Parking functions in types C and B

Robin Sulzgruber joint work with Marko Thiel

Universität Wien
Ellwangen, 23 ${ }^{\text {rd }}$ March 2015

Outline

Outline

- Regions of the Shi arrangement

Outline

- Regions of the Shi arrangement
- Finite torus
(parking functions)

Outline

- Regions of the Shi arrangement

- Diagonally labelled paths

- Finite torus
(parking functions)

Outline

- Regions of the Shi arrangement
- Diagonally labelled paths
- Vertically labelled paths
- Finite torus (parking functions)

Hyperplanes and reflections

Hyperplanes and reflections

Definition

Let V be a Euclidean vector space with inner product $\langle.,\rangle,. \alpha \in V$ a nonzero vector and $k \in \mathbb{Z}$.

Hyperplanes and reflections

Definition

Let V be a Euclidean vector space with inner product $\langle.,\rangle,. \alpha \in V$ a nonzero vector and $k \in \mathbb{Z}$.
Define an affine hyperplane

$$
H_{\alpha, k}=\{x \in V:\langle x, \alpha\rangle=k\} .
$$

Hyperplanes and reflections

Definition

Let V be a Euclidean vector space with inner product $\langle.,\rangle,. \alpha \in V$ a nonzero vector and $k \in \mathbb{Z}$.
Define an affine hyperplane

$$
H_{\alpha, k}=\{x \in V:\langle x, \alpha\rangle=k\} .
$$

Let $s_{\alpha, k}$ be the reflection through $H_{\alpha, k}$.

$$
s_{\alpha, k}(x)=x-\frac{2\langle x, \alpha\rangle-2 k}{\langle\alpha, \alpha\rangle} \alpha .
$$

Roots

Roots

Definition

A crystallographic root system of V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that

Roots

$$
\begin{aligned}
& \text { Definition } \\
& \text { A crystallographic root system of } \\
& V \text { is a finite spanning subset } \\
& \Phi \subseteq V \text { of nonzero vectors such } \\
& \text { that } \\
& \mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\} \text { for all } \alpha \in \Phi,
\end{aligned}
$$

Roots

Definition

A crystallographic root system of V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that
$\mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$, $s_{\alpha, 0}(\Phi) \subseteq \Phi$ for all $\alpha \in \Phi$,

Roots

Definition

A crystallographic root system of V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that
$\mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$, $s_{\alpha, 0}(\Phi) \subseteq \Phi$ for all $\alpha \in \Phi$, $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$ for all $\alpha, \beta \in \Phi$.

Roots

Definition

A crystallographic root system of
V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that
$\mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$, $s_{\alpha, 0}(\Phi) \subseteq \Phi$ for all $\alpha \in \Phi$, $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$ for all $\alpha, \beta \in \Phi$.

Example

The root system of type C_{2} in $V=\mathbb{R}^{2}$.

Roots

Definition

A crystallographic root system of V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that
$\mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$, $s_{\alpha, 0}(\Phi) \subseteq \Phi$ for all $\alpha \in \Phi$, $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$ for all $\alpha, \beta \in \Phi$.

Let Φ^{+}denote the positive roots.

Example

The root system of type C_{2} in $V=\mathbb{R}^{2}$.

Roots

Definition

A crystallographic root system of V is a finite spanning subset $\Phi \subseteq V$ of nonzero vectors such that
$\mathbb{R} \alpha \cap \Phi=\{\alpha,-\alpha\}$ for all $\alpha \in \Phi$, $s_{\alpha, 0}(\Phi) \subseteq \Phi$ for all $\alpha \in \Phi$, $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$ for all $\alpha, \beta \in \Phi$.

Let Φ^{+}denote the positive roots.
We only consider irreducible root systems.

Example

The root system of type C_{2} in $V=\mathbb{R}^{2}$.

The coroot lattice and the finite torus

The coroot lattice and the finite torus

Definition
For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

The coroot lattice and the finite torus

Definition
For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

Define the coroot lattice as

$$
\check{Q}=\sum_{\alpha \in \Phi^{+}} \check{\alpha} \mathbb{Z}
$$

The coroot lattice and the finite torus

Definition
For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

Define the coroot lattice as

$$
\check{Q}=\sum_{\alpha \in \Phi^{+}} \check{\alpha} \mathbb{Z} .
$$

Define the finite torus as

$$
T=\breve{Q} /(h+1) \check{Q} .
$$

The coroot lattice and the finite torus

Definition

For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

Define the coroot lattice as

$$
\check{Q}=\sum_{\alpha \in \Phi^{+}} \check{\alpha} \mathbb{Z}
$$

Define the finite torus as

$$
T=\check{Q} /(h+1) \check{Q} .
$$

Example: Type C

The positive roots are given by

$$
\begin{aligned}
\Phi^{+}= & \left\{e_{j} \pm e_{i}: 1 \leq i<j \leq n\right\} \\
& \cup\left\{2 e_{i}: 1 \leq i \leq n\right\} .
\end{aligned}
$$

The coroot lattice and the finite torus

Definition

For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

Define the coroot lattice as

$$
\check{Q}=\sum_{\alpha \in \Phi^{+}} \check{\alpha} \mathbb{Z}
$$

Define the finite torus as

$$
T=\check{Q} /(h+1) \check{Q} .
$$

Example: Type C

The positive roots are given by

$$
\begin{aligned}
\Phi^{+}= & \left\{e_{j} \pm e_{i}: 1 \leq i<j \leq n\right\} \\
& \cup\left\{2 e_{i}: 1 \leq i \leq n\right\} .
\end{aligned}
$$

The coroot lattice is

$$
\check{Q}=\mathbb{Z}^{n} .
$$

The coroot lattice and the finite torus

Definition

For each root $\alpha \in \Phi$ define the corresponding coroot as

$$
\check{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} \alpha .
$$

Define the coroot lattice as

$$
\check{Q}=\sum_{\alpha \in \Phi^{+}} \check{\alpha} \mathbb{Z}
$$

Define the finite torus as

$$
T=\check{Q} /(h+1) \check{Q} .
$$

Example: Type C

The positive roots are given by

$$
\begin{aligned}
\Phi^{+}= & \left\{e_{j} \pm e_{i}: 1 \leq i<j \leq n\right\} \\
& \cup\left\{2 e_{i}: 1 \leq i \leq n\right\} .
\end{aligned}
$$

The coroot lattice is

$$
\check{Q}=\mathbb{Z}^{n} .
$$

The finite torus is

$$
\mathbb{Z}^{n} /(2 n+1) \mathbb{Z}^{n} .
$$

Classical parking functions

Classical parking functions

Definition
A classical parking function is an integer vector

$$
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

with nonnegative entries such that there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with

$$
f_{\sigma(i)} \leq i-1
$$

Classical parking functions

Definition

A classical parking function is an integer vector

$$
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

with nonnegative entries such that there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with

$$
f_{\sigma(i)} \leq i-1
$$

Example

$$
f=(1,4,0,0,4,4,1)
$$

Classical parking functions

Definition

A classical parking function is an integer vector

$$
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

with nonnegative entries such that there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with

$$
f_{\sigma(i)} \leq i-1
$$

Example

$$
f=(1,4,0,0,4,4,1)
$$

$$
\sigma \cdot f=(0,0,1,1,4,4,4)
$$

信

Classical parking functions

Definition

A classical parking function is an integer vector

$$
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

with nonnegative entries such that there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with

$$
f_{\sigma(i)} \leq i-1
$$

Example

$$
f=(1,4,0,0,4,4,1)
$$

$$
\begin{aligned}
\sigma \cdot f & =(0,0,1,1,4,4,4) \\
& \leq(0,1,2,3,4,5,6)
\end{aligned}
$$

Parking functions of type A and C

Parking functions of type A and C

Proposition
The set of classical parking functions of length n is a natural system of representatives for the finite torus of type A_{n-1}.

Parking functions of type A and C

Proposition
The set of classical parking functions of length n is a natural system of representatives for the finite torus of type A_{n-1}.

Recall that $\mathbb{Z}^{n} /(2 n+1) \mathbb{Z}^{n}$ is the finite torus of type C_{n}.

Parking functions of type A and C

Proposition
The set of classical parking functions of length n is a natural system of representatives for the finite torus of type A_{n-1}.

Recall that $\mathbb{Z}^{n} /(2 n+1) \mathbb{Z}^{n}$ is the finite torus of type C_{n}.
Definition
We define parking functions of type C as integer vectors
$f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ where $-n \leq f_{i} \leq n$.

Vertically labelled Dyck paths

Vertically labelled Dyck paths

Definition
A vertically labelled Dyck path is a pair (π, σ) of a Dyck path
$\pi \in \mathcal{D}_{n}$ and a permutation
$\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.

Vertically labelled Dyck paths

Definition
A vertically labelled Dyck path is a pair (π, σ) of a Dyck path
$\pi \in \mathcal{D}_{n}$ and a permutation
$\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
\qquad

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
\qquad

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$. Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

				6		
				5		
				2		
	7					
	1					
4						
3						

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

				6		
				5		
				2		
	7					
	1					
4						
3						

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

				6		
				5		
				2		
	7					
	1					
4						
3						

The rises of π are $i=1,3,5,6$.
Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$. Let $\sigma=3417256$.

Vertically labelled Dyck paths

Example

Definition

A vertically labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π.
We call i a rise if the i-th North step is followed by a North step.

The rises of π are $i=1,3,5,6$. Let $\sigma=3417256$. The pair (π, σ) is a vertical labelling.

From vertically labelled Dyck paths to parking functions

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

				6		
5						
	7					
	1					
4						
3						

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

				6		
5						
	7					
	1					
4						
3						

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths
0

				6	
5					
2					
7					
	1				
4					
3					

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | | | |
| 5 | | | | | | |
| | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

0	1	2	3	4	5	
				6		
				5		
				2		
	7					
	1					
4						
3						

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,,,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,, 0,, \quad, \quad)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(,, 0,0,,,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(1,, 0,0,, \quad,)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(1,, 0,0,,, 1)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(1,4,0,0,,, 1)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(1,4,0,0,4,, 1)
$$

From vertically labelled Dyck paths to parking functions

Vertically labelled Dyck paths

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 6 | | |
| | | | | 5 | | |
| | | | | 2 | | |
| | 7 | | | | | |
| | 1 | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |

Classical parking functions
There is a natural way to construct the parking function corresponding to a vertically labelled Dyck path.

$$
f=(1,4,0,0,4,4,1)
$$

Vertically labelled lattice paths

Vertically labelled lattice paths

Definition

A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from (0,0) to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Vertically labelled lattice paths

Example

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from (0,0) to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition
A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$.

Vertically labelled lattice paths

Definition

A vertically labelled lattice path is a pair (π, σ) of a lattice path $\pi \in \mathcal{L}_{n}$ from $(0,0)$ to (n, n) and a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
\sigma_{i}<\sigma_{i+1}
$$

for each rise i of π, and such that

$$
0<\sigma_{1}
$$

if π begins with a North step.

Example

			6		
			3		
			2		
			-4		
			-5		

The rises of π are $i=2,3,4,5$. Moreover, π begins with a North step.
Let $\sigma=1(-5)(-4) 236$. The pair (π, σ) is a vertical labelling.

From vertically labelled lattice paths to parking functions

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths
Type C parking functions
There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(, \quad, \quad, \quad, \quad)
$$

1

			6		
			3		
			2		
			-4		
			-5		

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions
There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions
There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions
There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0,, \quad, \quad, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0, \quad, \quad,-4, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions
There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0, \quad,-4,-4, \quad)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0,4,,-4,-4,)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0,4,4,-4,-4,)
$$

From vertically labelled lattice paths to parking functions

Vertically labelled lattice paths

Type C parking functions There is a natural bijection between type C parking functions and vertically labelled lattice paths.

$$
f=(0,4,4,-4,-4,4)
$$

The Shi arrangement

The Shi arrangement

Definition
We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

The Shi arrangement

> Definition
> We define the Shi arrangement of the root system Φ as
> $\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition
We define the Shi arrangement of the root system Φ as

Shi $_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition
We define the Shi arrangement of the root system Φ as

Shi $_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shi $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as

Shi $_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shi $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic C_{2}

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as

Shi $_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.

Example: Shic $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

The Shi arrangement

Definition

We define the Shi arrangement of the root system Φ as
$\operatorname{Shi}_{\Phi}=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k=0,1\right\}$.
The connected components of

$$
V-\bigcup_{H \in \text { Shi }_{\Phi}} H
$$

are called the regions of the Shi arrangement.

Example: Shi $_{C_{2}}$

In type C_{2} we have $\Phi^{+}=\left\{2 e_{1}, 2 e_{2}, e_{2}+e_{1}, e_{2}-e_{1}\right\}$.

Diagonally labelled Dyck paths

Diagonally labelled Dyck paths

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path
$\pi \in \mathcal{D}_{n}$ and a permutation
$\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.

Diagonally labelled Dyck paths

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path
$\pi \in \mathcal{D}_{n}$ and a permutation
$\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

Diagonally labelled Dyck paths

Example

Definition
A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition
A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$.

Diagonally labelled Dyck paths

Example

Definition

A diagonally labelled Dyck path is a pair (π, σ) of a Dyck path $\pi \in \mathcal{D}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
\sigma_{i}<\sigma_{j}
$$

for each valley (i, j) of π.
We call (i, j) a valley if the i-th East step is followed by the j-th North step.

The valleys of π are $(1,3),(2,5)$, $(4,6),(5,7)$.
Let $\sigma=3241576$. The pair (π, σ) is a diagonal labelling.

Ballot paths

Ballot paths

Definition
A ballot path is a lattice path starting at $(0,0)$ consisting of $2 n$
North and/or East steps that never goes below the main
diagonal $x=y$.
Let \mathcal{B}_{n} denote the set of such paths.

Ballot paths

Definition
A ballot path is a lattice path starting at $(0,0)$ consisting of $2 n$
North and/or East steps that never goes below the main diagonal $x=y$.
Let \mathcal{B}_{n} denote the set of such paths.

Example

The paths in \mathcal{B}_{2}.

Diagonally labelled ballot paths

Diagonally labelled ballot paths

Definition
A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Diagonally labelled ballot paths

Definition
A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2,4), $(3,6),(4,7)$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2,4), $(3,6),(4,7)$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2,4), $(3,6),(4,7)$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), $(2,4)$, $(3,6),(4,7)$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2, 4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2, 4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2, 4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), $(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2,4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2,4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are $(1,3),(2,4)$, $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2, 4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

Diagonally labelled ballot paths

Definition

A diagonally labelled ballot path is a pair $\left(\beta, w^{\sigma}\right)$ of a ballot path $\beta \in \mathcal{B}_{n}$ and a word w^{σ} depending on a signed permutation $\sigma \in \mathfrak{H}_{n}$ such that

$$
w_{i}^{\sigma}>w_{j}^{\sigma}
$$

for each valley (i, j) of β, and such that

$$
0<w_{i}^{\sigma}
$$

if β ends with its i-th East step.

Example

The valleys of β are (1,3), (2, 4), $(3,6),(4,7)$. Moreover, β ends with the fifth East step.
Let $\sigma=(-2) 13465$.

The Haglund-Loehr zeta map

The Haglund-Loehr zeta map

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

| | | | | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| 5 | | | | |
| | 7 | | | |
| | 1 | | | |
| 4 | | | | |
| 3 | | | | |

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.
$\left.\begin{array}{l|l|l|l|l|l|l|}\hline 2 \rightarrow & & & & & 6 & \\ \hline \\ 1 & & & & \\ \hline\end{array}\right)$

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal.

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

$\xrightarrow{\zeta_{A}}$

						6
					7	
				5		
			1			
		4				
	2					
3						

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

| | | | | | | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | 7 | |
| | | | | 5 | | |
| | | | 1 | | | |
| \bullet | | 4 | | | | |
| | 2 | | | | | |
| 3 | | | | | | |

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

The Haglund-Loehr zeta map

Definition

For $i=0,1, \ldots, n$ read the labels of rows with area equal to i from bottom to top and insert them in the diagonal. The valleys of $\zeta_{A}(\pi, \sigma)$ corresponding to the rises of (π, σ).

The Haglund-Loehr zeta map in type C

The Haglund-Loehr zeta map in type C

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

Ellwangen, $23^{\text {rd }}$ March 2015
17 / 19

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

$$
\begin{gathered}
2 \\
1 \\
0 \\
-1 \\
-2 \\
1
\end{gathered}
$$

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

The Haglund-Loehr zeta map in type C

Definition

For $i=n, n-1, \ldots, 1$ read the labels of rows with area equal to i from top to bottom and insert them in the diagonal, then read the labels of rows with area equal to $-i+1$ from bottom to top and insert their negatives in the diagonal. The valleys of $\zeta_{C}(\pi, \sigma)$ correspond to the rises of (π, σ). The path $\zeta_{C}(\pi, \sigma)$ ends with an East step if π begins with a North step.

Type B

Type B

The parking functions (the finite torus) of type B are slightly more complicated then in type C.

Type B

The parking functions (the finite torus) of type B are slightly more complicated then in type C.
However, the path models for the Shi regions and the finite torus can be chosen as in type C.

Type B

The parking functions (the finite torus) of type B are slightly more complicated then in type C.
However, the path models for the Shi regions and the finite torus can be chosen as in type C.
The area vector and zeta map are defined slightly differently.

Type B

The parking functions (the finite torus) of type B are slightly more complicated then in type C.

However, the path models for the Shi regions and the finite torus can be chosen as in type C.
The area vector and zeta map are defined slightly differently.

The end

Thank you!

