
Parking functions in types C and B

Robin Sulzgruber
joint work with Marko Thiel

Universität Wien

Ellwangen, 23rd March 2015

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 1 / 19



Outline

Regions of the Shi
arrangement

Finite torus
(parking functions)

Diagonally labelled paths

Vertically labelled paths

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 2 / 19



Outline

Regions of the Shi
arrangement

Finite torus
(parking functions)

Diagonally labelled paths

Vertically labelled paths

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 2 / 19



Outline

Regions of the Shi
arrangement

Finite torus
(parking functions)

Diagonally labelled paths

Vertically labelled paths

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 2 / 19



Outline

Regions of the Shi
arrangement

Finite torus
(parking functions)

Diagonally labelled paths

Vertically labelled paths

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 2 / 19



Outline

Regions of the Shi
arrangement

Finite torus
(parking functions)

Diagonally labelled paths

Vertically labelled paths

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 2 / 19



Parking functions

Hyperplanes and reflections

Definition

Let V be a Euclidean vector space with inner product 〈., .〉, α ∈ V a
nonzero vector and k ∈ Z.

Define an affine hyperplane

Hα,k = {x ∈ V : 〈x , α〉 = k}.

Let sα,k be the reflection through Hα,k .

sα,k(x) = x − 2〈x , α〉 − 2k

〈α, α〉
α.
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Parking functions

Roots

Definition

A crystallographic root system of
V is a finite spanning subset
Φ ⊆ V of nonzero vectors such
that

Rα ∩ Φ = {α,−α} for all α ∈ Φ,

sα,0(Φ) ⊆ Φ for all α ∈ Φ,

2〈β, α〉
〈α, α〉

∈ Z for all α, β ∈ Φ.

Let Φ+ denote the positive roots.

We only consider irreducible root
systems.

Example

2e1

e2 + e1

2e2

e2 − e1

The root system of type C2 in
V = R2.
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Parking functions

The coroot lattice and the finite torus

Definition

For each root α ∈ Φ define the
corresponding coroot as

α̌ =
2

〈α, α〉
α.

Define the coroot lattice as

Q̌ =
∑
α∈Φ+

α̌Z.

Define the finite torus as

T = Q̌/(h + 1)Q̌.

Example: Type C

The positive roots are given by

Φ+ = {ej ± ei : 1 ≤ i < j ≤ n}
∪ {2ei : 1 ≤ i ≤ n}.

The coroot lattice is

Q̌ = Zn.

The finite torus is

Zn/(2n + 1)Zn.
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Parking functions

Classical parking functions

Definition

A classical parking function is an
integer vector

f = (f1, f2, . . . , fn)

with nonnegative entries such
that there exists a permutation
σ ∈ Sn with

fσ(i) ≤ i − 1.

Example

f = (1, 4, 0, 0, 4, 4, 1)

σ · f = (0, 0, 1, 1, 4, 4, 4)

≤ (0, 1, 2, 3, 4, 5, 6)
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Parking functions

Parking functions of type A and C

Proposition

The set of classical parking functions of length n is a natural system of
representatives for the finite torus of type An−1.

Recall that Zn/(2n + 1)Zn is the finite torus of type Cn.

Definition

We define parking functions of type C as integer vectors
f = (f1, f2, . . . , fn) where −n ≤ fi ≤ n.
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Parking functions

Vertically labelled Dyck paths

Definition

A vertically labelled Dyck path is
a pair (π, σ) of a Dyck path
π ∈ Dn and a permutation
σ ∈ Sn such that

σi < σi+1

for each rise i of π.

We call i a rise if the i-th North
step is followed by a North step.

Example

The rises of π are i = 1, 3, 5, 6.
Let σ = 3417256. The pair
(π, σ) is a vertical labelling.
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Parking functions

From vertically labelled Dyck paths to parking functions
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construct the parking function
corresponding to a vertically
labelled Dyck path.
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4
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0
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0
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There is a natural way to
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labelled Dyck path.
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Parking functions

Vertically labelled lattice paths

Definition

A vertically labelled lattice path
is a pair (π, σ) of a lattice path
π ∈ Ln from (0, 0) to (n, n) and
a signed permutation σ ∈ Hn

such that

σi < σi+1

for each rise i of π, and such that

0 < σ1

if π begins with a North step.

Example

1

The rises of π are i = 2, 3, 4, 5.
Moreover, π begins with a North
step.
Let σ = 1(−5)(−4)236. The pair
(π, σ) is a vertical labelling.
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Shi regions

The Shi arrangement

Definition

We define the Shi arrangement of
the root system Φ as

ShiΦ = {Hα,k : α ∈ Φ+, k = 0, 1}.

The connected components of

V −
⋃

H∈ShiΦ

H

are called the regions of the Shi
arrangement.

Example: ShiC2

In type C2 we have
Φ+ = {2e1, 2e2, e2 + e1, e2 − e1}.
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Shi regions

Diagonally labelled Dyck paths

Definition

A diagonally labelled Dyck path
is a pair (π, σ) of a Dyck path
π ∈ Dn and a permutation
σ ∈ Sn such that

σi < σj

for each valley (i , j) of π.

We call (i , j) a valley if the i-th
East step is followed by the j-th
North step.

Example

The valleys of π are (1, 3), (2, 5),
(4, 6), (5, 7).
Let σ = 3241576. The pair
(π, σ) is a diagonal labelling.
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Shi regions

Ballot paths

Definition

A ballot path is a lattice path
starting at (0, 0) consisting of 2n
North and/or East steps that
never goes below the main
diagonal x = y .
Let Bn denote the set of such
paths.

Example

The paths in B2.
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal.

The valleys of ζA(π, σ)
corresponding to the rises of (π, σ).
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal.
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal.
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corresponding to the rises of (π, σ).

0

1

1

2

0

1

2

3

4

1

7

2

5

6

ζA

i = 1
3

2

4

1

5

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 16 / 19



Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal.
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal.
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
corresponding to the rises of (π, σ).
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
corresponding to the rises of (π, σ).
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
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0

1

1

2

0

1

2

3

4

1

7

2

5

6

ζA

3

2

4

1

5

7

6

•

•
•

Robin Sulzgruber (Universität Wien) Parking functions in types C and B Ellwangen, 23rd March 2015 16 / 19



Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
corresponding to the rises of (π, σ).
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Zeta maps

The Haglund–Loehr zeta map

Definition

For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. The valleys of ζA(π, σ)
corresponding to the rises of (π, σ).
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal.

The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

The Haglund–Loehr zeta map in type C

Definition

For i = n, n− 1, . . . , 1 read the labels of rows with area equal to i from top
to bottom and insert them in the diagonal, then read the labels of rows
with area equal to −i + 1 from bottom to top and insert their negatives in
the diagonal. The valleys of ζC (π, σ) correspond to the rises of (π, σ).
The path ζC (π, σ) ends with an East step if π begins with a North step.
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Zeta maps

Type B

The parking functions (the finite torus) of type B are slightly more
complicated then in type C .

However, the path models for the Shi regions and the finite torus can be
chosen as in type C .

The area vector and zeta map are defined slightly differently.
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Zeta maps

Type B

The parking functions (the finite torus) of type B are slightly more
complicated then in type C .

However, the path models for the Shi regions and the finite torus can be
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Zeta maps

Type B

The parking functions (the finite torus) of type B are slightly more
complicated then in type C .

However, the path models for the Shi regions and the finite torus can be
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Zeta maps

Type B

The parking functions (the finite torus) of type B are slightly more
complicated then in type C .

However, the path models for the Shi regions and the finite torus can be
chosen as in type C .

The area vector and zeta map are defined slightly differently.
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The end

Thank you!
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