A new hook formula due to a generalization of Nekrasov-Okounkov identity

Mathias Pétréolle
Institut Camille Jordan, Lyon
SLC 74, March 2015

Plan

(1) Introduction

(2) Littlewood decomposition

(3) Consequences

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

1			
4	2	1	
5	3	2	
7	5	4	
9	7	6	3

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and its hook lengths

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and the sign ε_{h} of its boxes
Set $\varepsilon_{h}= \begin{cases}+1 & \text { if } h \text { is stricly above the diagonal } \\ -1 & \text { else }\end{cases}$

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and the $\operatorname{sign} \varepsilon_{h}$ of its boxes
Set $\varepsilon_{h}= \begin{cases}+1 & \text { if } h \text { is stricly above the diagonal } \\ -1 & \text { else }\end{cases}$
$\delta_{\lambda}= \begin{cases}+1 & \text { if the Durfee square of } \lambda \text { is even } \\ -1 & \text { else }\end{cases}$

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and the sign ε_{h} of its boxes
Set $\varepsilon_{h}= \begin{cases}+1 & \text { if } h \text { is stricly above the diagonal } \\ -1 & \text { else }\end{cases}$
$\delta_{\lambda}= \begin{cases}+1 & \text { if the Durfee square of } \lambda \text { is even } \\ -1 & \text { else }\end{cases}$
$\mathcal{H}_{t}(\lambda)$ the multi-set of hook lengths which are multiple of t

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

$\begin{array}{\|l\|l\|} \hline \frac{1}{2} & \\ \hline 4 & 1 \\ \hline 7 & 1 \\ \hline \end{array}$	

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

Nakayama (1940): introduction and conjectures in representation theory

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences

t-core of a partition

Let $t \geq 2$ be an integer. A partition is a t-core if its hook lengths set does not contain t , i.e. $\mathcal{H}_{t}(\lambda)=\emptyset$. It is equivalent to the fact that the hook lengths set does not contain any integral multiple of t.

is the 3 -core of

The t-core of a partition λ is the partition obtained by deleting in the partition λ all the ribbons of length t, until we can not remove any ribbon.

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences Han (2009): expansion of η function in terms of hook lengths

Nekrasov-Okounkov formula

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)
For any complex number z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}
$$

Nekrasov-Okounkov formula

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}
$$

Han's proof uses two tools:

- Macdonald identity (1972) in type \widetilde{A} for t an odd integer

$$
c_{0} \sum_{\left(v_{0}, v_{1}, \ldots, v_{t-1}\right)} \prod_{i<j}\left(v_{i}-v_{j}\right) x^{\|v\|^{2} / 2 t}=\left(x^{1 / 24} \prod_{j \geq 1}\left(1-x^{j}\right)\right)^{t^{2}-1}
$$

Nekrasov-Okounkov formula

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}
$$

Han's proof uses two tools:

- Macdonald identity (1972) in type \widetilde{A} for t an odd integer

$$
c_{0} \sum_{\left(v_{0}, v_{1}, \ldots, v_{t-1}\right)} \prod_{i<j}\left(v_{i}-v_{j}\right) x^{\|v\|^{2} / 2 t}=\left(x^{1 / 24} \prod_{j \geq 1}\left(1-x^{j}\right)\right)^{t^{2}-1}
$$

- a bijection due to Garvan-Kim-Stanton between t-cores and vectors of integers

A generalization of Nekrasov-Okounkov formula

Theorem (Han, 2009)

Let t be a positive integer. For any complex numbers y and z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-x^{k}\right)\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}}
$$

A generalization of Nekrasov-Okounkov formula

Theorem (Han, 2009)

Let t be a positive integer. For any complex numbers y and z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-x^{k}\right)\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}}
$$

Consequences:

- A marked hook formula

A generalization of Nekrasov-Okounkov formula

Theorem (Han, 2009)

Let t be a positive integer. For any complex numbers y and z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-x^{k}\right)\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}}
$$

Consequences:

- A marked hook formula
- Many refinements of the generating function of t-cores

A generalization of Nekrasov-Okounkov formula

Theorem (Han, 2009)

Let t be a positive integer. For any complex numbers y and z we have

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-x^{k}\right)\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}}
$$

Consequences:

- A marked hook formula
- Many refinements of the generating function of t-cores
- A reformulation of Lehmer's conjecture in number theory

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

$D D_{(t)}$: set of doubled distinct t-cores

Doubled distinct partitions

We define the set $D D$ of doubled distinct partitions from the set of partitions with distinct parts as follows:

$D D_{(t)}$: set of doubled distinct t-cores
The t-core of a doubled distinct partition is a doubled distinct partition

Nekrasov-Okounkov formula in type \tilde{C} (and \tilde{B} and $\tilde{B C}$)

Theorem (P., 2014)

For any complex number z, the following expansion holds:

$$
\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{2 z+2}{h \varepsilon_{h}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{2 z^{2}+z}
$$

Nekrasov-Okounkov formula in type \tilde{C} (and \tilde{B} and $\tilde{B C}$)

Theorem (P., 2014)

For any complex number z, the following expansion holds:

$$
\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{2 z+2}{h \varepsilon_{h}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{2 z^{2}+z}
$$

The proof uses Macdonald identity in type \widetilde{C} for t an integer

$$
c_{1} \sum \prod_{i} v_{i} \prod_{i<j}\left(v_{i}^{2}-v_{j}^{2}\right) x^{\|v\|^{2} / 4(t+1)}=\left(x^{1 / 24} \prod_{j \geq 1}\left(1-x^{j}\right)\right)^{2 t^{2}+t}
$$

Nekrasov-Okounkov formula in type \tilde{C} (and \tilde{B} and $\tilde{B C}$)

Theorem (P., 2014)

For any complex number z, the following expansion holds:

$$
\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{2 z+2}{h \varepsilon_{h}}\right)=\prod_{k \geq 1}\left(1-x^{k}\right)^{2 z^{2}+z}
$$

The proof uses Macdonald identity in type \widetilde{C} for t an integer

$$
c_{1} \sum \prod_{i} v_{i} \prod_{i<j}\left(v_{i}^{2}-v_{j}^{2}\right) x^{\|v\|^{2} / 4(t+1)}=\left(x^{1 / 24} \prod_{j \geq 1}\left(1-x^{j}\right)\right)^{2 t^{2}+t}
$$

Also generalizes Macdonald identity in types \widetilde{B} and $\widetilde{B C}$

A generalization of Nekrasov-Okounkov formula in type \tilde{C}

Theorem (P., 2015)

Let $t=2 t^{\prime}+1$ be an odd positive integer. For any complex numbers y and z we have

$$
\begin{aligned}
\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} & \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{y t(2 z+2)}{\varepsilon_{h} h}\right) \\
& =\prod_{k \geq 1}\left(1-x^{k}\right)\left(1-x^{k t}\right)^{t^{\prime}-1}\left(1-x^{t k} y^{2 k}\right)^{(2 z+1)\left(z t+3 t^{\prime}\right)}
\end{aligned}
$$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)
The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

$$
w=\cdots 00110001.101110011 \cdots
$$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

$$
\begin{aligned}
w & =\cdots 00110001.101110011 \\
w_{0} & =\cdots \\
=\cdots & 1
\end{aligned} 0_{1} 1 \begin{array}{lllll}
& 1 & 0 & \cdots
\end{array}
$$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

$$
\begin{aligned}
& w=\cdots 00110001.101110011 \cdots \\
& w_{0}=\cdots \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad \cdots \\
& w_{1}=\cdots 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \cdots
\end{aligned}
$$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

$$
\begin{aligned}
& w=\cdots 00110001.101110011 \cdots \\
& w_{0}=\cdots \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad \cdots \\
& w_{1}=\cdots 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \cdots \\
& w_{2}=\cdots \begin{array}{lllllll}
\cdots & 0 & 1 & 1 & 0 & 1 & \cdots
\end{array}
\end{aligned}
$$

Littlewood decomposition

Theorem (Littlewood, 1951, probably)

The Littlewood decomposition maps a partition λ to $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ such that:
(i) $\tilde{\lambda}$ is the t-core of λ and $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}$ are partitions;
(ii) $|\lambda|=|\tilde{\lambda}|+t\left(\left|\lambda^{0}\right|+\left|\lambda^{1}\right|+\cdots+\left|\lambda^{t-1}\right|\right)$
(iii) $\left\{h / t, h \in \mathcal{H}_{t}(\lambda)\right\}=\mathcal{H}\left(\lambda^{0}\right) \cup \mathcal{H}\left(\lambda^{1}\right) \cup \cdots \cup \mathcal{H}\left(\lambda^{t-1}\right)$.

$$
\begin{array}{rl}
w & =\cdots 00110001.101110011 \cdots \\
w_{0} & =\cdots \\
1 & 0
\end{array} 1 \cdot 1 \quad 1 \quad 0 \quad \cdots, ~ \lambda^{0}=\square \square
$$

New properties of Littlewood decomposition

When $\lambda \in D D$, its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ satisfies:
(i) $\tilde{\lambda}$ and λ^{0} are doubled distinct partitions

New properties of Littlewood decomposition

When $\lambda \in D D$, its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ satisfies:
(i) $\tilde{\lambda}$ and λ^{0} are doubled distinct partitions
(ii) λ^{i} and λ^{t-i} are conjugate for $i \in\{1, \ldots, t-1\}$

New properties of Littlewood decomposition

When $\lambda \in D D$, its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ satisfies:
(i) $\tilde{\lambda}$ and λ^{0} are doubled distinct partitions
(ii) λ^{i} and λ^{t-i} are conjugate for $i \in\{1, \ldots, t-1\}$

(iii) $\delta_{\lambda}=\delta_{\tilde{\lambda}} \delta_{\lambda^{0}}$

New properties of Littlewood decomposition

When $\lambda \in D D$, its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$ satisfies:
(i) $\tilde{\lambda}$ and λ^{0} are doubled distinct partitions
(ii) λ^{i} and λ^{t-i} are conjugate for $i \in\{1, \ldots, t-1\}$

(iii) $\delta_{\lambda}=\delta_{\tilde{\lambda}} \delta_{\lambda^{0}}$
(iv) two properties about the relative position of the boxes

Proof of our generalization

- Fix $\lambda \in D D$ and its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$.

Proof of our generalization

- Fix $\lambda \in D D$ and its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$.
- Write:

$$
\delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{y t(2 z+2)}{\varepsilon_{h} h}\right)
$$

Proof of our generalization

- Fix $\lambda \in D D$ and its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$.
- Write:

$$
\begin{aligned}
\delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}_{t}(\lambda)} & \left(y-\frac{y t(2 z+2)}{\varepsilon_{h} h}\right)=\delta_{\tilde{\lambda}} x^{|\tilde{\lambda}| / 2} \\
& \times \delta_{\lambda^{0}} x^{t\left|\lambda^{0}\right| / 2} \prod_{h \in \mathcal{H}\left(\lambda^{0}\right)}\left(y-\frac{y(2 z+2)}{\varepsilon_{h} h}\right) \\
& \times \prod_{i=1}^{t^{\prime}} x^{t\left|\lambda^{i}\right|} \prod_{h \in \mathcal{H}\left(\lambda^{i}\right)}\left(y^{2}-\left(\frac{y(2 z+2)}{h}\right)^{2}\right)
\end{aligned}
$$

Proof of our generalization

- Fix $\lambda \in D D$ and its Littlewood decomposition $\left(\tilde{\lambda}, \lambda^{0}, \lambda^{1}, \ldots, \lambda^{t-1}\right)$.
- Write:

$$
\begin{aligned}
& \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{y t(2 z+2)}{\varepsilon_{h} h}\right)=\delta_{\tilde{\lambda}} x^{|\tilde{\lambda}| / 2} \\
& \times \delta_{\lambda^{0}} x^{t\left|\lambda^{0}\right| / 2} \prod_{h \in \mathcal{H}\left(\lambda^{0}\right)}\left(y-\frac{y(2 z+2)}{\varepsilon_{h} h}\right) \\
& \times \prod_{i=1}^{t^{\prime}} x^{t\left|\lambda^{i}\right|} \prod_{h \in \mathcal{H}\left(\lambda^{i}\right)}\left(y^{2}-\left(\frac{y(2 z+2)}{h}\right)^{2}\right)
\end{aligned}
$$

- And sum over all doubled distinct partitions.

Some consequences

Corollary (P., 2015)

When $t=y=1$, we recover the Nekrasov-Okounkov formula in type \tilde{C}.

Some consequences

Corollary (P., 2015)

When $t=y=1$, we recover the Nekrasov-Okounkov formula in type \tilde{C}.

Corollary (P., 2015)

We have:

$$
\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}_{t}(\lambda)} \frac{b t}{h \varepsilon_{h}}=\exp \left(-t b^{2} x^{t} / 2\right) \prod_{k \geq 1}\left(1-x^{k}\right)\left(1-x^{k t}\right)^{t^{\prime}-1}
$$

A new hook formula

Corollary (P., 2015)

We have:

$$
\sum_{\substack{\lambda \in D D,|\lambda|=2 t n \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \delta_{\lambda} \prod_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h \varepsilon_{h}}=\frac{(-1)^{n}}{n!t^{n} 2^{n}}
$$

A new hook formula

Corollary (P., 2015)

We have:

$$
\sum_{\substack{\lambda \in D D,|\lambda|=2 t n \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \delta_{\lambda} \prod_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h \varepsilon_{h}}=\frac{(-1)^{n}}{n!t^{n} 2^{n}}
$$

When $t=1$, this formula reduces to:

$$
\sum_{\substack{\lambda \in D \\|\lambda|=2 n}} \prod_{h \in \mathcal{H}(\lambda)} \frac{1}{h}=\frac{1}{2^{n} n!}
$$

A new hook formula

Corollary (P., 2015)

We have:

$$
\sum_{\substack{\lambda \in D D,|\lambda|=2 t n \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \delta_{\lambda} \prod_{h \in \mathcal{H}_{t}(\lambda)} \frac{1}{h \varepsilon_{h}}=\frac{(-1)^{n}}{n!t^{n} 2^{n}}
$$

When $t=1$, this formula reduces to:

$$
\sum_{\substack{\lambda \in D \\|\lambda|=2 n}} \prod_{h \in \mathcal{H}(\lambda)} \frac{1}{h}=\frac{1}{2^{n} n!}
$$

Question: can we prove this by using the RSK algorithm?

And after?

Some questions remain (almost) open:

And after?

Some questions remain (almost) open:

- Is there a generalization for t even? Involves \widetilde{C}^{\vee}

And after?

Some questions remain (almost) open:

- Is there a generalization for t even? Involves \widetilde{C}^{\vee}
- What is the link with representation theory?

And after?

Some questions remain (almost) open:

- Is there a generalization for t even? Involves \widetilde{C}^{\vee}
- What is the link with representation theory?
- What about other affine types (as $\widetilde{D})$?

Thank you for your attention

