A family of posets defined from acyclic digraphs.

François Viard

ICJ, Lyon
Mars 2015, SLC

Plan

(1) Some definitions about digraphs and posets
(2) Definition of the posets $\mathcal{P}(\mathcal{G})$
(3) Applications (with emphasis on the weak order on the symmetric group)

Simple acyclic digraphs: definition

Simple acyclic digraphs: definition

$G=(V, E) \quad V:=$ Set of vertices, $E:=$ set of oriented edges (arcs).

Simple acyclic digraphs: definition

$G=(V, E) \quad V:=$ Set of vertices, $E:=$ set of of oriented edges (arcs).

Simple acyclic digraphs: definition

$G=(V, E) \quad V:=$ Set of vertices, $E:=$ set of oriented edges (arcs).

Simple acyclic digraphs: definition

G=(V,E) $V:=$ Set of vertices, $E:=$ set of oriented edges (arcs).

Some definitions about posets

$\mathcal{P}=(P, \leq) \quad " \leq "$ is a reflexive, antisymmetric and transitive binary relation.

Subsets of $\{1,2,3\}$ ordered by inclusion.

Some definitions about posets

$\mathcal{P}=(P, \leq) \quad$ " \leq " is a reflexive, antisymmetric and transitive binary relation.

This is a complete $\{1,2,3\}$ meet semi-lattice

Subsets of $\{1,2,3\}$ ordered by inclusion.

Complete meet semi-lattice :=
Any subset $S \subseteq P$ has an infimum (i.e. there exists z such that: $\forall y \in S, z \leq y$, and if $\forall y \in S, x \leq y$ then $x \leq z$)

Some definitions about posets

$\mathcal{P}=(P, \leq) \quad " \leq "$ is a reflexive, antisymmetric and transitive binary relation.
Complete meet semi-lattice $:=$
Any subset $S \subseteq P$ has an infimum (i.e. there exists z such that: $\forall y \in S, z \leq y$, and if $\forall y \in S, x \leq y$ then $x \leq z$)

Möbius function of $\mathcal{P}:=$
Recursively defined by:

1) $\forall x \in P, \mu(x, x)=1$;
2) $\mu(x, y)=-\sum_{x \leq c<y} \mu(x, c)$.

The peeling process
$G=(V, E)$

The peeling process

$G=(V, E) \quad$ Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.

$L=[$ ］

The peeling process

$G=(V, E) \quad$ Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.
Step 1:
Consider each $z \in V$ such that :

1) $\theta_{z}=0$
$2)$ if $(y, z) \in E$, then $\theta_{y} \neq 0$.

$$
L=[]
$$

The peeling process

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z. |
| :---: | :---: | :---: |
| Step $1:$ | |

The peeling process

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z. |
| :--- | :--- | :--- |
| | Step $1:$
 Consider each $z \in V$ such that :
 $1) \theta_{z}=0$ |
| $2)$ if $(y, z) \in E$, then $\theta_{y} \neq 0$. | |

The peeling process

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z. |
| :--- | :--- | :--- |
| | Step $1:$
 Consider each $z \in V$ such that :
 $1) \theta_{z}=0$ |
| $2)$ if $(y, z) \in E$, then $\theta_{y} \neq 0$. | |

The peeling process

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z. |
| :--- | :--- | :--- |
| Step $1:$ | |
| d | |

The peeling process

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.	
		Step 1: Consider each $z \in V$ such that : 1) $\theta_{z}=0$ 2) if $(y, z) \in E$, then $\theta_{y} \neq 0$.
		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e]$		

The peeling process

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.		
			Step 1 : Consider each $z \in V$ such that 1) $\theta_{z}=0$ $2)$ if $(y, z) \in E$, then $\theta_{y} \neq 0$.
			Step 2 : Choose one of these vertices and add it to the list.
			Step 3 : Peeling process !
$L=[e]$			

The peeling process

The peeling process

$G=(V, E)$

The peeling process

The peeling process

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.	
		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e, c, a]$		

The peeling process

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z.	
(0) f		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e, c, a, b]$		

The peeling process

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta_{z} \leq$ outdegree of z. |
| :--- | :--- | :--- |
| Step $1:$ | |

The peeling process

$L=[e, c, a, b, d, f]$

The peeling process

$L=[e, c, a, b, d, f] \longleftarrow$ Such a sequence is called a peeling sequence of (G, θ).

Initial sections of a peeling sequence and definition of $\mathcal{P}(\mathcal{G})$

- Consider $L=[e, c, a, b, d, f]$ the previous peeling sequence. The initial sections of L are the following sets

$$
L_{0}=\emptyset, L_{1}=\{e\}, L_{2}=\{e, c\}, \ldots, L_{6}=\{e, c, a, b, d, f\} .
$$

Clearly, two different peeling sequences give rise to different initial sections (at least some of them).

Initial sections of a peeling sequence and definition of $\mathcal{P}(\mathcal{G})$

- Consider $L=[e, c, a, b, d, f]$ the previous peeling sequence. The initial sections of L are the following sets

$$
L_{0}=\emptyset, L_{1}=\{e\}, L_{2}=\{e, c\}, \ldots, L_{6}=\{e, c, a, b, d, f\} .
$$

Clearly, two different peeling sequences give rise to different initial sections (at least some of them).

Definition

Set $\mathcal{G}=(G, \theta)$ a pair of a simple acyclic digraph and a "compatible" valuation on its vertices. We denote $I S(\mathcal{G})$ the set constituted of all the initial sections of all the peeling sequences of \mathcal{G}, and finally we denote $\mathcal{P}(\mathcal{G})=(I S(\mathcal{G}), \subseteq)$ obtained by ordering $I S(\mathcal{G})$ by inclusion.

First result

Theorem, (V, 2014)

For all pair $\mathcal{G}=(G, \theta)$, the poset $\mathcal{P}(\mathcal{G})$ is a complete meet semi-lattice. Furthermore, if G is finite, it is a complete lattice with V as maximal element.

Möbius function of $\mathcal{P}(\mathcal{G})$

Definition

Set $A \in I S(\mathcal{G})$, we define:

- $\mathcal{N}(A)=\left\{z \in A \mid \theta_{z}=0\right\} ;$
- $\mathcal{F}(A)=\{z \in A \mid A \backslash\{z\} \in I S(\mathcal{G})\}$.

Möbius function of $\mathcal{P}(\mathcal{G})$

Definition

Set $A \in I S(\mathcal{G})$, we define:

- $\mathcal{N}(A)=\left\{z \in A \mid \theta_{z}=0\right\}$;
- $\mathcal{F}(A)=\{z \in A \mid A \backslash\{z\} \in I S(\mathcal{G})\}$.

Theorem, V. 2014

We have the two following cases:

- if $\mathcal{N}(A)=\mathcal{F}(A)$, then $\mu(\emptyset, A)=(-1)^{|\mathcal{N}(A)| ; ~}$
- otherwise, $\mu(\emptyset, A)=0$.

The weak order on the symmetric group

The symmetric group S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), 1 \leq i \leq n-1$, which exchange the integers i and $i+1$.

The weak order on the symmetric group

The symmetric group S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), 1 \leq i \leq n-1$, which exchange the integers i and $i+1$.

- Each permutation $\sigma \in S_{n}$ can be written as a product of a minimal number of simple transpositions. This minimal number is denoted $\ell(\sigma)$ and is called the length of σ.

The weak order on the symmetric group

The symmetric group S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), 1 \leq i \leq n-1$, which exchange the integers i and $i+1$.

- Each permutation $\sigma \in S_{n}$ can be written as a product of a minimal number of simple transpositions. This minimal number is denoted $\ell(\sigma)$ and is called the length of σ.
- We define the weak order \leq_{R} on S_{n} as follows: we say that $\sigma \leq_{R} \omega$ if and only if there exists $s_{i_{1}}, \ldots, s_{i_{k}}$ such that $\omega=\sigma s_{i_{1}} \cdots s_{i_{k}}$, and $\ell(\sigma)+k=\ell(\omega)$.

Classical property

The poset $\left(S_{n}, \leq_{R}\right)$ is a complete lattice, and its möbius function takes values in $\{1,0,-1\}$.

The weak order on the symmetric group

Definition/property

For all $\sigma \in S_{n}$, we define the inversion set of σ as:

$$
\operatorname{Inv}(\sigma)=\left\{(a, b) \mid 1 \leq a<b \leq n, \sigma^{-1}(a)>\sigma^{-1}(b)\right\}
$$

Then for all σ and ω in $S_{n}, \sigma \leq_{R} \omega$ if and only if $\operatorname{Inv}(\sigma) \subseteq \operatorname{Inv}(\omega)$.

The weak order on the symmetric group

Definition/property

For all $\sigma \in S_{n}$, we define the inversion set of σ as:

$$
\operatorname{Inv}(\sigma)=\left\{(a, b) \mid 1 \leq a<b \leq n, \sigma^{-1}(a)>\sigma^{-1}(b)\right\} .
$$

Then for all σ and ω in $S_{n}, \sigma \leq_{R} \omega$ if and only if $\operatorname{Inv}(\sigma) \subseteq \operatorname{Inv}(\omega)$.

Main idea

Find a pair $\mathcal{G}=(G, \theta)$ such that:

- the vertices of G are indexed by the couples of integers (a, b) such that $1 \leq a<b \leq n$;

The weak order on the symmetric group

Definition/property

For all $\sigma \in S_{n}$, we define the inversion set of σ as:

$$
\operatorname{Inv}(\sigma)=\left\{(a, b) \mid 1 \leq a<b \leq n, \sigma^{-1}(a)>\sigma^{-1}(b)\right\} .
$$

Then for all σ and ω in $S_{n}, \sigma \leq_{R} \omega$ if and only if $\operatorname{Inv}(\sigma) \subseteq \operatorname{Inv}(\omega)$.

Main idea

Find a pair $\mathcal{G}=(G, \theta)$ such that:

- the vertices of G are indexed by the couples of integers (a, b) such that $1 \leq a<b \leq n$;
- the elements of $\operatorname{IS}(\mathcal{G})$ are precisely the set of the form $\operatorname{Inv}(\sigma), \sigma \in S_{n}$.

The weak order on the symmetric group

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

This box represents the couple $(2,5)$

The weak order on the symmetric group

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

Hook based on the box $(2,5)$

The weak order on the symmetric group

Values of the valuation θ

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

The weak order on the symmetric group

Denote $\mathcal{A}=(G, \theta)$ the obtained pair.
We have that $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Example:

$\operatorname{Inv}([4,1,3,5,2])=\{(1,4),(2,3),(2,4),(2,5),(3,4)\}$

One can easilly represent the set $\{(a, b) \mid 1 \leq a<b \leq n\}$ as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta_{c}=\frac{\text { outdegree }(c)}{2}$.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

Link with the Stanley symmetric function

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.
A similar thing can be done with the diagram of any permutation.

Link with the Stanley symmetric function

Définition

Set $\sigma \in S_{n}$, we denote $\operatorname{Tab}(\sigma)$ the set of all the tableaux obtained from the diagram of σ by the previous method. We denote x^{T} the monomial associated to $T \in \operatorname{Tab}(\sigma)$.

Link with the Stanley symmetric function

Définition

Set $\sigma \in S_{n}$, we denote $\operatorname{Tab}(\sigma)$ the set of all the tableaux obtained from the diagram of σ by the previous method. We denote x^{T} the monomial associated to $T \in \operatorname{Tab}(\sigma)$.

Definition

For all $\sigma \in S_{n}$, we define the Stanley symmetric function of σ as follows:

$$
F_{\sigma}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\left(i_{1}, \ldots, i_{\ell(\sigma)}\right) \in \operatorname{Red}(\sigma)} \sum_{\substack{b_{1} \leq b_{2} \leq \ldots \leq b_{\ell(\sigma)} \text { integers } \\ b_{j}<b_{j+1} \text { if } i_{j}<i_{j+1}}} x_{b_{1}} x_{b_{2}} \cdots x_{b_{\ell(\sigma)}}
$$

Théorème, V. 2014

Set $\sigma \in S_{n}$ and F_{σ} the associated Stanley symmetric function, then:

$$
F_{\sigma}\left(x_{1}, x_{2}, \ldots\right)=\sum_{T \in \operatorname{Tab}(\sigma)} x^{T}
$$

Some other examples

And other examples as the up-set (resp. down-set) lattice of any finite poset, ...

What's next?

- Can we do the same thing with other Coxeter groups ?

What's next ?

- Can we do the same thing with other Coxeter groups ?
- A general method can be implemented, based on the study of the root system associated with the Coxeter group + some geometric considerations.
- This method provides a good candidate for the type D, but in general it gives rise to digraphs which contain cycles.

What＇s next？

－Can we do the same thing with other Coxeter groups ？
－A general method can be implemented，based on the study of the root system associated with the Coxeter group + some geometric considerations．
－This method provides a good candidate for the type D ，but in general it gives rise to digraphs which contain cycles．
－A generalization on more complicated digraphs ？With cycles or multi－edges ？

What's next ?

- Can we do the same thing with other Coxeter groups ?
- A general method can be implemented, based on the study of the root system associated with the Coxeter group + some geometric considerations.
- This method provides a good candidate for the type D, but in general it gives rise to digraphs which contain cycles.
- A generalization on more complicated digraphs ? With cycles or multi-edges ?
- Combinatorial properties of $\mathcal{P}(\mathcal{G})$ when $\mathcal{G}=(G, \theta)$ is balanced ? That is, the out-degree of any vertex of G is an even number, and the valuation is given by the out-degree divided by 2 .

What's next ?

- Can we do the same thing with other Coxeter groups ?
- A general method can be implemented, based on the study of the root system associated with the Coxeter group + some geometric considerations.
- This method provides a good candidate for the type D, but in general it gives rise to digraphs which contain cycles.
- A generalization on more complicated digraphs ? With cycles or multi-edges ?
- Combinatorial properties of $\mathcal{P}(\mathcal{G})$ when $\mathcal{G}=(G, \theta)$ is balanced ? That is, the out-degree of any vertex of G is an even number, and the valuation is given by the out-degree divided by 2 .

Thank you for your attention!

