_n \cong Weak(\mathfrak{S}_n(231))$.

• \mathcal{T}_n is a sublattice and a quotient lattice of Weak (\mathfrak{S}_n)

Example: Weak (\mathfrak{S}_4)

Example: \mathcal{T}_4

Parabolic Weak Order

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

• parabolic weak order: restrict Weak (\mathfrak{S}_n) to \mathfrak{S}_n^J \rightsquigarrow Weak (\mathfrak{S}_n^J)

• Weak $(\mathfrak{S}_n^J) \cong \operatorname{Weak}(e, w_o^J)$

Example: Weak (\mathfrak{S}_4)

Example: Weak $(\mathfrak{S}_4^{\{s_2\}})$

Parabolic Tamari Lattices

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

Motivation

- 231-Avoiding Permutations
- Noncrossing Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

Theorem (🕉 & Williams, 2015)

For n > 0 and $J \subseteq S$, the poset Weak $(\mathfrak{S}_n^J(231))$ is a lattice, the **parabolic Tamari lattice** \mathcal{T}_n^J .

• for any $w \in \mathfrak{S}_n^J$ there is a unique maximal $w' \in \mathfrak{S}_n^J(231)$ with $w' \leq_S w$

Parabolic Tamari Lattices

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams

Motivation

231-Avoiding Permutations

Noncrossing Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Theorem (🕉 & Williams, 2015)

For n > 0 and $J \subseteq S$, the poset Weak $(\mathfrak{S}_n^J(231))$ is a lattice, the **parabolic Tamari lattice** \mathcal{T}_n^J . It is a quotient lattice, but not a sublattice of Weak (\mathfrak{S}_n^J) .

• for any $w \in \mathfrak{S}_n^J$ there is a unique maximal $w' \in \mathfrak{S}_n^J(231)$ with $w' \leq_S w$

Example: Weak $(\mathfrak{S}_4^{\{s_2\}})$

Example: $\mathcal{T}_{4}^{\{s_2\}}$

Example: $\mathcal{T}_4^{\{s_2\}}$

Connections

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams
- Motivation
- 231-Avoiding Permutations
- Noncrossin; Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

- recent work by Préville-Ratelle and Viennot relates \mathcal{T}_n^J to intervals in \mathcal{T}_{2n+2}
 - by relating the shape of the parabolic root poset to the "canopy" of binary trees

Outlook

- On Parabolic Tamari Lattices
- Henri Mühle and Nathan Williams
- Motivation
- 231-Avoiding Permutations
- Noncrossin; Partitions
- Nonnesting Partitions
- Tamari Lattices
- Outlook

• more Catalan objects:

- \bullet subword complexes \rightsquigarrow sortable elements
- generalize to all Coxeter groups

On Parabolic Tamari Lattices

Henri Mühl and Nathar Williams

Motivation

231-Avoiding Permutations

Noncrossin Partitions

Nonnesting Partitions

Tamari Lattices

Outlook

Thank You.

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams • Reading recently gave an explicit bijection between noncrossing diagrams and permutations

 $w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

$$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams • Reading recently gave an explicit bijection between noncrossing diagrams and permutations

$w = 1\ 8\ 10\ 11\ 2\ 4\ 3\ 6\ 7\ 5\ 9$

• subword complex

 $\rightsquigarrow \mathcal{S}(Q, w)$

• $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4321$

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	s ₃	s_1	<i>s</i> ₂	s ₃	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

On Parabolio Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4321
(1,2,3)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	S3	s_1	s_2	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

1	2	3	4	5	6	7	8	9
\mathbf{s}_1	<i>s</i> ₂	<i>s</i> ₃	s_1	s_2	S 3	s_1	s_2	\mathbf{s}_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

1	2	3	4	5	6	7	8	9
\mathbf{s}_1	s_2	s ₃	s_1	<i>s</i> ₂	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

• $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4321$

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	<i>s</i> ₂	s ₃	s_1	s_2	\mathbf{s}_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7)

1	2	3	4	5	6	7	8	9
\mathbf{s}_1	s_2	S 3	s_1	<i>s</i> ₂	s ₃	s_1	s_2	\mathbf{s}_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8)

1	2	3	4	5	6	7	8	9
\mathbf{s}_1	s_2	S 3	s_1	s_2	s_3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

• $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4321$

(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	s ₂	s ₃	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

• $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4321$

(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9), (4,6,9)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	s_2	s ₃	s_1	s_2	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8),

(1,2,3), (2,3,4), (3,4,3), (4,3,6), (3,6,7), (6,7,6), (6,8,9), (6,8,9), (2,4,9)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	S 3	s_1	s ₂	S 3	s_1	s ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9), (4,6,9), (2,4,9), (1,2,9)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	S 3	s_1	s_2	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9), (4,6,9), (2,4,9), (1,2,9), (1,8,9)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	s_2	S 3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9), (4,6,9), (2,4,9), (1,2,9), (1,8,9), (1,7,8)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	s_2	S 3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

• $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1$, w = 4321• (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8), (6, 8, 9), (4, 6, 9), (2, 4, 9), (1, 2, 9), (1, 8, 9), (1, 7, 8), (1, 3, 7)

1	2	3	4	5	6	7	8	9
s_1	s_2	s ₃	s_1	s ₂	S 3	s_1	s ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

• subword complex

Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4321
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), (6,7,8), (6,8,9), (4,6,9), (2,4,9), (1,2,9), (1,8,9), (1,7,8), (1,3,7), (3,5,7)

1	2	3	4	5	6	7	8	9
s_1	s_2	s ₃	s_1	<i>s</i> ₂	S 3	s_1	s ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams • parabolic subword complex: $Q = cw_o, w = w_o^{j}$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_0 = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\rightsquigarrow S_{i}^{J}$ • $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$ 1 2 3 4 5 6 7 8 9 S_1 S_2 S_3 S_1 S_2 S_3 S_1 S_2 S_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams • parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ • \mathcal{S}_n^J

•
$$Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|$$

• $(1, 2, 3, 7)$

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	s ₃	s_1	s ₂	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\rightsquigarrow S_n^J$
- Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4|23|1
 (1, 2, 3, 7), (2, 3, 4, 7)

1	2	3	4	5	6	7	8	9
\mathbf{s}_1	<i>s</i> ₂	s ₃	s_1	s_2	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\sim \mathcal{S}_n^J$
- Q = s₁s₂s₃s₁s₂s₃s₁s₂s₃, w = 4|23|1
 (1,2,3,7), (2,3,4,7), (3,4,5,7)

1	2	3	4	5	6	7	8	9
s_1	s_2	s ₃	s_1	<i>s</i> ₂	S 3	s_1	s_2	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\rightsquigarrow S_n^J$
- Q = s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4|23|1
 (1,2,3,7), (2,3,4,7), (3,4,5,7), (4,5,6,7)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	<i>s</i> ₂	s ₃	s_1	s ₂	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ • $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$
- (1,2,3,7), (2,3,4,7), (3,4,5,7), (4,5,6,7), (4,6,7,8)

1	2	3	4	5	6	7	8	9
s_1	s_2	S 3	s_1	s ₂	s ₃	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams parabolic subword complex: Q = cw_o, w = w^J_o, where c = s₁s₂ ··· s_{n-1} and w_o = s₁s₂ ··· s_{n-1}s₁s₂ ··· s_{n-2}s₁ ··· s₁ → S^J_n
Q = s₁s₂s₃s₁s₂s₃s₁s₂s₁, w = 4|23|1
(1, 2, 3, 7), (2, 3, 4, 7), (3, 4, 5, 7), (4, 5, 6, 7), (4, 6, 7, 8), (4, 6, 8, 9)

1	2	3	4	5	6	7	8	9
s_1	s ₂	s ₃	s_1	s ₂	s ₃	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

• parabolic subword complex:
$$Q = cw_o, w = w_o^J$$
, where
 $c = s_1 s_2 \cdots s_{n-1}$ and
 $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$
 $\longrightarrow S_n^J$

•
$$Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$$

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	S 3	s_1	s ₂	S 3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\rightsquigarrow S_n^J$
- $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$
- (1,2,3,7), (2,3,4,7), (3,4,5,7), (4,5,6,7), (4,6,7,8), (4,6,8,9), (2,4,8,9), (2,4,7,8)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	S 3	s_1	s ₂	S 3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\longrightarrow S_n^J$
- $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$
- (1,2,3,7), (2,3,4,7), (3,4,5,7), (4,5,6,7), (4,6,7,8), (4,6,8,9), (2,4,8,9), (2,4,7,8), (1,2,7,8)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	s ₃	s_1	s_2	S 3	s_1	<i>s</i> ₂	s_1

On Parabolic Tamari Lattices

- parabolic subword complex: $Q = cw_o, w = w_o^J$, where $c = s_1 s_2 \cdots s_{n-1}$ and $w_o = s_1 s_2 \cdots s_{n-1} s_1 s_2 \cdots s_{n-2} s_1 \cdots s_1$ $\sim \mathcal{S}_n^J$
- $Q = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_1, w = 4|23|1$
- (1,2,3,7), (2,3,4,7), (3,4,5,7), (4,5,6,7), (4,6,7,8), (4,6,8,9), (2,4,8,9), (2,4,7,8), (1,2,7,8), (1,2,8,9)

1	2	3	4	5	6	7	8	9
s_1	<i>s</i> ₂	s ₃	s_1	s_2	S 3	s_1	<i>s</i> ₂	s_1

Example: $(\mathcal{S}_4^{\oslash}, \leq_{\text{flip}})$

Example: $(\mathcal{S}_4^{\{s_2\}}, \leq_{\text{flip}})$

A Bijection

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Theorem (Serrano & Stump, 2011; Williams, 2013)

For n > 0 and $J \subseteq S$, we have $|S_n^J| = |NN_n^J|$.

- Edelman-Greene insertion on positions of subword
- slight modification of the recording tableau

A Bijection

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Theorem (Serrano & Stump, 2011; Williams, 2013)

For n > 0 and $J \subseteq S$, we have $|S_n^J| = |NN_n^J|$.

- Edelman-Greene insertion on positions of subword
- slight modification of the recording tableau

On Parabolio Tamari Lattices

1	2	3	4	5	6	7	8	9	10	11	12	13
s_1	s2	s_3	s ₄	s ₅	s ₆	s_7	s ₈	S 9	s ₁₀	s_1	<i>s</i> ₂	s ₃
14	15	16	17	18	19	20	21	22	23	24	25	26
S4	S 5	s ₆	s_7	S ₈	S 9	S10	s_1	s ₂	S3	S 4	S 5	S ₆
27	28	29	30	31	32	33	34	35	36	37	38	39
S ₇	s_8	S_9	s_1	S_2	s ₃	s_4	s_5	s ₆	S_7	s ₈	s ₁	s ₂
40	41	42	43	44	45	46	47	48	49	50	51	52
s ₃	s_4	s_5	s ₆	s_7	s_1	s ₂	s ₃	s_4	s ₅	s ₆	s ₁	s_2
53	54	55	56	57	58	59	60	61	62	63	64	65
S3	S ₄	S 5	s ₁	s_2	S3	S 4	s ₁	s2	S3	s_1	s_2	s_1

On Parabolio Tamari Lattices

ſ	1	2	3	4	5	6	7	8	9	10	11	12	13
	s_1	s2	s ₃	s_4	s ₅	s ₆	s_7	s ₈	S 9	s ₁₀	s_1	s ₂	s ₃
Γ	14	15	16	17	18	19	20	21	22	23	24	25	26
L	S 4	S 5	S ₆	S 7	S8	S 9	s_{10}	s_1	s ₂	S 3	S 4	S 5	S 6
ſ	27	28	29	30	31	32	33	34	35	36	37	38	39
L	s_7	s_8	S9	s_1	s_2	s ₃	s_4	s_5	s ₆	S_7	s_8	s_1	s_2
Γ	40	41	42	43	44	45	46	47	48	49	50	51	52
	s ₃	s_4	s ₅	s ₆	s_7	s_1	s_2	s_3	s_4	s ₅	s ₆	s_1	s_2
ſ	53	54	55	56	57	58	59	60	61	62	63	64	65
	S 3	S 4	S 5	s ₁	s_2	S3	S 4	s_1	s2	S3	s_1	s ₂	S_1

On Paraboli Tamari Lattices

1	2	3	4	5	6	7	8	9	10	11	12	13
s_1	s2	s3	s_4	s_5	s ₆	s_7	s_8	S9	s ₁₀	s_1	s2	s_3
14	15	16	17	18	19	20	21	22	23	24	25	26
S4	S 5	S 6	S 7	S 8	S 9	s ₁₀	<i>s</i> ₁	s ₂	S 3	S 4	S 5	S ₆
27	28	29	30	31	32	33	34	35	36	37	38	39
\$ ₇	s_8	S9	s_1	s_2	s_3	S_4	s_5	s ₆	s_7	s ₈	s ₁	s ₂
40	41	42	43	44	45	46	47	48	49	50	51	52
s ₃	s_4	s ₅	s ₆	s_7	<i>s</i> ₁	<i>s</i> ₂	s_3	s_4	s_5	s ₆	s ₁	s ₂
53	54	55	56	57	58	59	60	61	62	63	64	65
S3	S 4	S 5	s ₁	s_2	S3	S 4	s ₁	s_2	S 3	s_1	s_2	s_1

s₁ s₂ s₃ s₄ s₅ s₆ s₇ 5 6 7 8 9 10 4 s₂ s₃ s₄ s₅ s₆ s₇ s₈ 13 14 15 16 17 18 19 S3 S4 S5 S6 S7 S8 S9 22 23 24 25 26 27 37 *s*₄ *s*₅ *s*₆ *s*₇ *s*₈ *s*₉ *s*₁₀ 32 35 40 41 42 43 44 S5 S6 S7 S8 S9 38 39 48 49 50 s₆ s₇ s₈ s₉ s₁₀ 47 52 53 54 55 s7 s8 s9 s10 51 57 58 59 S8 S9 56 62 S9 S10 60 64

On Parabolio Tamari Lattices

1	1	1	1	1	1	1	1	1	1	2	2	2
s_1	s2	<i>s</i> ₃	s_4	s_5	s ₆	s_7	s_8	S 9	s ₁₀	<i>s</i> ₁	<i>s</i> ₂	s ₃
2	2	2	2	2	2	2	3	3	3	3	3	3
S 4	S5	S 6	S 7	S 8	S 9	s_{10}	<i>s</i> ₁	s ₂	S 3	S 4	S 5	s ₆
3	3	3	4	4	4	4	4	4	4	4	5	5
S ₇	s_8	S9	s_1	s_2	s_3	s_4	s_5	s ₆	S_7	s_8	s_1	s ₂
5	5	5	5	5	6	6	6	6	6	6	7	7
s ₃	s ₄	s ₅	s ₆	s_7	s_1	<i>s</i> ₂	s_3	s_4	s ₅	s ₆	s_1	s ₂
7	7	7	8	8	8	8	9	9	9	10	10	11
S3	S ₄	S 5	s ₁	s_2	s3	S 4	s ₁	s2	S3	s_1	s ₂	s_1

s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₂ s₃ s₄ s₅ s₆ s₇ s₈ s3 s4 s5 s6 s7 s8 s9 *s*₄ *s*₅ *s*₆ *s*₇ *s*₈ *s*₉ *s*₁₀ S5 S6 S7 S8 S9 s₆ s₇ s₈ s₉ s₁₀ s₇ s₈ s₉ s₁₀ S8 S9 S9 S10

5 5 8 8

On Parabolio Tamari Lattices

1	1	1	1	1	1	1	1	1	1	2	2	2
<i>s</i> ₁	s2	s ₃	s_4	s_5	s ₆	s_7	s_8	S 9	s ₁₀	<i>s</i> ₁	<i>s</i> ₂	s ₃
2	2	2	2	2	2	2	3	3	3	3	3	3
S 4	S 5	S 6	S 7	S 8	S 9	s ₁₀	<i>s</i> ₁	s ₂	S 3	S 4	S 5	s ₆
3	3	3	4	4	4	4	4	4	4	4	5	5
S ₇	s_8	S9	s_1	s_2	s_3	s_4	s_5	s ₆	S_7	s_8	s ₁	s_2
5	5	5	5	5	6	6	6	6	6	6	7	7
s ₃	s ₄	s ₅	s ₆	s_7	s_1	<i>s</i> ₂	s_3	s_4	s_5	s ₆	s ₁	s ₂
7	7	7	8	8	8	8	9	9	9	10	10	11
S3	S 4	S 5	s ₁	s ₂	S3	S 4	s ₁	s_2	S 3	s_1	s ₂	s_1

s1 s2 s3 s4 s5 s6 s7 s₂ s₃ s₄ s₅ s₆ s₇ s₈ s3 s4 s5 s6 s7 s8 s9 *s*₄ *s*₅ *s*₆ *s*₇ *s*₈ *s*₉ *s*₁₀ S5 S6 S7 S8 S9 s₆ s₇ s₈ s₉ s₁₀ s7 s8 s9 s10 S8 S9 S9 S10

On Parabolic Tamari Lattices

1	1	1	1	1	1	1	1	1	1	2	2	2
<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s_4	s_5	s ₆	s_7	s_8	S9	s ₁₀	<i>s</i> ₁	<i>s</i> ₂	s ₃
2	2	2	2	2	2	2	3	3	3	3	3	3
S4	S 5	S 6	S 7	S 8	S 9	S10	<i>s</i> ₁	s ₂	S 3	S 4	S 5	s ₆
3	3	3	4	4	4	4	4	4	4	4	5	5
s ₇	s_8	S9	s_1	<i>s</i> ₂	s_3	s_4	s_5	s ₆	s_7	s_8	s ₁	s_2
5	5	5	5	5	6	6	6	6	6	6	7	7
s ₃	s_4	s ₅	s ₆	s_7	s_1	s2	s_3	s ₄	s_5	s ₆	s ₁	s ₂
7	7	7	8	8	8	8	9	9	9	10	10	11
S3	S 4	S 5	s ₁	s ₂	S 3	S 4	s ₁	s_2	S 3	s_1	s ₂	s_1

s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₂ s₃ s₄ s₅ s₆ s₇ s₈ s3 s4 s5 s6 s7 s8 s9 s4 s5 s6 s7 s8 s9 s10 S5 S6 S7 S8 S9 s₆ s₇ s₈ s₉ s₁₀ s7 s8 s9 s10 S8 S9 S9 S1(

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

1	1	1	1	1	1	1	1	1	1	2	2	2
s_1	s2	s ₃	s_4	s_5	s ₆	s_7	s_8	S 9	s ₁₀	<i>s</i> ₁	<i>s</i> ₂	s ₃
2	2	2	2	2	2	2	3	3	3	3	3	3
S 4	S 5	s ₆	S 7	S 8	S 9	s ₁₀	s_1	s ₂	S 3	S 4	S 5	S 6
3	3	3	4	4	4	4	4	4	4	4	5	5
S ₇	s_8	S_9	s_1	s_2	s_3	S_4	s_5	s ₆	s_7	s_8	s ₁	s_2
5	5	5	5	5	6	6	6	6	6	6	7	7
s ₃	s_4	s_5	s_6	s_7	s_1	<i>s</i> ₂	s ₃	s_4	s_5	s ₆	s ₁	s_2
7	7	7	8	8	8	8	9	9	9	10	10	11
S3	S 4	S 5	s_1	s_2	S 3	S 4	s ₁	s2	S 3	s_1	s_2	<i>s</i> ₁

A Conjecture

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams let *c* be a Coxeter element, let *w*₀(*c*) be the *c*-sorting word of *w*₀

Conjecture (Williams, 2013)

Let (W, S) be a finite Coxeter system. For any Coxeter element $c \in W$ and any $J \subseteq S$, the flip poset of $S(cw_o(c), w_o^J)$ is a lattice.

- works for $W = A_n$ and for $J = S \setminus \{s\}$
- in the latter case, w_o^l is fully commutative and $(S(cw_o(c), w_o^l), \leq_{\text{flip}}) \cong \text{Weak}(e, w_o^l)$

A Conjecture

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams let *c* be a Coxeter element, let *w*₀(*c*) be the *c*-sorting word of *w*₀

Conjecture (Williams, 2013)

Let (W, S) be a finite Coxeter system. For any Coxeter element $c \in W$ and any $J \subseteq S$, the flip poset of $S(cw_o(c), w_o^J)$ is a lattice.

• works for $W = A_n$ and for $J = S \setminus \{s\}$

• in the latter case, w_o^l is fully commutative and $\left(\mathcal{S}(cw_o(c), w_o^l), \leq_{\text{flip}}\right) \cong \text{Weak}(e, w_o^l)$

A Conjecture

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams let *c* be a Coxeter element, let *w*₀(*c*) be the *c*-sorting word of *w*₀

Conjecture (Williams, 2013)

Let (W, S) be a finite Coxeter system. For any Coxeter element $c \in W$ and any $J \subseteq S$, the flip poset of $S(cw_o(c), w_o^J)$ is a lattice.

- works for $W = A_n$ and for $J = S \setminus \{s\}$
- in the latter case, w_o^J is fully commutative and $(S(cw_o(c), w_o^J), \leq_{\text{flip}}) \cong \text{Weak}(e, w_o^J)$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

- fix reduced word $\mathbf{w} = a_1 a_2 \cdots a_k$ for $w \in W$
- inversion sequence: $t_1 \prec_{\mathbf{w}} t_2 \prec_{\mathbf{w}} \cdots \prec_{\mathbf{w}} t_k$, where $t_i = a_1 a_2 \cdots a_i \cdots a_2 a_1$
- cover reflection: $t \in inv(w)$ with tw = ws for $s \in S$ $\rightsquigarrow cov(w)$
- **w-aligned element**: $x \leq_S w$ with $t_{a\alpha+b\beta} \in cov(x)$ and $t_{\alpha} \prec_{\mathbf{w}} t_{a\alpha+b\beta}$, then $t_{\alpha} \in inv(x) \longrightarrow Sort(W, \mathbf{w})$

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Conjecture (Williams, 2013)

Let (W, S) be a finite Coxeter system. For any Coxeter element and any $J \subseteq S$, the facets of $S(cw_o(c), w_o^J)$ are in bijection with Sort $(W, w_o^J(c))$.

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

Conjecture (& & Williams, 2015)

Let (W, S) be a finite Coxeter system. For any Coxeter element c and any $w \in W$, the poset Weak (Sort (W, w(c))) is a lattice.

On Parabolic Tamari Lattices

Henri Mühle and Nathan Williams

- it does not work for any reduced word
- Weak (Sort $(\mathfrak{S}_5, s_2s_1s_2s_3s_4s_2s_3s_1s_2s_1)$) is *not* a lattice