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@ Some definitions about digraphs and posets
@ Definition of the posets P(G)

© Applications (with emphasis on the weak order on the symmetric group)
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Simple acyclic digraphs: definition

G=(V,E)

V:= Set of vertices, E:= set of oriented edges (arcs).

Acyclic :=

It is a digraph with no
directed cycles.

Simple :=
no more than one arc between

two different vertices.

Outdegree of a vertex z :=

number of arcs which have

z as starting point.




Some definitions about posets

P=(P<) “<” is a reflexive, antisymmetric and transitive binary relation.
{1,2,3}
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{1} {3}
0
Subsets of {1, 2,3} ordered by inclusion.
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Some definitions about posets

P=(P<) “<” is a reflexive, antisymmetric and transitive binary relation.
Complete meet semi-lattice :=
N . -1
Values of u(0, A) Any subset S C P has
an infimum (i.e. there exists
z such that: Vy € S, z <y,
! ! and if Vy € S, x <y then < z)
1 1 Mobius function of P :=
Recursively defined by:
1) Vo € P, pla,z) =1,
1 2) /L(:C, y) = - Za‘§c<y /L(,T, C)-
Subsets of {1, 2,3} ordered by inclusion.
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The peeling process

G=(V,E) Consider @ : V — IN such that Vz € V, 0 < 6, < outdegree of z.

1 Step 1 :
Consider each z € V' such that :
1)60.=0
2) if (y, z) € E, then 6, # 0.

Step 2 :

Choose one of these vertices
and add it to the list.

Step 3 :

Peeling process !

L =e,c,a,b,d, f] «— Such a sequence is called a peeling sequence of (G, 0).
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initial sections of L are the following sets

Lozw, le{e}, Lzz{e,c},..., L6:{e,c,a,b,d,f}.

Clearly, two different peeling sequences give rise to different initial sections
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Initial sections of a peeling sequence and definition of P(G)

e Consider L = [e, c, a, b, d, f] the previous peeling sequence. The
initial sections of L are the following sets

Lozw, le{e}, L2:{6,C},..., L6:{e,c,a,b,d,f}.

Clearly, two different peeling sequences give rise to different initial sections
(at least some of them).

Definition

Set G = (G, 0) a pair of a simple acyclic digraph and a “compatible”
valuation on its vertices. We denote /S(G) the set constituted of all the
initial sections of all the peeling sequences of G, and finally we denote
P(G) = (IS(G), C) obtained by ordering IS(G) by inclusion.




First result

Theorem, (V, 2014)

For all pair G = (G, 6), the poset P(G) is a complete meet semi-lattice.

Furthermore, if G is finite, it is a complete lattice with V' as maximal
element.

V =A{a,b,c,d.e, f}
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Definition
Set A € IS(G), we define:
o N(A)={ze€ A| 6, =0}
o F(A)={ze A| A\{z} € IS(9)}.




Mobius function of P(G)

Definition
Set A € IS(G), we define:
o N(A)={ze€ A| 6, =0}
o F(A)={ze A| A\{z} € IS(9)}.

Theorem, V. 2014

We have the two following cases:
o if N(A) = F(A), then u(0, A) = (—1)V A,
@ otherwise, u(0, A) = 0.

| A\

A,
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The weak order on the symmetric group

The symmetric group S, is generated by the simple transpositions
si=(i,i+1),1<i<n—1, which exchange the integers i and i + 1.
@ Each permutation o € S, can be written as a product of a minimal
number of simple transpositions. This minimal number is denoted
¢(o) and is called the length of o.

o We define the weak order <g on S, as follows: we say that o <g w if
and only if there exists s; ,...,s; such that w =o0s; ---s;, and
o)+ k =t(w).

Classical property

The poset (S, <gr) is a complete lattice, and its mobius function takes
values in {1,0,—1}.
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The weak order on the symmetric group

Definition/property

For all o € S,,, we define the inversion set of o as:
Inv(o) = {(a,b) | 1<a< b<n, o7a)>o (b))

Then for all o and w in S, 0 <g w if and only if Inv(c) C Inv(w).

Main idea

Find a pair G = (G, 0) such that:
@ the vertices of G are indexed by the couples of integers (a, b) such
thatl1<a< b<n;

@ the elements of IS(G) are precisely the set of the form Inv(c), o € S,.
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o=[4,1,3,5,2]
i 9
9 (5|5
3

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.




Link with the Stanley symmetric function

Another example:

o=[4,1,3,5,2]
t 9 4
9 5 5 1 1 1
3 3
monomial lglglg monomial z}x324

The next integer must be weakly bigger than the previous one.

A given integer cannot appear twice in the same column.

A similar thing can be done with the diagram of any permutation.



Link with the Stanley symmetric function

Définition
Set 0 € Sp,, we denote Tab(o) the set of all the tableaux obtained from
the diagram of o by the previous method. We denote x the monomial
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Link with the Stanley symmetric function

Définition

Set 0 € S,, we denote Tab(c) the set of all the tableaux obtained from
the diagram of & by the previous method. We denote x the monomial
associated to T € Tab(o).

Definition

For all o € S,;, we define the Stanley symmetric function of o as follows:

FU(Xl,Xg,...) = Z Z Xb1 Xby * * " Xby(oy -

(715 +5ip(s))ERed(0) b1<b2<...<by(s) integers
bj<bji1 if ;j<ijra

| \

Théoreme, V. 2014

Set 0 € S, and F, the associated Stanley symmetric function, then:

Fo(x1,x2,...) = Z xT.

TETab(o)




Some other examples

dEE

6 il 5 | 4

= OE

slalsfiE | [s]s]|®s]2]1]o] | [o]1]2 1o
4 | 3 i 2 23|21 ]0 0]1 0
32 |1 1]1]o 0
mHa]1]o 0 o
210

1]0

0

(A4, <g) (Bs,<gr) “Flag weak order” on G(2,3).

And other examples as the up-set (resp. down-set) lattice of any finite poset, ...
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What's next ?

@ Can we do the same thing with other Coxeter groups ?

e A general method can be implemented, based on the study of the root
system associated with the Coxeter group + some geometric
considerations.

e This method provides a good candidate for the type D, but in general
it gives rise to digraphs which contain cycles.

@ A generalization on more complicated digraphs 7 With cycles or
multi-edges 7

o Combinatorial properties of P(G) when G = (G, ) is balanced 7
That is, the out-degree of any vertex of G is an even number, and the
valuation is given by the out-degree divided by 2.

Thank you for your attention !
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