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PERMANENT VERSUS DETERMINANT, OBSTRUCTIONS,
AND KRONECKER COEFFICIENTS∗

PETER BÜRGISSER†

Abstract. We give an introduction to some of the recent ideas that go under the
name “geometric complexity theory”. We first sketch the proof of the known upper and
lower bounds for the determinantal complexity of the permanent. We then introduce
the concept of a representation theoretic obstruction, which has close links to algebraic
combinatorics, and we explain some of the insights gained so far. In particular, we
address very recent insights on the complexity of testing the positivity of Kronecker
coefficients. We also briefly discuss the related asymptotic version of this question.

1. Motivation

The determinant polynomial is defined as

detn := det(X) :=
∑

π∈Sn

sgn(π)
n∏

i=1

xiπ(i),

where xij are variables over a field K. The determinant derives its importance from the
fact that it defines a group homomorphism det : GLn(K)→ K× due to

det(X · Y ) = det(X) det(Y ).

It is highly relevant for computational mathematics that the determinant has an efficient
computation. For instance, by using Gaussian elimination, it can be computed with O(n3)
arithmetic operations.

The definition of the permanent polynomial looks similarly as for that of the determi-
nant:

pern := per(X) :=
∑

π∈Sn

n∏

i=1

xiπ(i),

but without the sign changes. The permanent has less symmetries: per(X · Y ) =
per(X) per(Y ) holds if X is a product of a permutation and a diagonal matrix, or if
Y is so; but in general, the multiplicativity property is violated. Also, for the permanent,
there is no known efficient computation. We do not know whether there is a polynomial
time algorithm for computing it. The permanent often shows up in algebraic combina-
torics and statistical physics as a generating function in enumeration problems.
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In computer science, the permanent is known as a universal (or complete) problem in a
class of weighted enumeration problems. One says that the family (pern) of permanents
is VNP-complete. This theory was created in 1979 by L. Valiant [59]. See [6, 41] for more
information.

Proving that computing pern requires superpolynomially many arithmetic operations
in n is considered the holy grail of algebraic complexity theory. This essentially amounts
to proving the separation VP 6= VNP of complexity classes. This separation is an “easier”
variant of the famous P 6= NP problem.

2. Determinantal complexity

Note that per

[
a b
c d

]
= det

[
a −b
c d

]
. Pólya [52] asked in 1913 whether such a formula is

also possible for n ≥ 3, i.e., whether there is a sign matrix [εij] such that pern = det[εijxij].
This was disproved by Szegő [58] in the same year. Marcus and Minc [44] strengthened
this result by showing that there is no matrix [fpq] of linear forms fpq in the variables xij
such that pern = det[fpq].

But what happens if we allow for the determinant a larger matrix?

We can express per3 as the determinant of a matrix of size 7, whose entries are constants
or variables, cf. [27]:

per3 = det




0 0 0 0 x33 x32 x31
x11 1 0 0 0 0 0
x12 0 1 0 0 0 0
x13 0 0 1 0 0 0
0 x22 x21 0 1 0 0
0 x23 0 x21 0 1 0
0 0 x23 x22 0 0 1



.

Definition 2.1. The determinantal complexity dc(f) of a polynomial f ∈ K[x1, . . . , xN ]
is the smallest s such that there exists a square matrix A of size s, whose entries are
affine linear functions of x1, . . . , xN , such that f = det(A). Moreover, we write dc(m) :=
dc(perm).

We clearly have dc(2) = 2. By the above formula, dc(3) ≤ 7. Recent work showed the
optimality: dc(3) = 7; cf. [30, 2].

2.1. An upper bound. The following nice upper bound is due to Grenet [27], based on
ideas in Valiant [59].

Theorem 2.2 (Grenet). We have dc(m) ≤ 2m − 1.

Proof. 1. We first give the determinant of a matrix A of size m a combinatorial interpre-
tation. We consider the complete directed graph with the node set [m] := {1, 2, . . .m}
and the edges (i, j) carrying the weight aij. Moreover, we interpret a permutation π of
[m] as the collection of their disjoint cycles (including loops for the fixed points) and call
this a cycle cover c of the digraph. We write sgn(c) := sgn(π). The weight of c is defined
as the product of the weights of the edges occurring in c.
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Then we see that det(A) equals the sum of the signed weights over all cycle covers of
the digraph:

det(A) =
∑

c

sgn(c) weight(c).

2. We build now a digraph Pm (see Figure 1). Its node set is the power set 2[m] of [m].
For each S ∈ 2[m] of size i− 1, where 1 ≤ i ≤ m, and j ∈ [m] \S, we form a directed edge
from S to S ∪ {j} of weight xij. It is easy to see that

perm(X) =
∑

π

weight(π),

where the sum is over all directed paths π going from ∅ to [m]. (We define the weight of
π as the product of the weights of its edges.)

GEOMETRY, INVARIANTS, AND THE ELUSIVE

SEARCH FOR COMPLEXITY LOWER BOUNDS

JAN DRAISMA

In a Simons Institute Open Lecture [Bür14] that marks the beginning of a semester-long programme on Algorithms
and Complexity in Algebraic Geometry, Peter Bürgisser of TU Berlin gave an overview of recent developments in
geometric complexity theory. This article is loosely based on Bürgisser’s lecture and on lectures in the programme’s
boot camp one week earlier. To set the stage, Bürgisser introduced three families of polynomials:

esymk,n :=
X

1i1<...<ikn

Xi1 · · · Xik
, detn :=

X

⇡2Sn

sgn(⇡)X1⇡(1) · · · Xn⇡(n), and permn :=
X

⇡2Sn

X1⇡(1) · · · Xn⇡(n),

known as the k-th elementary symmetric polynomial, the determinant, and the permanent. If k is roughly n
2 , then

these polynomials look very similar in that their degrees grow linearly in n, while they have super-exponentially
many terms. But how e�ciently can these polynomials be evaluated at given values xi or xij for the variables?

Gaussian elimination allows one to evaluate detn in O(n3) arithmetic operations. This is, of course, not optimal—and
I will get back to this issue below—but at least it is polynomial in n. To evaluate esymk,n, one can first evaluate the

polynomial pn(T ) := (T + x1) · · · (T + xn) at n values for T , interpolate, and extract the coe�cient of Tn�k. Again,
the complexity is O(n3); and using the discrete Fourier transform one can do even better.

Now how about permn? One can do better than evaluating the n! terms individually and adding these up; one way
of reducing the complexity to exponential is depicted in Figure 1. But no polynomial-time algorithm is known for
evaluating the permanent. And indeed, probably none exists: a theorem by Leslie Valiant states that (permn)n

is complete in the complexity class VNP [Val79]. This class can be thought of as an arithmetic analogue of NP, and
the common belief that P 6=NP would imply that not all elements of VNP can be evaluated in polynomial time. Yet
how does one prove lower bounds on the complexity of the sequence (permn)n? Valiant showed that it would su�ce
to prove that if permn is expressed as detN (A) for some N ⇥ N -matrix A of a�ne-linear functions in the xij , as
in Figure 1, then N must grow super-polynomially in n. In 2004, using geometric properties of the hypersurfaces
defined by detN = 0 and by permn = 0, Mignon and Ressayre proved the best known lower bound to date on this

determinantal complexity of the permanent: N � m2

2 [MR04].

A di↵erent route towards lower bounds was pioneered by Ketan Mulmuley and Milind Sohoni [MS01]. At a
very basic level, their approach involves two key ideas. The first is to think of detN and ZN�npermn (the padded
permanent, where Z is a homogenizing variable that can be taken equal to XNN ) as points in the same vector space
VN of homogeneous polynomials of degree N in N2 variables, where the padded determinant just happens to use
only n2 +1 of the variables. On this space acts the group GLN2 of linear transformations among the variables, and a
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Figure 1. The matrix on the right is the weighted adjacency matrix of the directed graph on the
left, with vertices ; and 123 identified, variables along arrows as indicated, and 1s along loops. Its
determinant equals (�1)3�1perm3, and one of the terms in the expansion is coloured red. This
construction, due to Bruno Grenet, generalises to show that the determinantal complexity of
permn is at most 2n � 1 [Gre12].

1

Figure 1. The construction for m = 3. Courtesy of J. Draisma [22].

We perform some modifications in this graph: we add loops of weight one at all nodes
S ∈ 2[m] different from ∅ and [m], and we identify the node ∅ with the node [m]. Let A
denote the weighted adjacency matrix of the resulting digraph. Its size is 2m − 1.

Then it is easy to see that we obtain a weight preserving bijection between the set of
directed paths π between ∅ and [m] in the original digraph and the set of cycle covers cπ
in the modified digraph. We obtain

(−1)m−1 perm(X) =
∑

π

(−1)m−1 weight(π) =
∑

c

sgn(c) weight(c),

which shows that indeed dc(m) ≤ 2m − 1. �

Landsberg and Ressayre [37] recently proved that the representation perm = det(A)
in the proof of Theorem 2.2 is optimal among all representations respecting “half of the
symmetries” of perm.
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2.2. A lower bound. The following result due to Mignon and Ressayre [45] is the best
known lower bound for dc(m), except for a recent improvement over K = R due to
Yabe [63], which states (m− 1)2 + 1 ≤ dc(m).

Theorem 2.3 (Mignon and Ressayre). We have m2/2 ≤ dc(m) if charK = 0.

Proof. The idea is to consider the Hessian Hf of a polynomial f ∈ K[x1, . . . , xN ]:

Hf :=

[
∂2f

∂xα∂xβ

]

1≤α,β≤N
.

We note that ∂2 detn
∂xij∂xk`

equals the minor of X obtained by deleting the rows i, j and columns

j, `.
The following is straightforward to verify using the chain rule.

Lemma 2.4. If we perform an affine linear transformation on f ∈ K[x1, . . . , xN ], namely,

F (x1, . . . , xM) := f
(
L ·



x1
...
xM


+ b

)
, L ∈ KN×M , b ∈ KN ,

then
HF (x) = LTHf (Lx+ b)L.

Now we assume dc(m) ≤ n. This means we have a representation

(2.1) perm(X) = det(A(X)),

where A(X) is of size n and the entries of A are affine linear in the X-variables. Lemma 2.4
implies

(2.2) Hper(X) = LTHdet(A(X))L,

where L ∈ Kn2×m2
is the matrix of the linear map corresponding to the affine map A.

We substitute in (2.1) the matrix X by some M ∈ Km×m which satisfies per(M) = 0,
and we set N := A(M). Then,

0 = per(M) = det(A(M)) = det(N),

so that N is rank deficient. Moreover, (2.2) implies

(2.3) rankHper(M) ≤ rankHdet(N).

The determinant is special in the sense that its Hessian has small rank at rank deficient
matrices N .

Lemma 2.5. The rank of Hdet(N) at a matrix N ∈ Kn×n only depends on the rank s of
N . If s < n, then

rankHdet(N) ≤ 2n.

Proof. (Sketch) det : Kn×n → K is an invariant with respect to the action of SLn× SLn
on Kn×n via (S, T ) · N := SNT−1. Using Lemma 2.4 one sees that Hdet : Kn×n → K is
an invariant under this action as well. This implies the first assertion.

For the second assertion, take N in normal form (s ones on the diagonal and zeros
otherwise) and compute the rank Hdet(N). �
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In contrast, the permanent has the following property.

Lemma 2.6. There exists M ∈ Km×m such that per(M) = 0 and Hper(M) has rank m2.
(Here we assume charK = 0.)

Proof. (Sketch) One may take

M =




1−m 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1


 ,

which satisfies per(M) = 0. It is elementary, though a bit cumbersome, to verify that
Hper(M) has full rank. �

Using Lemma 2.5 and Lemma 2.6 in (2.3), we obtain

m2 = rankHper(M) ≤ rankHdet(N) ≤ 2n

and the assertion follows. �

We remark that [16] has an extension of Theorem 2.3 to positive characteristic.

3. An attempt via algebraic geometry and representation theory

How could we possibly prove better lower bounds on dc(m)?

3.1. The determinant variety Ωn. We assume K = C in the following. We consider
SymnCn2

as the space of homogeneous polynomials of degree n in n2 variables. The group
GLn2 acts on SymnCn2

by linear substitution.

Definition 3.1. The orbit GLn2 · detn is obtained by applying all possible invertible linear
transformations to detn. The orbit closure of detn,

Ωn := GLn2 · detn ⊆ SymnCn2

,

is its closure with respect to the Euclidean topology. We call Ωn the determinant variety.

Example 3.2. 1. If n = 2, we have

GL4 · det2 = {quadratic forms of rank 4}, Ω2 := Sym2C4.

2. We have for ε→ 0

det

[
x11 εx12
εx21 x22

]
= x11x22 − ε2x12x21 −→ x11x22 ∈ Ω2 for ε→ 0.

The latter observation generalizes to any n and hence x11 · · ·xnn ∈ Ωn.

Remark 3.3. For n = 3, the boundary of Ωn has been determined recently [28], but for
n = 4 it is already unknown.

The following observation allows to study Ωn with the methods of algebraic geometry.

Theorem 3.4. Ωn is Zariski-closed, i.e., the zero set of a system of polynomial equations.
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This is a consequence of a general principle saying that, for any constructible subset of
CN , the Zariski closure and the closure with respect to the Euclidean topology coincide,
see Mumford [50, §2.C].

We make now the following observation.
Suppose dc(m) ≤ n with m > 2, say perm(X) = det(A(X)), where A(X) is of size n,

with affine linear entries in x11, . . . , xmm. (By Theorem 2.3 we havem < n.) Homogenizing
this equation with the additional variable t, we obtain

(3.1) tn−m perm(X) = tn perm

(1

t
X
)

= tn det
(
A
(1

t
X
))

= det
(
tA
(1

t
X
))
.

The entries of the matrix tA(1
t
X) are linear forms in t and the X-variables. We call

tn−m perm(X) the padded permanent.
The n2 entries of tA(1

t
X), arranged as a vector, may be thought of as being obtained

by multiplying some matrix L ∈ Cn2×(m2+1) with (x11, . . . , xmm, t)
T . Now think of t as

being one of the variables in {x11, . . . , xnn}\{x11, . . . , xmm}. Then L ·(x11, . . . , xmm, t)T =
L′ · (x11, . . . , xnn)T , where L′ is obtained by appending n2−m2−1 zero columns to L. We
thus see that tn−m perm(X) is obtained from detn by the substitution L′. Since GLn2 is
dense in Cn×n, we can approximate L′ arbitrarily closely by invertible matrices and hence
we obtain

tn−m perm(X) ∈ Ωn.

Mulmuley and Sohoni [48] proposed to prove that tn−m perm(X) 6∈ Ωn, which is stronger
than dc(m) > n, but which has the benefit that this problem can be naturally approached
by tools from algebraic geometric. In particular, methods from geometric invariant theory
can be brought into play.

The basic strategy for proving lower bounds is now to exhibit a polynomial function

R : SymnCn2 → C
that vanishes on Ωn, but not on the padded permanent tn−m perm(X). Theorem 3.4 tells
us that this strategy “in principle” must work, but how on earth could we find such a
function R?

The idea is to exploit the symmetries. The determinant variety Ωn clearly is invariant
under the action of the group GLn2 on SymnCn2

. We consider the vanishing ideal

I(Ωn) = {R | R vanishes on Ωn},
which is invariant under the action of GLn2 . We bring now the representation theory of
GLn2 into play and try to understand which types of irreducible GLn2-modules appear in
I(Ωn).

3.2. A primer on representation theory. Our treatment here is extremely brief. Basi-
cally, we just recall definitions and introduce notations. E.g., see [25] for more information
on this classical topic.

It is well-known that the isomorphism types of irreducible (rational) GLn2-modules can

be labelled by highest weights, which we can view as λ ∈ Zn2
such that λ1 ≥ · · · ≥ λn2 .

The Schur–Weyl module Vλ = Vλ(GLn2) denotes an irreducible GLn2-module of highest
weight λ.

If λn2 ≥ 0, then λ is a partition of length `(λ) := #{i | λi 6= 0} ≤ n2 and size
|λ| := ∑i λi. We briefly write λ `n2 |λ| for this.
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Example 3.5. 1. If λ = (δ, . . . , δ) for δ ∈ Z, then Vλ = C with the operation g · 1 =
det(g)δ.

2. If λ = (δ, 0, . . . , 0) for δ ∈ N, then Vλ = Symδ Cn2
.

The group GLn2 acts on Symd SymnCn2
, and we are interested in its isotypical decom-

position:

(3.2) Symd SymnCn2

=
⊕

λ`dn

plethn(λ)Vλ.

The arising multiplicities plethn(λ) ∈ N are called plethysm coefficients.

Remark 3.6. The decomposition of Symd SymnC2 describes the invariants and covariants
of binary forms of degree n. This was a subject of intense study in the 19th century and
famous names like Cayley, Sylvester, Clebsch, Gordan, Hermite, Hilbert, . . . are associated
with it (e.g., see [56, 57]). However, in the above situation of forms of many variables,
little is known.

We now go back to the vanishing ideal of Ωn and ask for the isotypical decomposition
of the degree d component of its vanishing ideal I(Ωn):

(3.3) I(Ωn)d =
⊕

λ`dn

multdetn(λ)Vλ.

Our goal is to get some information about the arising multiplicities multdetn(λ). It will
be convenient to say that the elements of the isotypical component multdetn(λ)Vλ contain
the equations for Ωn of type λ. Representation theory tells us that the equations “come in
modules”. The multiplicity multdetn(λ), multiplied by dimVλ, tells us how many linearly
independent equations of type λ there are.

In order to say something about multdetn(λ), we recall the following crucial quantity.

Definition 3.7. Let λi `mi
N , i = 1, 2, 3, be three partitions of N with length

`(λi) ≤ mi. Their Kronecker coefficient is defined as the multiplicity of the irreducible
GLm1 ×GLm2 ×GLm3-module in SymN

(
Cm1 ⊗ Cm2 ⊗ Cm3

)
:

k(λ1, λ2, λ3) := mult
(
Vλ1 ⊗ Vλ2 ⊗ Vλ3 , SymN

(
Cm1 ⊗ Cm2 ⊗ Cm3

))
.

It is well-known that, by Schur–Weyl duality, there is also an interpretation of Kronecker
coefficients in terms of representations of the symmetric group SN : we have

k(λ1, λ2, λ3) = dim
(
[λ]⊗ [µ]⊗ [ν]

)SN ,

where [λ] denotes an irreducible SN -module of type λ (Specht module).
Unfortunately, despite being fundamental, Kronecker coefficients are not well under-

stood. We believe that they should count some efficiently describable objects, but such a
description has so far only be achieved in special cases (notably, if one of the partitions
is a hook, cf. [3]). Computer science has developed models to express this question in a
rigorous way. We encode partitions as lists of binary encoded integers.

Problem 3.8. Is the function (λ1, λ2, λ3) 7→ k(λ1, λ2, λ3) in the complexity class #P?
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We will see that the case where two of the three partitions are equal and of rectangular
shape n× d = (d, . . . , d) (n times), is of special interest to us. We therefore define

(3.4) kn(λ) := k(λ, n× d, n× d) for λ ` dn.

3.3. Obstructions. The coordinate ring of Ωn consists of the restrictions of polynomial
functions to Ωn and can be described as

C[Ωn] := C
[

SymnCn2]
/I(Ωn).

The multiplicity of the irreducible GLn2-module Vλ in C[Ωn] can be expressed as

(3.5) k̃n(λ) := plethn(λ)−multdetn(λ),

which we shall call GCT-coefficients. The following theorem, which is due to Mulmuley
& Sohoni [49], shows that k̃n(λ) is upper bounded by the special Kronecker coefficients
kn(λ). A refinement of this result can be found in [15].

Theorem 3.9 (Mulmuley and Sohoni). We have k̃n(λ) ≤ kn(λ) for λ `n2 dn.

We explain now how we intend to apply this theorem for the purpose of lower bounds.
(Currently, this plan could not yet be realized, and we will explain below some of the
difficulties encountered with its realization.)

Suppose that kn(λ) = 0. Then Theorem 3.9 implies that multdetn(λ) = plethn(λ).
Looking at the decompositions (3.2) and (3.3), we infer that any polynomial

R ∈ Symd SymnCn2
of type λ vanishes on the determinant variety Ωn. If we are lucky,

and additionally, some R of type λ satisfies R(tn−m perm) 6= 0, then we can conclude
that the padded permanent tn−m perm does not lie in Ωn . Therefore the lower bound
dc(m) > n would follow.

We call such a partition λ an (occurrence) obstruction proving dc(m) > n.

The nonvanishing condition for R has the following consequences. First of all, we must
have plethn(λ) > 0. Moreover, we have the following constraints on the shape of λ.

Theorem 3.10 (Landsberg and Kadish). If there exists R ∈ Symd SymnCn2
of type

λ `n2 dn such that R(tn−mg) 6= 0 for some form g of degree m in ` ≤ n2 variables, then
`(λ) ≤ `+ 1 and λ1 ≥ |λ|(1−m/n).

The first assertion is from [15] and the second is from [33]. We omit the proof.
Hence an obstruction λ has relatively few rows and almost all of its boxes are in its

first row. More specifically, in our situation, we have ` = m2. Therefore, a hypothetical
sequence (λm) of obstructions certifying at least m2/2 ≤ dc(m) must satisfy `(λm) ≤
m2 + 1 and limm→∞ λ

m
1 /|λm| = 1.

To further simplify, let us now forget about the nonvanishing of R on the padded
permanent and make the following definition.

Definition 3.11. An obstruction for forms of degree n is a partition λ `n2 dn, for some
d, such that kn(λ) = 0 and plethn(λ) > 0.

Proposition 3.12. Assume there exists an obstruction λ for forms of degree n with
` = `(λ) rows. Then a generic polynomial f ∈ SymnC` of degree n in ` variables satisfies
dc(f) > n.
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Proof. The assumption plethn(λ) > 0 implies that there exists some homogeneous polyno-

mial function R : SymnCn2 → C of type λ; cf. (3.2). Moreover, we may assume that the
restriction of f to SymnC` does not vanish. (For this, one needs to know that plethn(λ)
does not change when removing zeros from λ.) By Theorem 3.9, kn(λ) = 0 implies

k̃n(λ) = 0 and hence R vanishes on Ωn; cf. (3.2). For a generic f ∈ SymnC` we have
R(f) 6= 0. Hence f 6∈ Ωn, which proves that dc(f) > n. �

Example 3.13 (Ikenmeyer [29]). λ = (13, 13, 2, 2, 2, 2, 2) is an obstruction for forms of
degree 3 in 7 variables. Indeed, |λ| = 36 = 12·3, `(λ) = 7 and one can check with computer
calculations that pleth3(λ) = 1 and k3(λ) = 0. (We compute Kronecker coefficients with
an adaption by J. Hüttenhain of a code originally written by H. Derksen.) In this situation,
there is (up to scaling) a unique highest weight function R : Sym3C9 → C of degree 12
and type λ. This function R vanishes on Ω3.

Let us point out that the dimension of the “search space” Sym12C165 in which R lives
is enormous: we have Sym3C9 ' C165 and dim Sym12C165 ≈ 1.3 ·1019. We have found the
“needle in a haystack” with the help of representation theory and extensive calculations!
It should also be emphasized that it is possible to describe R in a concise way using
symmetrizations, cf. [29].

The following is a major open problem!

Problem 3.14. Find families of obstructions for forms with few rows.

3.4. Sketch of proof of Theorem 3.9.

3.4.1. Symmetries of the determinant. The symmetries of detn are captured by the sta-
bilizer group

stabn :=
{
g ∈ GL(Cn2

) | det(g(X)) = det(X)
}
,

where we interpret in this formula X as a vector of length n2. For A,B ∈ SLn we consider
the following linear map given by matrix multiplication:

(3.6) gA,B : Cn×n → Cn×n, X 7→ AXB.

We have det(AXB) = det(A) det(X) det(B) = det(X). Hence gA,B ∈ stabn. Are these all
elements of the stabilizer group of detn? No, the transposition τ : Cn×n → Cn×n, X 7→ XT

clearly also belongs to stabn.
The following result due to Frobenius [24] in fact states that each element of stabn is

of the form gA,B or τgA,B. (This was rediscovered later by Dieudonné [21].) We skip the
proof.

Theorem 3.15 (Frobenius). The stabilizer group stabn of detn is generated by τ and
the gA,B for A,B ∈ SLn. We have

stabn ' (SLn× SLn)/µn o Z2,

where µn := {t idn | tn = 1}.
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3.4.2. Multiplicities in the coordinate ring of the orbit of detn. In algebraic geometry, one
defines a regular function ϕ : GLn2 · detn → C as a function such that each point of the
orbit GLn2 · detn has an open neighborhood on which ϕ can be expressed as the quotient
of two rational functions. We denote by C[GLn2 · detn] the ring of regular functions on
the orbit.

Let us point out that the orbit is a smooth algebraic variety that is well understood
in various senses. By going over to the orbit closure Ωn, one adds limit points at the
boundary, and we expect the situation to become very complicated. (Compare [38, 11]
for some results.)

Clearly, we have the following inclusion of rings of regular functions:

C[Ωn] ⊆ C
[

GLn2 · detn
]
.

By comparing multiplicities, it follows that for λ `n2 dn,

k̃n(λ) = plethn(λ)−multdetn(λ) = multiplicity of Vλ in C[Ωn]

≤ multiplicity of Vλ in C[GLn2 · detn]

= dim
(
Vλ
)stabn

(algebraic Peter–Weyl theorem)

≤ kn(λ) (see below).

The Peter–Weyl theorem is a well-known theorem from harmonic analysis, telling us about
the irreducible G-modules in the space L2(G,C) of quadratic integrable functions on a
compact Lie group G. (If G is finite, this is just the well-known decomposition of the
regular representation.) For the second equality above, we used an algebraic version of
the Peter–Weyl theorem; cf. [35, Chap. II, Sec. 3, Thm. 3] or [53, Sec. 7.3].

We now justify the last inequality. It is here that Kronecker coefficients enter the game!
Schur–Weyl duality implies that, by restricting the GLn2-action of Vλ(GLn2) with respect
to the homomorphism GLn×GLn → GLn2 , (A,B) 7→ A⊗B, we obtain

Vλ(GLn2) ↓GLn×GLn=
⊕

µ,ν `n|λ|

k(λ, µ, ν)Vµ(GLn)⊗ Vν(GLn).

We look now for SLn× SLn-invariants. They occur on the right-hand side only if µ = ν =
n× d and |λ| = dn. Note that A⊗B is just another way of writing gA,B; see (3.6). Using
Theorem 3.15, we obtain

dim
(
Vλ(GLn2)

)stabn ≤ dimVλ(GLn2)SLn× SLn = k(λ, n× d, n× d) = kn(λ).

This completes the proof of Theorem 3.9.

3.5. Obstructions must be gaps. We address now the question of how to exhibit
obstructions for forms. Example 3.13 was found with extensive calculations. We will see
here that, in a certain sense, obstructions are quite rare, or at least hard to find.

Progress on Problem 3.14 is thus imperative. We do not want to hide the fact that
we do not know whether there exist enough obstructions for achieving the desired lower
bounds on determinantal complexity. In fact, the state of the art is that, so far, no lower
bound on dc(m) has been obtained along these lines. However, let us point out that in the
related, but simpler situation of border rank of tensors, lower bounds have been proven
by exhibiting obstructions; see [13].



PERMANENT VERSUS DETERMINANT 11

We consider the following set of highest weights,

Kn :=
{
λ | λ `n2 dn for some d and kn(λ) > 0

}
.

From Definition 3.7 it easily follows that λ, µ ∈ Kn implies λ+µ ∈ Kn. Moreover, 0 ∈ Kn.
Hence Kn is a monoid. (It follows from general principles that Kn is finitely generated;
cf. [4].)

Example 3.16. To illustrate the next step, consider the submonoid M := {0, 3, 5, 6,
8, 9, . . .} of N, which clearly generates the group Z. From sx ∈ M , s ≥ 1, we cannot
deduce that x ∈M , due to the presence of the “holes” 1, 2, 4, 7. Filling in these holes, we
obtain the monoid N. The holes are usually called the gaps of the monoid M ; cf. [54]. In
general, one calls the process of filling in the gaps saturation.

In our situation of interest, we make the following definition.

Definition 3.17. The saturation of Kn is the set of partitions λ with `(λ) ≤ n2 such that
|λ| is a multiple of n and there exists a “stretching factor” s ≥ 1 satisfying sλ ∈ Kn. The
gaps of Kn are the elements in the saturation of Kn that do not lie in Kn.

Remark 3.18. To fully justify the naming “saturation” here, one has to show that the
group generated by Kn consists of all λ ∈ Zn2

such that n divides
∑

i λi. (For n ≥ 7 this
was shown in [32]; for n = 2 it is false.)

The following result is established in [8].

Theorem 3.19 (B, Christandl, Ikenmeyer). The saturation of the monoid Kn equals
the set of all partitions λ with `(λ) ≤ n2 such that |λ| is a multiple of n.

This result implies that obstructions must be gaps of the monoid Kn. The relevance of
Theorem 3.19 is that it excludes the use of asymptotic techniques for finding obstructions.

Theorem 3.9 states that k̃n(λ) ≤ kn(λ). However, we only need k̃n(λ) = 0 for imple-

menting our strategy of proving lower bounds. Indeed, the replacement of k̃n(λ) by the
Kronecker coefficient kn(λ) corresponds to replacing the coordinate ring of the orbit clo-
sure by the larger coordinate ring of the orbit, and this was only done because we better
understand the latter.

So one might hope that Theorem 3.19 fails for the smaller multiplicities k̃n. Unfortu-
nately, this does not turn out to be the case. Before stating the next result, we introduce
a certain combinatorial conjecture.

A Latin square of size n is map T : [n]2 → [n], viewed as an n× n matrix with entries
in [n], such that in each row and each column each entry in [n] appears exactly once.
So, in each column and row we have a permutation of [n]. The column sign of T is
defined as the product of the signs of column permutations. The Latin square T is called
column-even if this sign equals one, otherwise T is called column-odd. See Figure 2 for an
illustration.

It is an easy exercise to check that, if n > 1 is odd, then there are as many column-even
Latin squares of size n as there are column-odd Latin squares of size n.

The Alon–Tarsi conjecture [1] states that, if n is even, then the number of column-even
Latin squares of size n is different from the number of column-odd Latin squares of size n.
This conjecture is known to be true if n = p± 1 where p is a prime, cf. [23, 26].
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− + − −
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

Figure 2. A Latin square with column-sign −1.

The following result is due to Kumar [36]. (Note that, in contrast with Theorem 3.19,
it only makes a statement about the λ with `(λ) ≤ n.)

Theorem 3.20 (Kumar). If the Alon–Tarsi conjecture holds for n, then for all λ with

`(λ) ≤ n such that |λ| is a multiple of n, we have k̃n(nλ) > 0.

In fact, it is possible to obtain an unconditional result at the price of losing the infor-
mation about the specific stretching factor n. The following result is from [10].

Theorem 3.21 (B, Hüttenhain, Ikenmeyer). For all λ with `(λ) ≤ n such that |λ|
is a multiple of n, there exists s ≥ 1 such that k̃n(sλ) > 0.

4. Positivity of Kronecker coefficients

Motivated by the attempt described in the previous section, notable progress was made
about understanding when Kronecker coefficients are positive. We report on this in the
remainder of this survey.

4.1. Testing positivity is NP-hard. It is known that testing the positivity of Little-
wood–Richardson coefficients can be done in polynomial time; cf [47, 40, 12]. Mulmuley
conjectured [46] that testing positivity of Kronecker coefficients can be done in polynomial
time as well. For fixed m and partitions λ, µ, ν of length at most m this is true, see [18].
However, an exciting recent result [31] shows that, in general, this is not the case. For
the following hardness results, we may even assume that the partitions are given as lists
of integers encoded in unary. (A positive integer m encoded in unary has size m; thus
considering unary encoding makes the problem easier.)

Theorem 4.1 (Ikenmeyer, Mulmuley, Walter). Testing positivity of Kronecker
coefficients is an NP-hard problem.

We are going to outline the proof. By a 3D-relation we shall understand a finite subset
R of N3. For i ∈ N we set

xR(i) := #{(x, y, z) ∈ R | x = i},
and we call the sequence xR := (xR(0), xR(1), . . .) the x-marginal of R. We may interpret
xR as a partition of |R] if the entries of xR are monotonically decreasing. (There is no
harm caused by the fact that the indexing of xR starts with 0.) Similarly, we define the
y-marginal yR and the z-marginal zR of R. Note that, if R is contained in the discrete
cube {0, . . . ,m− 1}3, then xR, yR, zR have at most m nonzero components. The problem
of reconstructing R from its marginals is sometimes called “discrete tomography”.
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We call a 3D-relation R a pyramid if (x, y, z) ∈ R implies (x′, y′, z′) ∈ R for all
(x′, y′, z′) ∈ N3 such that x′ ≤ x, y′ ≤ y, z′ ≤ z. In the literature, one often calls
pyramids plane partitions. In fact, they are just the 3D-analogues of Young diagrams.

Let λ′ denote the partition conjugate to λ obtained by a reflection of its Young diagram
at the main diagonal.

Definition 4.2. For λ, µ, ν ` d we denote by t(λ, µ, ν) the number of 3D-relations R
with x-marginal λ′, y-marginal µ′, and z-marginal ν ′. Moreover, let p(λ, µ, ν) denote the
number of pyramids R with the marginals λ′, µ′, ν ′.

The following result was previously proved by Manivel [43] and rediscovered in [13, 31];
compare also Vallejo [60].

Lemma 4.3. We have p(λ, µ, ν) ≤ k(λ, µ, ν) ≤ t(λ, µ, ν) for λ, µ, ν ` d.

Proof. Recall that [λ′] ' [λ]⊗ [1d], where d = |λ|. Suppose that λ′, µ′, ν ′ have at most m
parts. Then we have

k(λ, µ, ν) = mult([λ]⊗ [µ]⊗ [ν], [d])

= mult([λ′]⊗ [µ′]⊗ [ν ′], [1d])

= mult
(
Vλ′(GLm)⊗ Vµ′(GLm)⊗ Vν′(GLm),Λd(Cm ⊗ Cm ⊗ Cm)

)
,

where for the last equality we have used Schur–Weyl duality.
Let ej denote the jth canonical basis vector of Cm. To a 3D-relation R = {(xi, yi, zi) |

1 ≤ i ≤ d} ⊆ {0, . . . ,m− 1}3 such that |R| = d, we assign the vector (only defined up to
sign)

vR := ± ∧di=1 (exi ⊗ eyi ⊗ ezi) ∈ ∧d(Cm ⊗ Cm ⊗ Cm).

Note that the vR form a basis of ∧d(Cm ⊗ Cm ⊗ Cm). In fact, vR is a weight vector of
weight (xR, yR, zR), since, for a triple

g = (diag(a0, . . . , am−1), diag(b0, . . . , bm−1), diag(c0, . . . , cm−1))

of invertible diagonal matrices, we have

g · vR = a
xR(0)
0 · · · axR(m−1)

m−1 b
yR(0)
0 · · · byR(m−1)

m−1 c
zR(0)
0 · · · czR(m−1)

m−1 vR.

We conclude that t(λ, µ, ν) equals the dimension of the weight space of weight (λ′, µ′, ν ′)
in Λd(Cm ⊗ Cm ⊗ Cm).

At the beginning of the proof, we observed that k(λ, µ, ν) equals the multiplicity of
Vλ′(GLm)⊗ Vµ′(GLm)⊗ Vν′(GLm) in Λd(Cm ⊗ Cm ⊗ Cm), which is the dimension of the
vector space of highest weight vectors of weight (λ′, µ′, ν ′) in Λd(Cm ⊗ Cm ⊗ Cm). So we
conclude that k(λ, µ, ν) ≤ t(λ, µ, ν).

Finally, if R is a pyramid, then it is easy to check that (g1, g2, g3) · vR = vR, where
g1, g2, g3 are invertible upper triangular matrices with 1’s on the diagonal. In this case,
vR is therefore a highest weight vector. This implies p(λ, µ, ν) ≤ k(λ, µ, ν). �

We will show now that certain constraints on the marginals of a 3D-relation R enforce
that R must be a pyramid.

The distance of the barycenter bR := 1
|R|
∑

p∈R p of R to the linear hyperplane orthogonal

to the diagonal (1, 1, 1) is given by hR := bR · (1, 1, 1)T , up to the scaling factor
√

3. The
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distance hR can be expressed in terms of the marginals of R by

(4.1) |R|hR =
∑

(x,y,z)∈R(x+ y + z) =
∑

i i (xR(i) + yR(i) + zR(i)).

For s ≥ 1 we consider the simplex P (s) := {(x, y, z) ∈ N3 | x + y + z ≤ s − 1}, which
has the cardinality |P (s)| = s(s + 1)(s + 2)/6. For d ≥ 1 we define s(d) as the maximal
natural number s such that |P (s)| ≤ d.

Assume now that a 3D-relation R satisfies P (s) ⊆ R ⊂ P (s + 1) for some s. Then
necessarily s = s(d), where d := |R|. In this situation, it is easy to see that hR = h(d),
where

(4.2) h(d) := |P (s)|
d

hP (s) + (1− |P (s)|
d

) s.

If λ′, µ′, ν ′ denote the marginals of R, then we have by (4.1),

(4.3)
∑

i

i (λ′i + µ′i + ν ′i) = d h(d).

We call a triple λ, µ, ν ` d of partitions simplex-like if (4.3) holds.

Lemma 4.4. Any 3D-relation R, whose marginals are simplex-like, is a pyramid. Hence
k(λ, µ, ν) = t(λ, µ, ν) if (λ, µ, ν) is simplex-like.

Proof. The first assertion is easy to prove and the second one follows with Lemma 4.3. �

The following result was shown in [5].

Theorem 4.5 (Brunetti, Del Lungo, Gérard). Deciding t(λ, µ, ν) > 0 is an NP-
hard problem.

The catch is that the reduction in the proof of this theorem from 3D-matching is such
that one can actually reduce to simplex-like triples (λ, µ, ν) of partitions. This completes
our sketch of the proof of Theorem 4.1. In fact, the NP-hardness reduction in the proof of
Theorem 4.5 leads to an efficient and explicit way to produce many gaps of the Kronecker
monoid. We are not aware of any other way to obtain this result! Unfortunately, the
reduction breaks down for the most wanted situation of partition triples (λ, µ, µ) where
µ is a rectangle. In fact, one can prove that t(λ, n × d, n × d) > 0 if λ ` dn such that
`(λ) ≤ min{d2, n2}, see [31, Thm. 6.9].

From the proof of Theorem 4.5 one obtains the following insights, which show a re-
markable interplay between computer science and algebraic combinatorics.

• There is a positive #P-formula for a subclass of triples of partitions, whose posi-
tivity of Kronecker coefficients is NP-hard to decide.
• The Kronecker monoid has many gaps, and we can efficiently compute subexpo-

nentially many of them. More specifically, for any 0 < ε < 1 there is 0 < a < 1
such that, for all m, there exist Ω(2m

a
) many partition triples (λ, µ, µ) such that

k(λ, µ, µ) = 0, but there exists s ≥ 1 with k(sλ, sµ, sµ) > 0. Moreover, `(µ) ≤ mε

and |λ| = |µ| ≤ m3. Finally, there is an efficient algorithm to produce these
partitions.

Since the reduction breaks down for the most wanted situation of partition triples
(λ, µ, µ) where µ is a rectangle, this fails to provide a solution for Problem 3.14.
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4.2. Testing asymptotic positivity may be feasible. We finish by mentioning a
further recent insight.

Definition 4.6. The asymptotic positivity problem for Kronecker coefficients is the prob-
lem of deciding for given λ, µ, ν (in binary encoding) whether k(sλ, sµ, sν) > 0 for some
s ≥ 1.

This problem can be rephrased as a membership problem to a (family of) polyhedral
cones, that we may call Kronecker cones. They are of relevance for the quantum marginal
problem of quantum information theory; see [34, 19, 20].

Theorem 4.1 states that the positivity testing problem for Kronecker coefficients is NP-
hard. By contrast, the following recent result [9] tells us that the asymptotic version of
this problem should be considerably easier.

Theorem 4.7 (B, Christandl, Mulmuley, Walter). The asymptotic positivity prob-
lem for Kronecker coefficients is in NP ∩ coNP.

In fact, we have now good reasons to conjecture that the asymptotic positivity problem
for Kronecker coefficients can be solved in polynomial time. In view of the known algo-
rithms and the complicated face structure of the Kronecker cones [55, 61], this is quite
surprising.

The proof of Theorem 4.7 combines different techniques. The containment in NP is a
consequence of the description of the Kronecker cone as the image of the so-called moment
map, which is a consequence of a general result due to Mumford [51]; see also [4]. Moment
maps are studied in symplectic geometry.

The basis of the containment in coNP is a description of the facets of the Kronecker
cone due to Ressayre [55]. Vergne and Walter [61] provided a modification of Ressayre’s
description that is efficiently testable, which leads to the containment in coNP.

5. Note added in proof

Since the writing of this survey in the fall of 2015, important progress has been made
with regard to the feasibility of the attempt outlined in Section 3.

In a breakthrough work, Ikenmeyer and Panova [32] showed that the vanishing of
rectangular Kronecker coefficients cannot be used to prove superpolynomial lower bounds
on the determinantal complexity of the permanent polynomials!

Recall that, by Theorem 3.10, an occurrence obstruction λ proving dc(m) > n neces-
sarily satisfies `(λ) ≤ m2 + 1 and λ1 ≥ |λ|(1 − m/n). (By a minor modification of the
notion of padded permanents, we may even assume `(λ) ≤ m2.)

More specifically, Ikenmeyer and Panova proved the following.

Theorem 5.1 (Ikenmeyer and Panova). Let λ ` dn such that `(λ) ≤ m2, λ1 ≥
|λ|(1−m/n), and assume n > 3m4. Then plethn(λ) > 0 implies kn(λ) > 0.

This result does not yet rule out the occurrence based approach towards VP 6= VNP
as outlined in Section 3, since it refers to the Kronecker coefficients kn(λ) of rectangular

partitions and not to the GCT-coefficients k̃n(λ). (Recall those are the multiplicities in
the coordinate ring of the orbit closure of Ωn; see (3.5) and Theorem 3.9.)

However, shortly after the appearance of [32], Bürgisser, Ikenmeyer and Panova [14]
proved a similarly devastating result for the GCT-coefficients.
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Theorem 5.2 (B, Ikenmeyer, and Panova). Let λ ` dn such that we have `(λ) ≤ m2,

λ1 ≥ |λ|(1−m/n), and assume n > m25. Then plethn(λ) > 0 implies k̃n(λ) > 0.

The main ingredient behind the proof of Theorem 5.2, besides a splitting technique
as for Theorem 5.1, is the encoding of a generating system of highest weight vectors
in plethysms Symd Symn V by (classes of) tableaux with contents d × n, as well as the
analysis of their evaluation at tensors of rank one in a combinatorial way. This is similar
to [7, 29]. A further technique is the “lifting” of highest weight vectors of Symd Symn V ,
when increasing the inner degree n, as introduced by Kadish and Landsberg [33]. This is
closely related to stability property of the plethysm coefficients [62, 17, 42]. Remarkably,
for the proof of Theorem 5.2, the only information needed about the orbit closures Ωn is
that they contain certain padded power sums, see also [11].

5.1. Final remarks. Unfortunately, Theorem 5.2 rules out the possibility of proving
VP 6= VNP via occurrence obstructions.

Let us emphasize that there still remains the possibility that the approach via repre-
sentation theoretic obstructions may succeed when comparing multiplicities. Indeed, if
the orbit closure Zn,m of the padded permanent tn−m perm is contained in Ωn, then the
restriction defines a surjective GLn2-equivariant homomorphism C[Ωn] → C[Zn,m] of the
coordinate rings, and hence the multiplicity of the type λ in C[Zn,m] is bounded from

above by the GCT-coefficient k̃n(λ). Thus, proving that k̃n(λ) is strictly smaller than the
latter multiplicity implies that Zn,m 6⊆ Ωn. Mulmuley pointed out to us a paper by Larsen
and Pink [39] that is of potential interest in this connection.

In this context let us remark that [18] shows that comparing multiplicities by asymptotic
methods cannot be sufficient for the purpose of complexity separation.

To conclude, even if the approach via multiplicities should turn out to be impossible
as well, we should keep in mind that the noncontainment of orbit closures in principle
can be proved by exhibiting some highest weight vector functions (see [13, Prop. 3.3]).
Classical invariant theory and representation theory should provide guidelines on how to
find such functions, even though our current understanding of this is very limited.
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[24] Georg Frobenius. Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungs-
ber Deutsch. Akad. Wiss. Berlin, pages 994–1015, 1897.

[25] William Fulton and Joe Harris. Representation Theory - A First Course, volume 129 of Graduate
Texts in Mathematics. Springer, 1991.

[26] David G. Glynn. The conjectures of Alon-Tarsi and Rota in dimension prime minus one. SIAM J.
Discrete Math., 24(2):394–399, 2010.

[27] Bruno Grenet. An upper bound for the permanent versus determinant problem. Accepted for Theory
of Computing, 2011.
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