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Simple acyclic digraphs: definition

G = (V,E) V := Set of vertices, E:= set of oriented edges (arcs).
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Simple acyclic digraphs: definition

G = (V,E)

Simple :=

no more than one arc between

two different vertices.

V := Set of vertices, E:= set of oriented edges (arcs).

Acyclic :=

It is a digraph with no

directed cycles.

Outdegree of a vertex z :=

number of arcs which have

z as starting point.

Outdegree = 2
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P = (P,≤) “≤” is a reflexive, antisymmetric and transitive binary relation.

Subsets of {1, 2, 3} ordered by inclusion.
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Complete meet semi-lattice :=

Any subset S ⊆ P has

an infimum (i.e. there exists

z such that: ∀y ∈ S, z ≤ y,

and if ∀y ∈ S, x ≤ y then x ≤ z)

This is a complete

meet semi-lattice



Some definitions about posets

Möbius function of P :=

Recursively defined by:

1) ∀x ∈ P, µ(x, x) = 1;

2) µ(x, y) = −∑
x≤c<y µ(x, c).1
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P = (P,≤) “≤” is a reflexive, antisymmetric and transitive binary relation.

Subsets of {1, 2, 3} ordered by inclusion.

Complete meet semi-lattice :=

Any subset S ⊆ P has

an infimum (i.e. there exists

z such that: ∀y ∈ S, z ≤ y,

and if ∀y ∈ S, x ≤ y then x ≤ z)

Values of µ(∅, A)
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Consider θ : V → such that ∀z ∈ V , 0 ≤ θz ≤ outdegree of z.
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The peeling process

G = (V,E)

L = [e, c, a, b, d, f ]

Step 1 :

Consider each z ∈ V such that :
1) θz = 0

2) if (y, z) ∈ E, then θy 6= 0.

Step 2 :

Choose one of these vertices

and add it to the list.

Step 3 :

Peeling process !

Such a sequence is called a peeling sequence of (G, θ).

Consider θ : V → such that ∀z ∈ V , 0 ≤ θz ≤ outdegree of z.



Initial sections of a peeling sequence and definition of P(G)

Consider L = [e, c , a, b, d , f ] the previous peeling sequence. The
initial sections of L are the following sets

L0 = ∅, L1 = {e}, L2 = {e, c}, . . . , L6 = {e, c , a, b, d , f }.

Clearly, two different peeling sequences give rise to different initial sections
(at least some of them).

Definition

Set G = (G , θ) a pair of a simple acyclic digraph and a “compatible”
valuation on its vertices. We denote IS(G) the set constituted of all the
initial sections of all the peeling sequences of G, and finally we denote
P(G) = (IS(G),⊆) obtained by ordering IS(G) by inclusion.
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First result

Theorem, (V, 2014)

For all pair G = (G , θ), the poset P(G) is a complete meet semi-lattice.
Furthermore, if G is finite, it is a complete lattice with V as maximal
element.

{c}{e}{d}

{e, c} {c, f}{c, d}

V = {a, b, c, d, e, f}
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0
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{d, b} {e, b}



Möbius function of P(G)

Definition

Set A ∈ IS(G), we define:

N (A) = {z ∈ A | θz = 0};
F(A) = {z ∈ A | A \ {z} ∈ IS(G)}.

Theorem, V. 2014

We have the two following cases:

if N (A) = F(A), then µ(∅,A) = (−1)|N (A)|;

otherwise, µ(∅,A) = 0.
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The weak order on the symmetric group

The symmetric group Sn is generated by the simple transpositions
si = (i , i + 1), 1 ≤ i ≤ n − 1, which exchange the integers i and i + 1.

Each permutation σ ∈ Sn can be written as a product of a minimal
number of simple transpositions. This minimal number is denoted
`(σ) and is called the length of σ.

We define the weak order ≤R on Sn as follows: we say that σ ≤R ω if
and only if there exists si1 , . . . , sik such that ω = σsi1 · · · sik , and
`(σ) + k = `(ω).

Classical property

The poset (Sn,≤R) is a complete lattice, and its möbius function takes
values in {1, 0,−1}.
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The weak order on the symmetric group

Definition/property

For all σ ∈ Sn, we define the inversion set of σ as:

Inv(σ) = {(a, b) | 1 ≤ a < b ≤ n, σ−1(a) > σ−1(b)}.

Then for all σ and ω in Sn, σ ≤R ω if and only if Inv(σ) ⊆ Inv(ω).

Main idea

Find a pair G = (G , θ) such that:

the vertices of G are indexed by the couples of integers (a, b) such
that 1 ≤ a < b ≤ n;

the elements of IS(G) are precisely the set of the form Inv(σ), σ ∈ Sn.
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We implement an (implicit) digraph

structure on this diagram.

We say that there is an arc from c

to d iff d is in the hook based on c.
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We implement an (implicit) digraph
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to d iff d is in the hook based on c.
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Denote A = (G, θ) the obtained pair.

We have that IS(A) = {Inv(σ) | σ ∈ Sn}

Inv([4, 1, 3, 5, 2]) = {(1, 4), (2, 3), (2, 4), (2, 5), (3, 4)}
Example:Example:
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σ = [4, 1, 3, 5, 2]
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The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.
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monomial x3x
2
5x

2
9

3

1 1

4

1

monomial x31x3x4

Another example:

A similar thing can be done with the diagram of any permutation.



Link with the Stanley symmetric function

Définition

Set σ ∈ Sn, we denote Tab(σ) the set of all the tableaux obtained from
the diagram of σ by the previous method. We denote xT the monomial
associated to T ∈ Tab(σ).

Definition

For all σ ∈ Sn, we define the Stanley symmetric function of σ as follows:

Fσ(x1, x2, . . .) =
∑

(i1,...,i`(σ))∈Red(σ)

∑

b1≤b2≤...≤b`(σ) integers
bj<bj+1 if ij<ij+1

xb1xb2 · · · xb`(σ) .

Théorème, V. 2014

Set σ ∈ Sn and Fσ the associated Stanley symmetric function, then:

Fσ(x1, x2, . . .) =
∑

T∈Tab(σ)

xT .
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bj<bj+1 if ij<ij+1

xb1xb2 · · · xb`(σ) .

Théorème, V. 2014

Set σ ∈ Sn and Fσ the associated Stanley symmetric function, then:

Fσ(x1, x2, . . .) =
∑

T∈Tab(σ)

xT .



Some other examples
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(Ã4,≤R) (B4,≤R) “Flag weak order” on G(2, 3).

And other examples as the up-set (resp. down-set) lattice of any finite poset, ...



What’s next ?

Can we do the same thing with other Coxeter groups ?

A general method can be implemented, based on the study of the root
system associated with the Coxeter group + some geometric
considerations.
This method provides a good candidate for the type D, but in general
it gives rise to digraphs which contain cycles.

A generalization on more complicated digraphs ? With cycles or
multi-edges ?

Combinatorial properties of P(G) when G = (G , θ) is balanced ?
That is, the out-degree of any vertex of G is an even number, and the
valuation is given by the out-degree divided by 2.

Thank you for your attention !
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