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A SIMPLE EXPLICIT BIJECTION BETWEEN (n, 2)-GOG AND MAGOG
TRAPEZOIDS

JÉRÉMIE BETTINELLI

ABSTRACT. A sub-problem of the open problem of finding an explicit bijection be-
tween alternating sign matrices and totally symmetric self-complementary plane
partitions consists in finding an explicit bijection between so-called (n, k)-Gog
trapezoids and (n, k)-Magog trapezoids. A quite involved bijection was found
by Biane and Cheballah in the case k = 2. We give here a simpler bijection for this
case.
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1. INTRODUCTION

One of the most famous open problems in bijective combinatorics is to find
an explicit bijection between alternating sign matrices of a given size and totally
symmetric self-complementary plane partitions of the same size. These objects of
combinatorial interest have been known since the end of the ’90s to be equinumer-
ous [And94, Zei96] but, as of today, there is no direct bijective proof of this fact.
We refer the reader to [Bre99, Che11] for more information on this story.

The previous objects are in known bijections with arrays of integers called Gog
and Magog triangles. These triangles of size n are Young diagrams of shape
(n, n− 1, . . . , 2, 1) filled with positive integers satisfying monotonicity conditions
along vertical, horizontal and possibly diagonal lines. Although they satisfy very
similar monotonicity conditions, nobody managed to find a direct bijection be-
tween these integer-filled triangles so far. Another surprising fact is that, if we
only consider the first k rows of the triangles, the objects we obtain are also equinu-
merous. These objects, called (n, k) trapezoids, were introduced in [MRR86], where
they were conjectured to be equinumerous. This was later proved by Zeilberger
[Zei96, Lemma 1].
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The supposedly simplest problem of finding an explicit bijection between (n, k)-
Gog trapezoids and (n, k)-Magog trapezoids has been solved only for k ≤ 2. In
fact, for k = 1, the objects are exactly the same, so there is nothing to prove.
There is, however, a refined conjecture appearing in [MRR86], which involves the
number of entries equal to 1 and the number of entries equal to the maximum
possible value in the first and last rows. Proving this conjecture in a bijective way,
even in the case k = 1 is nontrivial; it was achieved by Krattenthaler [Kra]. In
fact, Krattenthaler conjectured that more general objects called (ℓ, n, k) trapezoids
are equinumerous and that the previous statistics coincide; his bijection was es-
tablished in this more general context, that is, between (ℓ, n, 1)-Gog and Magog
trapezoids.

For k = 2, a bijection was found by Biane and Cheballah [BC12]. Their bijec-
tion is relatively complicated and uses the so-called Schützenberger involution.
It does not match the previous statistics of Mills, Robbins, and Rumsey. It does,
however, match different statistics, expressed in terms of the rightmost entry for a
Gog trapezoid and in terms of the two rightmost entries of both rows for Magog
trapezoids. In this note, we give a different bijection for this case. Our bijection is
very simple and involves only one operation. It does not match either aforemen-
tioned statistics.

Acknowledgment. I thank Jean-François Marckert for introducing this problem
to me.

2. MAGOG AND GOG TRAPEZOIDS

In this note, we are solely considering (n, 2) trapezoids, and we furthermore
impose that n ≥ 3 in order to avoid trivialities. Let us give proper definitions (see
Figure 1 for more graphical definitions and examples).

Definition 1. Let n be an integer ≥ 3. An (n, 2)-Magog trapezoid is an array of 2n−1
positive integers m1,1, . . . , m1,n−1, m2,1, . . . , m2,n such that

(i) mi,j ≤ mi,j+1 for all i ∈ {1, 2} and j ∈ {1, . . . , n+ i− 3} ;
(ii) m1,j ≤ m2,j ≤ j for all j ∈ {1, . . . , n− 1} and m2,n ≤ n .

Definition 2. Let n be an integer ≥ 3. An (n, 2)-Gog trapezoid is an array of 2n − 1
positive integers g1,1, . . . , g1,n, g2,1, . . . , g2,n−1 such that

(i) gi,j ≤ gi,j+1 for all i ∈ {1, 2} and j ∈ {1, . . . , n− i} ;
(ii) g1,j < g2,j < j + 2 for all j ∈ {1, . . . , n− 1} ;

(iii) g1,j+1 ≤ g2,j for all j ∈ {1, . . . , n− 1} .

We denote the sets of (n, 2)-Magog and Gog trapezoids by Mn and Gn, respec-
tively.
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1 2 33 44 55 66 77 88

g1,1 g1,2 g1,3 g1,4 g1,5 g1,6 g1,7 g1,8

g2,1 g2,2 g2,3 g2,4 g2,5 g2,6 g2,7

m1,1 m1,2 m1,3 m1,4m1,5 m1,6 m1,7

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6 m2,7 m2,8

(8, 2)-Gog trapezoid(8, 2)-Magog trapezoid

1 2 33 44 55 66 77 88

2 2 4 5 6 7 8

1 1 2 4 4 5 7 7

1 2 2 4 4 6 7 7

1 1 2 4 4 5 7

Figure 1. The conditions satisfied by (n, 2)-Magog and Gog trapezoids.
Every sequence formed by numbers obtained by following the direction
of a simple-arrowhead (respectively a double-arrowhead) arrow is non-
decreasing (respectively increasing).

3. FROM MAGOG TO GOG

Let us consider an (n, 2)-Magog trapezoid M = (mi,j). We say that an integer
j ∈ {1, . . . , n− 2} is a bug if m1,j+1 > m2,j +1. For instance, 3 is the only bug of the
Magog trapezoid of Figure 1. We set Φn(M) := (gij), where (gij) is constructed as
follows (see Figure 2).

First case: M has at least one bug. In this case, we let k be the smallest bug of M
and we set

g2,j := m2,j + 1 for 1 ≤ j ≤ k − 1 ; g2,j := m2,j+1 for k ≤ j ≤ n− 1 ;

g1,j := m1,j for 1 ≤ j ≤ k ; g1,k+1 := m2,k ; g1,j := m1,j−1 − 2 for k + 2 ≤ j ≤ n .

Second case: M does not have bugs and m2,n−1 < m2,n . In this case, we set

g2,j := m2,j + 1 for 1 ≤ j ≤ n− 2 ; g2,n−1 := m2,n ;

g1,j := m1,j for 1 ≤ j ≤ n− 1 ; g1,n := m2,n−1 .



4 JÉRÉMIE BETTINELLI

7→
+1

−2

7→
1 2 2 4 4 6 7 7

1 1 2 4 4 6 7

2 3 4 4 6 7 7

1 1 2 2 2 2 4 5

7→
+1<

7→
1 2 2 4 4 6 6 8

1 1 2 3 4 4 5

2 3 3 5 5 7 8

1 1 2 3 4 4 5 6

7→
+1

+1=

7→
1 2 2 4 4 6 6 6

1 1 2 3 4 4 5

2 3 3 5 5 7 7

1 1 2 3 4 4 5 7

Figure 2. The three cases of the bijection, from a Magog trapezoid to a Gog
trapezoid. On the top line, the first bug is 3: it is symbolized by a small
black diagonal line. The colored blocks are moved and, whenever there is
a tag on a block, it is added to all the elements of the block.

Third case: M does not have bugs and m2,n−1 = m2,n . In this case, we set

g2,j := m2,j + 1 for 1 ≤ j ≤ n− 1 ;

g1,j := m1,j for 1 ≤ j ≤ n− 1 ; g1,n := m2,n + 1 .
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Let us check that Φn(M) ∈ Gn. First, observe that, if j is not a bug, then, by
definition, m1,j+1 ≤ m2,j + 1, so that the yellow and purple blocks always satisfy
the diagonal inequalities after the mapping. It is straightforward to verify that the
other inequalities are satisfied in the second and third case. In the first case, notice

that g1,k = m1,k ≤ m2,k = g1,k+1 and g1,k+1 = m2,k ≤ m1,k+1 − 2 = g1,k+2 as k is

a bug. Furthermore, g2,k−1 = m2,k−1 + 1 ≤ m2,k + 1 ≤ m1,k+1 − 1 ≤ m2,k+1 − 1 =

g2,k − 1 so that the horizontal inequalities are satisfied. Moreover, g1,k = m1,k ≤

m2,k ≤ m1,k+1−2 ≤ m2,k+1−2 = g2,k −2, g1,k+1 = m2,k ≤ m2,k+2−2 = g2,k+1 −2,

g1,j = m1,j−1 − 2 ≤ m2,j+1 − 2 = g2,j − 2 for k + 2 ≤ j ≤ n − 1, and g2,j =

m2,j+1 < j + 2 for k ≤ j ≤ n− 1, so that the vertical inequalities are also satisfied.

Finally, the diagonal inequalities are satisfied since g1,k+1 = m2,k ≤ m2,k+1 = g2,k

and g1,j = m1,j−1 − 2 ≤ m2,j − 2 = g2,j−1 − 2 for k + 2 ≤ j ≤ n.

4. FROM GOG TO MAGOG

We now consider an (n, 2)-Gog trapezoid G = (gi,j) and construct Ψn(G) =
(mij) as follows. We define

(1) k := max
{

j ∈ {2, . . . , n− 1} : g2,j−1 ≤ g1,j+1 + 1
}

.

This number is well defined as g2,1 = 2 ≤ g1,3 + 1.

First case: k ≤ n− 2. We set

m2,j := g2,j − 1 for 1 ≤ j ≤ k − 1 ; m2,k := g1,k+1 ; m2,j := g2,j−1, k + 1 ≤ j ≤ n ;

m1,j := g1,j for 1 ≤ j ≤ k ; m1,j := g1,j+1 + 2 for k + 1 ≤ j ≤ n− 1 .

Second case: k = n− 1 and g1,n < g2,n−1. We set

m2,j := g2,j − 1 for 1 ≤ j ≤ n− 2 ; m2,n−1 := g1,n ; m2,n := g2,n−1 ;

m1,j := g1,j for 1 ≤ j ≤ n− 1 .

Third case: k = n− 1 and m1,n = m2,n−1. We set

m2,j := g2,j − 1 for 1 ≤ j ≤ n− 1 m2,n := g1,n − 1 ;

m1,j := g1,j for 1 ≤ j ≤ n− 1 .

We now show that Ψn(G) ∈ Mn. In the first and second case, the definition

of k entails that m2,k−1 = g2,k−1 − 1 ≤ g1,k+1 = m2,k , so that the horizontal



6 JÉRÉMIE BETTINELLI

7→
−1

+2

7→
1 2 2 4 4 6 7 7

1 1 2 4 4 6 7

2 3 4 4 6 7 7

1 1 2 2 2 2 4 5

7→
−1>

7→
1 2 2 4 4 6 6 8

1 1 2 3 4 4 5

2 3 3 5 5 7 8

1 1 2 3 4 4 5 6

7→
−1−1=

7→
1 2 2 4 4 6 6 6

1 1 2 3 4 4 5

2 3 3 5 5 7 7

1 1 2 3 4 4 5 7

Figure 3. The three cases of the bijection, from a Gog trapezoid to a Magog
trapezoid. On the top line, k = 3.

inequalities hold. In the second case, we get the desired conclusion by noticing

that m2,n−1 = g1,n ≤ g2,n−1 − 1 ≤ n − 1 and m2,n = g2,n−1 ≤ n. In the first case,

by definition of k, m1,j = g1,j+1 + 2 ≤ g2,j−1 = m2,j for k + 1 ≤ j ≤ n− 1 and, by

vertical inequalities, m2,j = g2,j−1 ≤ j for k+1 ≤ j ≤ n. Finally, still by definition

of k, m2,k = g1,k+1 ≤ g1,k+2 ≤ g2,k − 2 ≤ k − 1. This establishes the claim in the

first case. The third case is straightforward.
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5. THE PREVIOUS MAPPINGS ARE INVERSES OF EACH OTHER

We now prove that the previous mappings are bijections.

Theorem 1. The mappings Φn : Mn → Gn and Ψn : Gn → Mn are bijections, which are
inverse one from another.

Proof. We have already established that Φn : Mn → Gn and Ψn : Gn → Mn. It re-
mains to show that Ψn◦Φn and Φn◦Ψn are the identity on Mn and Gn, respectively.
In fact, we will see that the three cases we distinguished are in correspondence via
the bijection.

First case. Let M = (mi,j) ∈ Mn be a Magog trapezoid that has a bug, and
let k be its smallest bug. As in Section 3, we define (gij) := Φn(M). We have

g2,k−1 = m2,k−1+1 ≤ m2,k+1 = g1,k+1 +1 and, for k+1 ≤ j ≤ n−1, g1,j+1 +1 =

m1,j − 1 < m2,j = g2,j−1 for k + 2 ≤ j ≤ n− 1, so that

max
{

j ∈ {2, . . . , n− 1} : g2,j−1 ≤ g1,j+1 + 1
}

= k.

As the box moving procedure of Section 4 is clearly the inverse of that of Section 3,
we conclude that (Ψn ◦ Φn)(M) = M .

Let now G = (gij) ∈ Gn be such that the integer k defined by (1) is smaller
than or equal to n − 2. In order to conclude that (Φn ◦ Ψn)(G) = G, it is sufficient
to show that k is the smallest bug of (mi,j) := Ψn(G). This is indeed the case as

m1,k+1 = g1,k+2 + 2 > g1,k+1 + 1 = m2,k + 1 and, for 1 ≤ j ≤ k − 1, m1,j+1 =

g1,j+1 ≤ g2,j = m2,j + 1.

Second and third case. Let M = (mi,j) ∈ Mn be a bug-free Magog trapezoid

and (gij) := Φn(M). If we are in the second case, then g2,n−2 = m2,n−2 + 1 ≤

m2,n−1 + 1 = g1,n + 1, and, if we are in the third case, then g2,n−2 = m2,n−2 + 1 ≤

m2,n + 1 = g1,n , so that, in both cases,

max
{

j ∈ {2, . . . , n− 1} : g2,j−1 ≤ g1,j+1 + 1
}

= n− 1.

We conclude as above that (Ψn ◦ Φn)(M) = M .
Let now G = (gij) ∈ Gn be such that the integer k defined by (1) is equal to n−1.

We see that (Φn ◦ Ψn)(G) = G by noticing that (mi,j) := Ψn(G) is bug-free as, for

1 ≤ j ≤ n− 1, m1,j+1 = g1,j+1 ≤ g2,j = m2,j + 1. �



8 JÉRÉMIE BETTINELLI

6. EXTENSION TO (ℓ, n, 2) TRAPEZOIDS AND PERSPECTIVES

Our bijection can trivially be extended to (ℓ, n, 2) trapezoids, where ℓ ≥ 0 is an
integer. Here, an (ℓ, n, 2)-Magog trapezoid is defined as an (n, 2)-Magog trapezoid,
with the difference that item (ii) of Definition 1 is replaced by

(ii’) m1,j ≤ m2,j ≤ j + ℓ for all j ∈ {1, . . . , n− 1} and m2,n ≤ n+ ℓ .

See Figure 4. Similarly, an (ℓ, n, 2)-Gog trapezoid is defined as an (n, 2)-Gog trape-
zoid with the difference that item (ii) of Definition 2 is replaced by

(ii’) g1,j < g2,j < j + 2 + ℓ for all j ∈ {1, . . . , n− 1} ;

4 5 66 77 88 99 1010 1111

g1,1 g1,2 g1,3 g1,4 g1,5 g1,6 g1,7 g1,8

g2,1 g2,2 g2,3 g2,4 g2,5 g2,6 g2,7

m1,1 m1,2 m1,3 m1,4m1,5 m1,6 m1,7

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6 m2,7 m2,8

(3, 8, 2)-Gog trapezoid(3, 8, 2)-Magog trapezoid

Figure 4. Definition of (ℓ, n, 2) trapezoids.

For any ℓ ≥ 1 and n ≥ 3, the mappings Φn and Ψn can be extended without any
differences in the construction into bijections between the set of (ℓ, n, 2)-Magog
trapezoids and the set of (ℓ, n, 2)-Gog trapezoids. The proofs can be copied almost
verbatim, the only thing to do is to add ℓ whenever we use one of the bounds
changed by these definitions.

Unfortunately, as of today, we did not manage to extend this bijection to (n, 3)
trapezoids. The mapping Φn exchanges the sizes of two consecutive rows so that
one could think that, in the case of (n, 3) trapezoids, we would need to apply a
similar operation several times in order to pass from a Magog to a Gog trape-
zoid. Unfortunately, whenever a third row is present, we cannot slide the boxes
of two consecutive rows without breaking the rules. This question remains under
investigation.

It has also been brought to our attention that our construction bears some in-
triguing similarities with a construction used by Krattenthaler [Kra89, Section 2]
in order to show the q-log-concavity of Gaussian binomial coefficients. In the lat-
ter construction, two rows of strictly increasing integers are considered and one
carefully chosen entry of the second row is removed from it and inserted in the
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first row after addition of a constant. A major difference between both construc-
tions lies in the fact that the entries in the latter one only satisfy monotonicity
relations in one direction (along rows) so that the objects are less constrained.
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[Kra] Christian Krattenthaler. A gog-magog conjecture. Unpublished manuscript, available at
http: // www. mat. univie.ac. at/ ~ kratt/artikel/magog.html .

[Kra89] Christian Krattenthaler. On the q-log-concavity of Gaussian binomial coefficients.
Monatsh. Math., 107(4):333–339, 1989.

[MRR86] William H. Mills, David P. Robbins, and Howard Rumsey, Jr. Self-complementary totally
symmetric plane partitions. J. Combin. Theory Ser. A, 42(2):277–292, 1986.

[Zei96] Doron Zeilberger. Proof of the alternating sign matrix conjecture. Electron. J. Combin.,
3(2):Research Paper 13, 84 pp., 1996.

http://www.mat.univie.ac.at/~kratt/artikel/magog.html

	1. Introduction
	2. Magog and Gog trapezoids
	3. From Magog to Gog
	4. From Gog to Magog
	5. The previous mappings are inverses of each other
	6. Extension to (l,n,2) trapezoids and perspectives
	References

