Two classification results on skew Schur *Q*-functions

Christopher Schure

Leibniz Universität Hannover

74th Séminaire Lotharingien de Combinatoire 23.03.2015

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Definition

- A partition λ = (λ₁, λ₂,..., λ_l) is called strict when λ₁ > λ₂ > ... > λ_l > 0.
- The shifted diagram indexed by $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is $D_{\lambda} := \bigcup_{i \in \mathbb{N}} \{(i, i), (i, i+1), \dots, (i, i+\lambda_i 1)\}.$
- ▶ For $\lambda, \mu \in DP$, where $D_{\mu} \subseteq D_{\lambda}$, the skew shifted diagram is $D_{\lambda/\mu} := D_{\lambda} \setminus D_{\mu}$.

ション ふゆ く 山 マ チャット しょうくしゃ

- The number of (edgewise) connected components of a diagram D is denoted by comp(D).
 If comp(D) = 1 we call the diagram D connected.
- A corner of D is a box $(x, y) \in D$ such that $(x+1, y), (x, y+1) \notin D$.

Example For $\lambda = (8,7,4,3,1), \ \mu = (7,5,2)$ we have

The diagram D_{λ} is connected and $comp(D_{\lambda/\mu}) = 2$. The corners of D_{λ} are indicated above by \bullet .

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Definition

- A shifted tableau T of shape D_{λ/μ} is a filling of the boxes of D_{λ/μ} with elements of the alphabet
 A = {1' < 1 < 2' < 2 < ...} such that
 - $T(i,j) \leq T(i+1,j), T(i,j) \leq T(i,j+1)$ for all i,j,
 - each column has at most one k (k = 1, 2, 3, ...),
 - each row has at most one k' ($k' = 1', 2', 3', \ldots$),

where T(x, y) denotes the entry of the box (x, y) of the skew shifted tableau T.

- ▶ The content of the shifted tableau T is $c(T) = (c_1, c_2, ...)$, where c_k is the number of k's and ks in the tableau T.
- ► The reading word w(T) of a shifted tableau T is the word obtained by reading the rows from left to right starting with the lowest row.

Example

$$T = \begin{bmatrix} 1' & 1 & 1 & 2 \\ 1' & 2 & 2 & 5' \\ 1' & 3' & 3 & 5' \\ 3 & 6 \end{bmatrix}$$

$$c(T) = (5, 3, 3, 0, 2, 1, 0, ...) = (5, 3, 3, 0, 2, 1)$$

 $w(T) = 361'3'35'1'225'1'112$

(ロ)、(型)、(E)、(E)、 E) のQで

The combinatorial definition of skew Schur Q-functions

Definition

For strict partitions λ, μ the skew Schur *Q*-function in an infinite set of variables $x = (x_1, x_2, ...)$ is defined by

$$\mathcal{Q}_{\lambda/\mu}(x) := \sum_{ ext{shifted tableaux \mathcal{T} of shape $D_{\lambda/\mu}$}} x^{c(\mathcal{T})},$$

where
$$x^{(c_1,c_2,...,c_l)} := x_1^{c_1} x_2^{c_2} \cdots x_l^{c_l}.$$

Define $Q_{\lambda} := Q_{\lambda/\emptyset}.$

Remark

W.l.o.g., we will only consider diagrams with no empty rows or columns.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

An analogue of the Littlewood-Richardson rule

Theorem (Stembridge 1989)

For strict partitions λ, μ we have

$$Q_{\lambda/\mu} = \sum_{\text{strict partitions } \nu} f_{\mu\nu}^{\lambda} Q_{\nu},$$

where $f_{\mu\nu}^{\lambda}$ is the number of shifted tableaux T of shape $D_{\lambda/\mu}$ with content ν such that w(T) satisfies a lattice property.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Tableaux with the lattice property

Lemma

Let λ, μ be strict partitions. The word w(T) of a shifted tableau T of shape $D_{\lambda/\mu}$ satisfies the lattice property if T satisfies the following conditions for all $1 \le k \le t - 1$ where t is the greatest entry in the shifted tableau:

- (a) there is a column with a k but no k + 1;
- (b) in each column with a k + 1 there is also a k;
- (c) if T(x, y) = (k + 1)' then T(x 1, y 1) = k';
- (d) the lowest leftmost box filled with an entry in {k', k} is filled with a k;
- (e) the lowest leftmost box filled with an entry in $\{(k + 1)', k + 1\}$ is filled with a k + 1.

Let $D_{\lambda/\mu}$ be a skew shifted diagram. The tableau $T_{\lambda/\mu}$ is defined as the tableau obtained as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $D_{\lambda/\mu}$ be a skew shifted diagram. The tableau $T_{\lambda/\mu}$ is defined as the tableau obtained as follows:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $D_{\lambda/\mu}$ be a skew shifted diagram. The tableau $T_{\lambda/\mu}$ is defined as the tableau obtained as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $D_{\lambda/\mu}$ be a skew shifted diagram. The tableau $T_{\lambda/\mu}$ is defined as the tableau obtained as follows:

			1'	1	1
			1'	2′	2
		1'	1	2′	
		1'	2′	2	
1	1	1	2'		
	2	2	2		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $D_{\lambda/\mu}$ be a skew shifted diagram. The tableau $T_{\lambda/\mu}$ is defined as the tableau obtained as follows:

Let P_k be the set of boxes of $T_{\lambda/\mu}$ filled with entries in $\{k', k\}$.

Remark

The tableau $T_{\lambda/\mu}$ has the lexicographically largest content among all tableaux of $D_{\lambda/\mu}$ satisfying the lattice property.

Proposition

Let $\mathcal{D}_{\lambda/\mu}$ be a diagram. Let $\nu = c(\mathcal{T}_{\lambda/\mu})$. Then we have

$$f_{\mu
u}^{\lambda} = \prod_{i=1}^{\ell(
u)} 2^{\operatorname{comp}(P_i)-1}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Definition

A symmetric function f is called Q-homogeneous if $f = k \cdot Q_{\nu}$ for some k and ν .

A skew shifted diagram $D_{\lambda/\mu}$ is called strange if $Q_{\lambda/\mu} = Q_{\nu}$ for some ν .

Remark

Salmasian (2008) has classified the strange skew shifted diagrams.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Which skew Schur Q-functions are Q-homogeneous?

Main idea:

For a given property of a diagram of shape $D_{\lambda/\mu}$ find a tableau T with $c(T) \neq c(T_{\lambda/\mu})$ that satisfies the lattice property. Then the diagram of a Q-homogeneous skew Schur Q-function must not have this property. Continue excluding properties for diagrams until the remaining diagrams belong to Q-homogeneous skew Schur Q-functions.

Lemma

For given partitions λ, μ if there is an i > 1 such that between two components of P_i there is a column with no box in P_i then $Q_{\lambda/\mu}$ is not Q-homogeneous.

Example

Consider $\lambda/\mu = (9, 8, 5, 3, 2)/(6, 5, 2, 1)$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

If $D_{\lambda/\mu}$ is connected then P_1 is connected. If in a connected diagram $D_{\lambda/\mu}$ there is an i > 1 such that $comp(P_i) \ge 2$ then we can find a tableau T with $c(T) \ne c(T_{\lambda/\mu})$, hence $Q_{\lambda/\mu}$ is not Q-homogeneous. Thus, the Q-homogeneous skew Schur Q-functions have only connected P_i s.

Lemma

Let $Q_{\lambda/\mu} = k \cdot Q_{\nu}$ for some k. If $comp(D_{\lambda/\mu}) = 1$ then k = 1, hence $D_{\lambda/\mu}$ is strange.

Theorem

Let λ, μ be such that $D_{\lambda/\mu}$ has no empty rows or columns. We have $Q_{\lambda/\mu} = k \cdot Q_{\nu}$ for some k and ν if and only if one of the following holds:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Definition

A skew Schur Q-function $Q_{\lambda/\mu}$ is called (Q-)multiplicity-free if $f^{\lambda}_{\mu\nu} \leq 1$ for all ν .

Aim: Classification of the shapes $D_{\lambda/\mu}$ such that $Q_{\lambda/\mu}$ is multiplicity-free.

Main idea: for a given property of a diagram find two tableaux with same content that satisfy the lattice property. Exclude properties until the remaining diagrams belong to multiplicity-free Schur Q-functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An important intermediate result

Proposition

If $Q_{\lambda/\mu}$ is multiplicity-free then λ and μ satisfy one of the following properties:

- $\mu = \emptyset$ or $\mu = (1)$,
- D_{λ} has only one corner and the last part of λ is either 1 or 2,
- both D_λ and D_μ have at most two corners and if one of the diagrams has two corners then the other diagram has only one corner.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem

Let $\lambda, \mu \in DP$. Then $Q_{\lambda/\mu}$ is multiplicity-free if and only if λ and μ satisfy one of the following conditions for some $a, b, c, d, w, x, y \in \mathbb{N}$:

Some of these cases overlap.

 $w = 1 \text{ or } x = 1 \text{ or } b \leq 3 \text{ or } a + b - w - x - y - 1 = 1.$

If $d \ge 2$ then $1 \in \{a, b, c\}$ or $w \le 2$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

 $a \leq 2$ or $b \leq 2$ or $c \leq 2$ or $w \leq 3$ or w = a + c - 1.

 $b \le 4$ or $w \le 2$ or $x \le 3$ or a = w + 1 or $a + b - w - x \le 2$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?