Two classification results on skew Schur Q-functions

Christopher Schure

Leibniz Universität Hannover

74th Séminaire Lotharingien de Combinatoire 23.03.2015

Definition

- A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is called strict when $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{I}>0$.
- The shifted diagram indexed by $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is $D_{\lambda}:=\bigcup_{i \in \mathbb{N}}\left\{(i, i),(i, i+1), \ldots\left(i, i+\lambda_{i}-1\right)\right\}$.
- For $\lambda, \mu \in D P$, where $D_{\mu} \subseteq D_{\lambda}$, the skew shifted diagram is $D_{\lambda / \mu}:=D_{\lambda} \backslash D_{\mu}$.
- The number of (edgewise) connected components of a diagram D is denoted by $\operatorname{comp}(D)$. If $\operatorname{comp}(D)=1$ we call the diagram D connected.
- A corner of D is a box $(x, y) \in D$ such that $(x+1, y),(x, y+1) \notin D$.

Example

For $\lambda=(8,7,4,3,1), \mu=(7,5,2)$ we have

The diagram D_{λ} is connected and $\operatorname{comp}\left(D_{\lambda / \mu}\right)=2$.
The corners of D_{λ} are indicated above by

Definition

- A shifted tableau T of shape $D_{\lambda / \mu}$ is a filling of the boxes of $D_{\lambda / \mu}$ with elements of the alphabet
$A=\left\{1^{\prime}<1<2^{\prime}<2<\ldots\right\}$ such that
- $T(i, j) \leq T(i+1, j), T(i, j) \leq T(i, j+1)$ for all i, j,
- each column has at most one $k(k=1,2,3, \ldots)$,
- each row has at most one $k^{\prime}\left(k^{\prime}=1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots\right)$, where $T(x, y)$ denotes the entry of the box (x, y) of the skew shifted tableau T.
- The content of the shifted tableau T is $c(T)=\left(c_{1}, c_{2}, \ldots\right)$, where c_{k} is the number of $k^{\prime} s$ and $k s$ in the tableau T.
- The reading word $w(T)$ of a shifted tableau T is the word obtained by reading the rows from left to right starting with the lowest row.

Example

$$
\begin{gathered}
\quad \begin{array}{c|c|c|c|c}
\hline 1^{\prime} & 1 & 1 & 2 \\
\hline 1^{\prime} & 2 & 2 & 5^{\prime} & \\
\hline 1^{\prime} & 3^{\prime} & 3 & 5^{\prime} \\
\hline & 3 & 6 & \\
\hline
\end{array} \\
c(T)=(5,3,3,0,2,1,0, \ldots)=(5,3,3,0,2,1) \\
w(T)=361^{\prime} 3^{\prime} 35^{\prime} 1^{\prime} 225^{\prime} 1^{\prime} 112
\end{gathered}
$$

The combinatorial definition of skew Schur Q-functions

Definition

For strict partitions λ, μ the skew Schur Q-function in an infinite set of variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is defined by

$$
Q_{\lambda / \mu}(x):=\sum_{\text {shifted tableaux } T \text { of shape } D_{\lambda / \mu}} x^{c(T)}
$$

where $x^{\left(c_{1}, c_{2}, \ldots, c_{l}\right)}:=x_{1}^{c_{1}} x_{2}^{c_{2}} \cdots x_{l}^{c_{1}}$.
Define $Q_{\lambda}:=Q_{\lambda / \emptyset}$.
Remark
W.I.o.g., we will only consider diagrams with no empty rows or columns.

An analogue of the Littlewood-Richardson rule

Theorem (Stembridge 1989)
For strict partitions λ, μ we have

$$
Q_{\lambda / \mu}=\sum_{\text {strict partitions } \nu} f_{\mu \nu}^{\lambda} Q_{\nu},
$$

where $f_{\mu \nu}^{\lambda}$ is the number of shifted tableaux T of shape $D_{\lambda / \mu}$ with content ν such that $w(T)$ satisfies a lattice property.

Tableaux with the lattice property

Lemma
Let λ, μ be strict partitions. The word $w(T)$ of a shifted tableau T of shape $D_{\lambda / \mu}$ satisfies the lattice property if T satisfies the following conditions for all $1 \leq k \leq t-1$ where t is the greatest entry in the shifted tableau:
(a) there is a column with a k but no $k+1$;
(b) in each column with a $k+1$ there is also a k;
(c) if $T(x, y)=(k+1)^{\prime}$ then $T(x-1, y-1)=k^{\prime}$;
(d) the lowest leftmost box filled with an entry in $\left\{k^{\prime}, k\right\}$ is filled with a k;
(e) the lowest leftmost box filled with an entry in $\left\{(k+1)^{\prime}, k+1\right\}$ is filled with a $k+1$.

Definition (Salmasian 2008)

Let $D_{\lambda / \mu}$ be a skew shifted diagram. The tableau $T_{\lambda / \mu}$ is defined as the tableau obtained as follows:

Definition (Salmasian 2008)

Let $D_{\lambda / \mu}$ be a skew shifted diagram. The tableau $T_{\lambda / \mu}$ is defined as the tableau obtained as follows:

Definition (Salmasian 2008)

Let $D_{\lambda / \mu}$ be a skew shifted diagram. The tableau $T_{\lambda / \mu}$ is defined as the tableau obtained as follows:

Definition (Salmasian 2008)

Let $D_{\lambda / \mu}$ be a skew shifted diagram. The tableau $T_{\lambda / \mu}$ is defined as the tableau obtained as follows:

Definition (Salmasian 2008)

Let $D_{\lambda / \mu}$ be a skew shifted diagram. The tableau $T_{\lambda / \mu}$ is defined as the tableau obtained as follows:

			1 1 1 1		
			1	2^{\prime}	2
		1^{\prime}	1	2	3^{\prime}
		1^{\prime}	2^{\prime}	2	3
1	1	1	2^{\prime}	3	
	2	2	2		
		3	3		

Let P_{k} be the set of boxes of $T_{\lambda / \mu}$ filled with entries in $\left\{k^{\prime}, k\right\}$.
Remark
The tableau $T_{\lambda / \mu}$ has the lexicographically largest content among all tableaux of $D_{\lambda / \mu}$ satisfying the lattice property.

Proposition

Let $D_{\lambda / \mu}$ be a diagram. Let $\nu=c\left(T_{\lambda / \mu}\right)$. Then we have

$$
f_{\mu \nu}^{\lambda}=\prod_{i=1}^{\ell(\nu)} 2^{\operatorname{comp}\left(P_{i}\right)-1}
$$

Definition

A symmetric function f is called Q-homogeneous if $f=k \cdot Q_{\nu}$ for some k and ν.
A skew shifted diagram $D_{\lambda / \mu}$ is called strange if $Q_{\lambda / \mu}=Q_{\nu}$ for some ν.

Remark
Salmasian (2008) has classified the strange skew shifted diagrams.
Which skew Schur Q-functions are Q-homogeneous?

Main idea:
For a given property of a diagram of shape $D_{\lambda / \mu}$ find a tableau T with $c(T) \neq c\left(T_{\lambda / \mu}\right)$ that satisfies the lattice property. Then the diagram of a Q-homogeneous skew Schur Q-function must not have this property. Continue excluding properties for diagrams until the remaining diagrams belong to Q-homogeneous skew Schur Q-functions.

Lemma

For given partitions λ, μ if there is an $i>1$ such that between two components of P_{i} there is a column with no box in P_{i} then $Q_{\lambda / \mu}$ is not Q-homogeneous.

Example
Consider $\lambda / \mu=(9,8,5,3,2) /(6,5,2,1)$:

If $D_{\lambda / \mu}$ is connected then P_{1} is connected.
If in a connected diagram $D_{\lambda / \mu}$ there is an $i>1$ such that $\operatorname{comp}\left(P_{i}\right) \geq 2$ then we can find a tableau T with $c(T) \neq c\left(T_{\lambda / \mu}\right)$, hence $Q_{\lambda / \mu}$ is not Q-homogeneous.
Thus, the Q-homogeneous skew Schur Q-functions have only connected P_{i} s.

Lemma
Let $Q_{\lambda / \mu}=k \cdot Q_{\nu}$ for some k. If $\operatorname{comp}\left(D_{\lambda / \mu}\right)=1$ then $k=1$, hence $D_{\lambda / \mu}$ is strange.

Theorem

Let λ, μ be such that $D_{\lambda / \mu}$ has no empty rows or columns. We have $Q_{\lambda / \mu}=k \cdot Q_{\nu}$ for some k and ν if and only if one of the following holds:
(i) $\mu=\emptyset$ and $k=1$,
(ii) $\lambda=(m, m-1, \ldots, 1)$ for some m, μ arbitrary and $k=1$,
(iii) $\lambda / \mu=$
$(p+q+r, p+q+r-1, p+q+r-2, \ldots, p) /(q, q-1, \ldots, 1)$, where $p, q, r \geq 1$ and $k=1$,
(iv) $\lambda / \mu=(p+q, p+q-1, p+q-2, \ldots, p+1, p) /(q, q-1, \ldots, 1)$, where $p, q \geq 1$ and $k=1$,
(v) $\lambda / \mu=(r+2, r, r-1, \ldots, 1) /(r+1)$ and

$$
\nu=(r+1, r-1, r-2, \ldots, 1) \text { for an } r \geq 1 \text { and } k=2 \text {. }
$$

Definition

A skew Schur Q-function $Q_{\lambda / \mu}$ is called (Q-)multiplicity-free if $f_{\mu \nu}^{\lambda} \leq 1$ for all ν.

Aim: Classification of the shapes $D_{\lambda / \mu}$ such that $Q_{\lambda / \mu}$ is multiplicity-free.

Main idea: for a given property of a diagram find two tableaux with same content that satisfy the lattice property. Exclude properties until the remaining diagrams belong to multiplicity-free Schur Q-functions.

An important intermediate result

Proposition

If $Q_{\lambda / \mu}$ is multiplicity-free then λ and μ satisfy one of the following properties:

- $\mu=\emptyset$ or $\mu=(1)$,
- D_{λ} has only one corner and the last part of λ is either 1 or 2 ,
- both D_{λ} and D_{μ} have at most two corners and if one of the diagrams has two corners then the other diagram has only one corner.

Theorem

Let $\lambda, \mu \in D P$. Then $Q_{\lambda / \mu}$ is multiplicity-free if and only if λ and μ satisfy one of the following conditions for some a, b, c, d, w, x, $y \in \mathbb{N}$:
(i) λ is arbitrary and $\mu \in\{\emptyset,(1)\}$,
(ii) $\lambda=(a+b-1, a+b-2, \ldots, b)$, where $b \in\{1,2\}$ and μ is arbitrary,
(iii) $\lambda=(a+b-1, a+b-2, \ldots, b)$ and $\mu=(w+x+y, w+x+y-1, \ldots, x+y+2, x+y+1, y, y-1, \ldots, 1)$, where $w=1$ or $x=1$ or $b \leq 3$ or $a+b-w-x-y-1=1$,
(iv) $\lambda=(a+b+c+d-1, a+b+c+d-2, \ldots, b+c+d+1, b+c+$ $d, c+d-1, c+d-2, \ldots, d)$, where $d \neq 1$ and $\mu=(w, w-1, \ldots, 1)$ with $1 \in\{a, b, c\}$ or $w \leq 2$,
(v) $\lambda=(a+b+c, a+b+c-1, \ldots, b+c+2, b+c+1, c, c-1, \ldots, 1)$ and $\mu=(w, w-1, \ldots, 1)$, where $a \leq 2$ or $b \leq 2$ or $c \leq 2$ or $w \leq 3$ or $w=a+c-1$,
(vi) $\lambda=(a+b-1, a+b-2, \ldots, b)$ and $\mu=(w+x-1, w+x-2, \ldots, x)$, where $b \leq 4$ or $w \leq 2$ or $x \leq 3$ or $a=w+1$ or $a+b-w-x \leq 2$.
Some of these cases overlap.

$$
w=1 \text { or } x=1 \text { or } b \leq 3 \text { or } a+b-w-x-y-1=1 .
$$

If $d \geq 2$ then $1 \in\{a, b, c\}$ or $w \leq 2$.

$$
a \leq 2 \text { or } b \leq 2 \text { or } c \leq 2 \text { or } w \leq 3 \text { or } w=a+c-1
$$

$$
b \leq 4 \text { or } w \leq 2 \text { or } x \leq 3 \text { or } a=w+1 \text { or } a+b-w-x \leq 2 .
$$

Thank you!

