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Introduction

@ A partition is a finite weakly decreasing sequence of positive integers
A= (M1, A2,...,Ar). Theinteger | A |= > \;is called the size of the \.

1<i<r
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Introduction

@ A partition is a finite weakly decreasing sequence of positive integers
A= (M1, A2,...,Ar). Theinteger | A |= > \;is called the size of the \.
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@ A partition X could be identical with its Young diagram, which is a
collection of boxes arranged in left-justified rows with \; boxes in the i-th
row.
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@ hook length hy : the number of boxes exactly to the right, or exactly
below O, or O itself.

Huan Xiong Difference operators for partitions and some applications



Introduction

@ A partition is a finite weakly decreasing sequence of positive integers
A= (M1, A2,...,Ar). Theinteger | A |= > \;is called the size of the \.

1<i<r

@ A partition A could be identical with its Young diagram, which is a
collection of boxes arranged in left-justified rows with \; boxes in the i-th
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@ hook length hy : the number of boxes exactly to the right, or exactly
below O, or O itself.

@ hook product of A\: H(A) = [] ho.
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Introduction

@ A partition is a finite weakly decreasing sequence of positive integers
A= (M1, A2,...,Ar). Theinteger | A |= > \;is called the size of the \.
1<i<r
@ A partition X could be identical with its Young diagram, which is a
collection of boxes arranged in left-justified rows with \; boxes in the i-th
row.

@ hook length hy : the number of boxes exactly to the right, or exactly
below O, or O itself.

@ hook product of A\: H(A) = [] ho.
Oex

2|1]

[=[w]s]~
BRI

Figure: The Young diagram of the partition (4,2, 2, 1), together with the hook lengths of
the corresponding boxes.

Huan Xiong Difference operators for partitions and some applications



Introduction

@ standard Young tableau (SYT) : Obtained by filling in the boxes of the
Young diagram with distinct entries 1 to n such that the entries in each
row and each column are increasing.
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Introduction

@ standard Young tableau (SYT) : Obtained by filling in the boxes of the
Young diagram with distinct entries 1 to n such that the entries in each
row and each column are increasing.

@ f\:the number of SYTs of shape M.
@ fy,,: the number of SYTs of skew shape /.
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Introduction

@ standard Young tableau (SYT) : Obtained by filling in the boxes of the
Young diagram with distinct entries 1 to n such that the entries in each
row and each column are increasing.

@ f\:the number of SYTs of shape M.

@ fy,,: the number of SYTs of skew shape /.
4]5]9]

6
7

[oo]wo[ro]—

Figure: An SYT of shape (4,2,2,1).
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Introduction

Theorem (Frame, Robinson and Thrall)

where n=| A |.
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Theorem (Frame, Robinson and Thrall)

where n=| A |.

RSK algorithm or representation of finite groups =
Y R=n
[X|=n

and therefore

%Zfi:r

" Al=n
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Theorem (Nekrasov and Okounkov 2003, Han 2008)

S R+ m) ;T N

n>0 \ |Al=n Oex i>1
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Theorem (Nekrasov and Okounkov 2003, Han 2008)

S R+ m) ;T N

n>0 \|A=n Oex i>1

First proved by Nekrasov and Okounkov. Rediscovered and generalized by
Han with a more elementary proof.
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Introduction

1
o > Ra(y) =77.

" Al=n
Han
1 2 2 3n—n
o o > KX hg=""
[Al=n  Oex
1 2 4 _ 40n°—75n%+41n
° o > KXY hh=""—"7"".
[Al=n  Oex
1 2 6 __ 1050n*—4060n°+5586n°—2552n
o o > Y hy= - .
[Al=n  Oex
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1 2 2 3n—n
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[Al=n  Oex

Conjecture (Han 2008)

P =1 S B i

" Al=n  DOex
is always a polynomial of n for every k € N.
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1
o > Ra(y) =77.

" Al=n
Han
1 2 2 3n—n
o o > KX hg=""
[Al=n  Oex
1 2 4 _ 40n°—75n%+41n
° o > KXY hh=""—"7"".
[Al=n  Oex
1 2 6 __ 1050n*—4060n°+5586n°—2552n
o o > Y hy= - .
[Al=n  Oex

Conjecture (Han 2008)

P =1 S0 Y A

" Al=n  DOex

is always a polynomial of n for every k € N.

Proved and generalized by Stanley.
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Theorem (Stanley 2010)

Let F be a symmetric function. Then

P(n) = % S RF(R 0 e

" IAl=n

is a polynomial of n.

Remark. Han-Stanley Theorem is a corollary of our main result.
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Introduction

Definition
Let X\ be a partition and g be a function defined on partitions. Difference
operators D and D~ are defined by

Dg(A) = g(A") —g(N)
At

and
D g(\) = A1g(N) - 9g(r),
-

where A" ranges over all partitions obtained by adding a box to A and A~
ranges over all partitions obtained by removing a box from A.
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Introduction

Definition

Let X\ be a partition and g be a function defined on partitions. Difference
operators D and D~ are defined by

Dg(A) =Y g(\") —g())
At

and

D g(\) = A1g(N) - 9g(r),
-

where A" ranges over all partitions obtained by adding a box to A and A~
ranges over all partitions obtained by removing a box from A.
Let D°g = g and D**'g = D(D*g) for k > 0.
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Introduction

Main result (Han and Xiong 2015)

Suppose that F is a symmetric function. Then there exists some r € N such
that D’(ﬂ) = 0 for every partition \.
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Main result (Han and Xiong 2015)

Suppose that F is a symmetric function. Then there exists some r € N such

2 .
that D"("B7<Y

) = 0 for every partition \.

<

Theorem (Han and Xiong 2015)

Suppose that g is a function defined on partitions and y is a given partition.

Then we have .,
PORVOEDY (Z) D g(y)

IX/pl=n k=0

and

D"g(u)—Z(U"”(Z) > huug).

k=0 [N/ ul=k
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Introduction

Main result (Han and Xiong 2015)
Suppose that F is a symmetric function. Then there exists some r € N such

2 .
that D’(W’DTDEA)) = 0 for every partition \.

<

Theorem (Han and Xiong 2015)

Suppose that g is a function defined on partitions and y is a given partition.

Then we have .,
PORVOEDY (Z) D g(y)

I\/pl=n k=0

and

D"g(u)—Z(U"”(Z) > Bug().

k=0 [N/ ul=k

Our results = Han-Stanley theorem, (skew) marked hook formula,
Okada-Panova hook length formula, and Fujii-Kanno-Moriyama-Okada
content formula...
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Difference operators

When Dg =0or D—g =07?

For any partition \, we have

1
D(H—A) =0
and ]
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Difference operators

When Dg =0or D—g =07?

For any partition \, we have
1
D(H—A) =0
and ]
D™ () =0

1 1 1
(|A|+1)A_Zfﬁ:,ZHM — g = 0= D(g) =0
AT AT
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Difference operators

When Dg =0or D—g =07?

For any partition \, we have
1
D(H—A) =0
and ]
D™ () =0

1
(IA]+1) fA_Zfﬁ:,ZHM—Hi_o:,D(Hj):o

fAZZfA_:»M—ZH =0=D" (H ) =0.
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Difference operators

When Dg =0or D—g =07?

D=g(\) =0 forevery A = g(\) = % for some constant a.
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Difference operators

When Dg =0or D—g =07?

D=g(\) =0 forevery A = g(\) = % for some constant a.

Remark. When Dg(\) = 0 for every A, it is not easy to determine g(\). For
example, actually we can show

by (n —1)-3(3)
D( [SP HA

) = 0.
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Difference operators

Some properties of D and D~

Theorem

Let X be a partition. Suppose that g1, g» are functions defined on partitions
and ai, a € R. Then we have

D(a1g1 + @2)(\) = a1Dg1 () + aDgo ()

and

D™ (ai1g1 + @02)(A) = a1D™ g1(A) + @D~ g2(N).
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Difference operators

Some properties of D and D~

For any function g defined on partitions, we have

g, _ = 9(A) —gn)
D( H)\ ) o ; H/\+

and
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Difference operators

Some properties of D and D~

For product of two functions:

9(N)

)+ D%

— g (A))(gz(A*)

)
g2(V)

91(N)ge(N),
D(T) = 91(A\)D( Hs
+Z (e (\)
and
p (@00,

H)\+

ATN(G(A) —

g1(A)D*(M>+gz<A)D*(%j))

%)

Z (g1 (A

Hy-
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Difference operators

Some properties of D and D~

For product of several functions:

Theorem

Suppose that g1, 9z, - - - , gr are functions defined on partitions. Let
[r1={1,2,---,r} and Aj(\, p) = gj(p) — gj(A) for1 < j < r. Then we have
(H1</<rgl Z Z || PPYAVION AT Vs 9(N)
Hx Nt AUB=[/] Hy+
ANB=0
AFD
and
_ H1<'< g/( H Ak(/\ AT )H g/()‘)
D ( SISr Z Z keA leB
Hix A— AUB=[] Hy-
ANB=0
AF0
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Difference operators

Corners of partitions

For a partition A, the outer corners are the boxes which can be removed to
get a new partition A~. Let (a1, 31), - - ., (am, Bm) be the coordinates of outer
corners such that oy > a2 > - - - am. Let y; = B; — o be the contents of outer
corners for 1 < j < m. We set an1 = 5o = 0 and call

(a1, Bo), (2, B1) - - -, (m+1, Bm) the inner corners of A. Let x; = 8; — a1 be
the contents of inner corners for 0 < i < m.
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Corners of partitions
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corners for 1 < j < m. We set an1 = 5o = 0 and call

(a1, Bo), (2, B1) - - -, (m+1, Bm) the inner corners of A. Let x; = 8; — a1 be
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Difference operators

Corners of partitions

For a partition A, the outer corners are the boxes which can be removed to
get a new partition A~. Let (a1, 31), - - ., (am, Bm) be the coordinates of outer
corners such that oy > a2 > - - - am. Let y; = B; — o be the contents of outer
corners for 1 < j < m. We set an1 = 5o = 0 and call

(a1, Bo), (2, B1) - - -, (m+1, Bm) the inner corners of A. Let x; = 8; — a1 be
the contents of inner corners for 0 < i < m.

X Xi= 2 Y

0<iEm  1<Em

>oxF— Y yi=2]A].
0<i<m 1<<m
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Difference operators

[ ]

Figure: The Young diagrams of the partition (4, 2,2, 1).
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Difference operators

[ ]

Figure: The Young diagrams of the partition (4, 2,2, 1).

Outer corners: (4,1), (3,2), (1,4).
{yj} = {—3, —1 5 3}
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Difference operators

[ ]

Figure: The Young diagrams of the partition (4, 2,2, 1).

Outer corners: (4,1), (3,2), (1,4).

{y/} = {_37 —1 ) 3}

inner corners: (4,0), (3,1), (1,2), (0,4).
{xi} = {-4,-2,1,4}.
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Difference operators

An example

Figure: The Young diagrams of the partition (4, 2,2, 1).

Outer corners: (4,1), (3,2), (1,4).
{y/} = {_37_1’3}'
inner corners: (4,0), (3,1), (1,2), (0,4).
{xi} = {-4,-2,1,4}.
X xi=-1= >

0<i<m 1<j<m
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Difference operators

[ ]

Figure: The Young diagrams of the partition (4, 2,2, 1).

Outer corners: (4,1), (3,2), (1,4).
{y/} = {_37_1’3}'
inner corners: (4,0), (3,1), (1,2), (0,4).
{xi} = {-4,-2,1,4}.
X xi=-1= >

0<i<m 1<j<m
2 2 _ 19 _
X — Y yi=18=2.9.
0<i<m 1<j<m
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Difference operators

On g,(})
Define
aw(N) = > X = >y
0<i<m 1<j<m
and

a(N) = H Gv(A)

1<I<t

for the partition v = (v1,v2, ..., 7).
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Difference operators

On g,(})
Define
aw(N) = > X = >y
0<i<m 1<j<m
and

QW()‘) = H qw()‘)

1<I<t
for the partition v = (1,72, .., 7t
=2]

).
qO(A) =1, aq (A) =0, Q2(A) A | o
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Difference operators

On g,(})
Define
aN) = > 5= >y
0<i<m 1<j<m
and
N=]] e
1<I<t

for the partition v = (v1,72,...,7t)-

P(A) =1,q1(\) =0, AN =2[A].

The idea to study x;, y; and g,(\) comes from Kerov, Okounkov and
Olshanski.
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Difference operators

F(H2:0eN)
e, _g

Outline of proof of D'(

Let S(0,r) = 0and SO\, 1) = 3 T1(H — 2) for | A |> 1.

Oexi=1
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

r
Let S(0,r) =0and S(\,r) = X TI(H4 — i#) for | A |> 1.
Oexi=1
Step 1: We want to show that there exist some b, € Q such that

SAn= > bag(

ly|<2r+2

for every partition A.
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

r
Let S(0,r) =0and S(\,r) = X TI(H4 — i#) for | A |> 1.
Oexi=1
Step 1: We want to show that there exist some b, € Q such that

SAn= > bag(

|y|<2r+2

for every partition A.
Suppose that f is a function defined on integers. Let

Fi(n) = f(k)

and

Fa(n) = Fi(k).
k=1
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

ForO <j<i<m,let

Bi={(ab)eX: aip1+1<a<a,fi+1<b<gi}
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

ForO <j<i<m,let

Bi={(ab)eX: aip1+1<a<a,fi+1<b<gi}

Then
A= |J B
0<j<i<m
and thus
Softha)= Y Y f(ho).
Oex 0<j<i<mOeB;
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

ForO <j<i<m,let

Bi={(ab)eX: aip1+1<a<a,fi+1<b<gi}

Then
A= |J B
0<j<i<m
and thus
Softha)= Y Y f(ho).
Oex 0<j<i<mOeB;

The multiset of hook lengths of B; are

Xj—x;—1

U {a,a—1,a—-2,...,.a— (x;—y,—1)}.

a=Xj—Yj1
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

This means that

> f(ho)

Xi=X=1 xi—y;—

> Zfab

OeB; a=Xj—yj1 b=0
xi—)(j—1
= Y (F(a-F(a—x+y)
a=Xj—Yji1

= F(X—x—1)+F(yi— Y1 —1)
—Fa(Xi = Yjpr = 1) = Fa(yi — x5 = 1).
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

This means that

=1 xi—yi—
> f(hg) = Z Z f(a— b)
OeB; a=xj—yj1  b=0
xi—)(j—1
= Y (F(a-F(a—x+y)
a=Xj—Yj1

= F(X—x—1)+F(yi— Y1 —1)
—Fa(Xi = Yjpr = 1) = Fa(yi — x5 = 1).

Replace ) ., f(hg) by S(A, r). There exist some bx € Q such that for every
partition A, we have

Sy = > b > =)+ Y (- m)*

1<k<r+1 0<i<j<m 1<i<j<m

-3 Y - ).

0<i<mi1<j<m
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Difference operators

F(H2:0eN)
DH\ ) = 0.

Outline of proof of D'(

Compare the coefficients of 2% (1 < k < r + 1) on both sides of

(> exp(xiz) = > exp(y2))( ) exp(—xiz) = > exp(-y;z))

0<i<m 1<j<m 0<i<m 1<j<m
= > D ep((i—x)2)+ >, Y. exp((yi—¥)2)
0<i<mo<j<m 1<i<m1<j<m
=2 2 eni-ma - Y > ey - X))
0<i<m1<j<m 0<i<m1<j<m

There exist some b, € Q such that

S = Y. bag(

ly|<2r+2

for every partition .
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Difference operators

F(H2:0eN)
e, _g

Outline of proof of D'(

Step 2 : Suppose that ¢ is a partition. Then there exist some b, € Q such that

D(qé oy Z b q’Y

[v|<[8]-2

for every partition \.

Huan Xiong Difference operators for partitions and some applications



Difference operators

F(H2:0eN)
e, _g

Outline of proof of D'(

Step 2 : Suppose that ¢ is a partition. Then there exist some b, € Q such that

D(qé /\ Z b q’Y

[v|<[8]-2

for every partition \.
For convenience, we just show the case ¢ = (k) here.
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Difference operators

Outline of proof of D'( )=0.

F(hZD:DG)\)
Hy\

Step 2 : Suppose that ¢ is a partition. Then there exist some b, € Q such that

Hy
[vI<]58]-2

for every partition \.
For convenience, we just show the case ¢ = (k) here.
Let \¥* = AU (aky1 + 1, Bk + 1). First we have

HDEAH g(ho)

g(Xi — X«)
20T T 2 — g(d
Moot 90 11 e ol g0
In particular, we have
H (Xk — X,')
Hye | OST
Hyx [T (—y)
1<j<m
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Let
gV = > gx)— > 9

0<i<m 1<j<m
Then ) (6 + 1)+ 900 — 1) — 2g(x)
o1 _ gxi+1)+gxi—1)—29(Xi

D( Hy ) - Z H>\i+

0<i<m
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Let
g = > 9t Y a9y
0<i<m 1<j<m
Then
p9 M)y _ glxi+1) +9(x — 1) — 29(x)
() = , .
Hx 0<i<m Hy

In particular, let g(z) = z¥ and g;()\) = g«()\), then we obtain

(3N _ 2% ek ()X
R = Hor .

0<i<m
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Let

02)= [[ -y X 2> [](-x2)

1<j<m o<i<m N o<i<m
I#i

be a polynomial of z with degree m.
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Difference operators

2 .
Outline of proof of D"(“"5=Y) — o,
Let .
9= [ t-y2)- > 7 [ 0-x2)
1<j<m o<i<m = At og//#g_m

be a polynomial of z with degree m. Then we obtain

o) = IMa-D-2 MMa-3

1<j<m 0</I<m
I1#t
y 1<r£ (Xt a yl) X
= iy =Em . 1— A
1<H ( Xt) II (xe—x) H ( XI)
<j<m 0<i<m o<I<m
S I#t
#t
= 0.
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Difference operators

2 .
Outline of proof of D"(“"5=Y) — o,
Let .
9= [ t-y2)- > 7 [ 0-x2)
1<j<m o<i<m = At og//#g_m

be a polynomial of z with degree m. Then we obtain

9y = H(1—§{)—,§i M-

1<j<m 0</I<m
I1#t
g AL .
— — J _ L . 1— J
1<H ( Xt) II (xe—x) H ( XI)
<j<m 0<I<m 0<i<m
SE I1#t
#t
= 0.

This means that g(z) has at least m + 1 roots and therefore g(z) = 0.

Huan Xiong Difference operators for partitions and some applications



Difference operators

2 .
Outline of proof of D"(“"5=Y) — o,
Let .
9= [ t-y2)- > 7 [ 0-x2)
1<j<m o<i<m = At og//#g_m

be a polynomial of z with degree m. Then we obtain

9y = H(1—§{)—,§i M-

1<j<m 0</I<m
4t
y 1<r£ (Xtiyj) X
<j<m {
- [Ma-5H-== 0=
=5 0<i<m St
17t
= 0.

This means that g(z) has at least m + 1 roots and therefore g(z) = 0.
Now we have

Hy 1 [Li<j<m(1 = ¥2)

Hue 1=xiz  locicn(1 —xi2)

0<i<m
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

This means that

) :A O -xz)) = exp( Y. In(1-yz)— > In(1-x2)

o<i<m N k>0 1<j<m 0<i<m

= exp() @z").

k>1
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

This means that

) :A O -xz)) = exp( Y. In(1-yz)— > In(1-x2)

o<i<m N k>0 1<j<m 0<i<m

= exp() @z").

k>1

By comparing the coefficients of z* on both sides, we obtain there exist some

b, € Q such that
Hi

Xik = Z byqy(N)

o<i<m AT v <k

for every partition \.
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

But we have ko)
qk(/\)) _ 2215/_% (21) X
H)\ o H)\i+ ’
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

But we have ko)
(X _ 25 <<y ()%
H)\ o H)\i+ ’

0<i<m

Thus there exist some b, € Q such that

o= 3 b

lvI<k=2

for every partition A.
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

But we have ko)
(X _ 25 <<y ()%
H)\ o H)\i+ ’

0<i<m
Thus there exist some b, € Q such that
k(A _ a,(N)
D( H)\ ) - Z b"/ H)\
lv|<k—2

for every partition A.
For gs()\), the proof is similar.
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Step 3 : F(H3 : O € \) could be written as a linear combination of some
(4)S(A,7) and ('}') with coefficients independent of A.
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Step 3 : F(H3 : O € \) could be written as a linear combination of some
(4)S(A,7) and ('}') with coefficients independent of A.

Therefore by Step 1 F(H3 : O € \) could be written as a linear combination
of some g, ().
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Difference operators

F(hZD:DG)\)
Hy\

Outline of proof of D'(

) =0.

Step 3 : F(H3 : O € \) could be written as a linear combination of some
(4)S(A,7) and ('}') with coefficients independent of A.

Therefore by Step 1 F(H3 : O € \) could be written as a linear combination
of some g, ().

By Step 2 D’(ql,—(j)) = 0forsomer e N.
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Difference operators

F(H2:0eN)
DH,\ ) = 0.

Outline of proof of D'(

Step 3 : F(H3 : O € \) could be written as a linear combination of some
(4)S(A,7) and ('}') with coefficients independent of A.

Therefore by Step 1 F(H3 : O € \) could be written as a linear combination
of some g, ().

By Step 2 D’(ql,—(j)) = 0 for some r € N.

2 .
Then D’(FMDH%EEA)) = 0 for some r € N.
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Some applications on partition formulas

Corollary (Han and Xiong 2015)

Let 1 be a given partition. Suppose that there exists some r € N such that
D’g()\) = 0 for every partition A. Then

> hwgN = > dl< )

[N/ pl=n 0<i<r—1

is a polynomial of n, where d; = D'g(p).
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Some applications on partition formulas

Corollary (Han and Xiong 2015)

Let 1 be a given partition. Suppose that there exists some r € N such that
D’g()\) = 0 for every partition A. Then

n
Z f%/ug(/\): Z d,<,>

IX/ul=n 0<i<r—1

is a polynomial of n, where d; = D'g(u).

2 .
Then Dr(iﬂh[}f@)

Corollary (Han and Xiong 2015)

Suppose that y is a given partition. Let F be a symmetric function and k be a
integer. Then there exists some r € N such that

Z f)\/MDk(F(hZ%ADEA)) - Z DF(RE -0 e p) (7)

[N/ pl=n 0<i<r—k—1

) = 0 implies

is a polynomial of n.

Huan Xiong Difference operators for partitions and some applications



Some applications on partition formulas

In particular, k = 0 =

Corollary (Han and Xiong 2015)

Suppose that p is a given partition. Let F be a symmetric function and k be a
integer. Then there exists some r € N such that

L Z f)\f/\/#F(hD Oe )\ Z Dl hl:l Oe //L) <n>

|
(n+] ) [X/p|=n 0<i<r—1

is a polynomial of n.

Huan Xiong Difference operators for partitions and some applications



Some applications on partition formulas
In particular, k = 0 =

Corollary (Han and Xiong 2015)

Suppose that p is a given partition. Let F be a symmetric function and k be a
integer. Then there exists some r € N such that

T 2 MR e = 3 OF(E: Deu><>

TN/ pl=n 0<i<r—1

is a polynomial of n.

k =0 and p = §) implies

Corollary (Han-Stanley Theorem)

Suppose that p is a given partition. Let F be a symmetric function and k be a
integer. Then

IZfA (M :0€e))

[Al=n

is a polynomial of n.
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Some applications on partition formulas

k=0and F=1=
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Some applications on partition formulas

k=0and F=1=

y
Gr A | Al 2 D=

[X/pl=n

k=0, F=1and u = 0implies
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Some applications on partition formulas

We have
S\, r), _ (2r)i2r+1)!
Hy )= ri((r+1)1)?2

HyD'(

AL

and therefore

(A, @ni@r+1)!
Hi )= r((r+1)H)2 "
S(

r+2 )‘7r) _
HADH(Z ) =0,

H/\Dr+1 ( S

D’(S(E/;)r)) =0

for0<i<r.
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Some applications on partition formulas

Theorem (Han and Xiong 2015)

Suppose that p is a given partition. Let S(\,r) = > [[ (3 —j?) and
Oext<j<r
d = D’(S'(HLM”)). Then we have

i S )\7
Z fA/MD(%): Z di+k<:>

IN/pl=n 0<k<r41—i

for0<i<r+1.
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Some applications on partition formulas

Theorem (Han and Xiong 2015)

Suppose that p is a given partition. Let S(\,r) = > [[ (3 —j?) and

Oext<j<r
di = Di(Sl ’)) Then we have

i S )\7
Z fA/uD(%): Z di+k<:>

IN/pl=n 0<k<r41—i

for0<i<r+1.

In particular i = 0, u = () implies Okada-Panova hook length formula.

Corollary (Okada-Panova hook length formula 2008)

Soexlli(BB—7) 1 2r\ (2r+2\ 1 ,
i 5, == H2 . 2(r+1)2<r><r+1>jn(nj)'

[A=n
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Some applications on partition formulas

r = 1 implies Marked hook formula.

Corollary (Marked hook formula)

'Zf)\Zhg_M

[Al=n  Oex

Huan Xiong Difference operators for partitions and some applications



Some applications on partition formulas

r = 1 implies Marked hook formula.

Corollary (Marked hook formula)

3n2—n

LN

|>\| n  Oex

Skew marked hook formula (Han and Xiong 2015)

Let 1 be a given partition. Then

FrTRD O Mo B =1)=2 3 d/<7>

[N/ pl=n Oex 0<i<2

is a polynomial of n, where dy = % adi = HL b = Hi
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Some applications on partition formulas

The content of the box (i, ) of a partition is defined by ¢(;jy = j — .
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Some applications on partition formulas

The content of the box (i, ) of a partition is defined by ¢(;jy =j — .

Let C(@,r) =0and C(\,r)= > H(CD—I )for | A|> 1.

OeX i=0

Huan Xiong Difference operators for partitions and some applications



Some applications on partition formulas

The content of the box (i, ) of a partition is defined by ¢(;jy = j — .
r—1
Let C(0,r) =0and C(\,r) = 3 TI(c& — i) for | X [> 1.
0

OeX i=
We need the following result.

Theorem

moEey = 3 b,a,0

[vI<2r

for some b, € Q. In particular,
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Some applications on partition formulas

We have conr) (2r)
. YN r!
H\D( H )_(r+1)!|)‘|'
and therefore COnr) (21!
r+1 7r _ r)
AR =
12, C(\, 1)
+2 ) _
D (71‘_,A )=0.
i C(Q)vr) _
D'( H, )=0
for0<i<r.
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Some applications on partition formulas

Theorem (Han and Xiong 2015)

Suppose that 1 is a given partition. Let d; = D"(C(HL””)). Then we have

IEWIC RS m(ﬁ)

I\/pl=n 0<K<rH1—i

for0<i<r+1.
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Some applications on partition formulas

Theorem (Han and Xiong 2015)

Suppose that 1 is a given partition. Let d; = D"(C(HL””)). Then we have

Z fx uD' c, r)) Z ik (Z)

IN/pl=n 0<k<r+1—i

for0<i<r+1.

In particular, i = 0, u = @ implies Fujii-Kanno-Moriyama-Okada content
formula.

Theorem (Fujii-Kanno-Moriyama-Okada content formula 2008).

H? (r+1)2

nIZZDeAH 5 (¢4 iz) (2r)! H(

[A=n
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Some applications on partition formulas

Thank You for your listening!
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