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TORUS FIXED POINTS IN SCHUBERT VARIETIES AND
NORMALIZED MEDIAN GENOCCHI NUMBERS

XIN FANG AND GHISLAIN FOURIER

Abstract. We give a new proof for the fact that the number of torus fixed points
for the degenerate flag variety is equal to the normalized median Genocchi number,
using the identification with a certain Schubert variety. We further study the torus
fixed points for the symplectic degenerate flag variety and develop a combinatorial
model, symplectic Dellac configurations, to parametrize them. The number of these
symplectic fixed points is conjectured to be a median Euler number.

Introduction

We consider the Schubert variety Xτn associated to the Weyl group element

τn := (snsn+1 · · · s2n−2) · · · (sksk+1 · · · s2k−2) · · · (s3s4)s2 ∈ S2n

in the partial flag variety SL2n/P , where P is the standard parabolic subalgebra as-
sociated to the simple roots {α1, α3, . . . , α2n−1}. Then there is a natural action of a
(2n − 1)-dimensional torus T2n−1, and we are mainly interested in the fixed points
XT2n−1
τn of this torus action. It is well known that the fixed points are parametrized by

Weyl groups elements which are less than or equal to τn in the Bruhat order (mod-
ulo the stabilizer of the parabolic subalgebra; in this case, the subgroup generated by
s1, s3, . . . , s2n−1). Our first result is the following.

Theorem A. There is an explicit bijection b from Dellac configurations DCn (Defini-
tion 1) of 2n columns and n rows to XT2n−1

τn . Hence the number of torus fixed points is
equal to the normalized median Genocchi number hn (see Section 1 for definition).

Here is an example of the Dellac configuration corresponding to a fixed point for n = 3:

• •
• • 7→ σ = 124536

• •

We also consider Schubert varieties of the symplectic flag variety, e.g., the Schubert
variety Xsp

τ2n
corresponding to the element (of the symplectic Weyl group)

τ 2n := (r2n · · · rn+1) · · · (r2nr2n−1r2n−2)(r2nr2n−1)r2n(rn · · · r2n−2) · · · (r4r5r6)(r3r4)r2
in the symplectic partial flag variety. In this case, there is a natural action of T2n on the
Schubert variety, and we are again interested in the fixed points of this torus action. To
parametrize them similar to the non-symplectic case, we introduce symplectic Dellac
configurations (Definition 2). These are Dellac configurations with 4n columns and 2n
rows, which are invariant under the involution mapping the i-th row to the (2n−i+1)-st
row. Here is our second result.
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Theorem B. The torus fixed points in Xsp
τ2n

are parametrized by the symplectic Dellac
configurations SpDC2n.

We conjecture that the number of symplectic Dellac configurations is equal to a
normalized median Euler number (cf. [K97]).

We should explain here why we are interested in these particular Schubert varieties.
E. Feigin [Fei11] defined the degenerate flag variety

F lan := {(U1, . . . , Un−1) ∈
n−1∏
i=1

Gri(Cn) | pri+1 Ui ⊂ Ui+1},

where pri is the endomorphism of Cn setting the i-th coordinate to be zero. This is
in fact a flat degeneration of the classical flag variety F ln. Moreover it was shown in
[CFR12, CLL15] that there is an action of T2n−1 on F lan. The symplectic degenerate
flag variety (F la2n)sp has been defined in [FFiL14] in a similar way.

The degenerate flag variety is one of the main objects in the framework of PBW
filtrations and degenerations on universal enveloping algebras of simple Lie algebras
(see [FFoL11a, FFoL11b, FFoL13, FFR15, Hag14, Fou14, Fou15, CFR12] for various
aspects). Here, one obtains degenerate flag varieties F la(λ) as highest weight orbits
of PBW degenerate modules. In [Fei11, FFiL14], it has been shown that these highest
weight orbits have an interpretation as a variety of certain flags.

Recently, it was shown in [CL15] that these degenerate flag varieties are in fact our
particular Schubert varieties.

Theorem (Cerulli Irelli–Lanini). (1) In the sln-case, the degenerate flag va-
riety F lan is isomorphic to the Schubert variety Xτn. Moreover, the isomorphism
ζ : F lan

∼−→ Xτn is T2n−1-equivariant.
(2) In the sp2n-case, the degenerate symplectic flag variety is isomorphic to Xsp

τ2n
,

and again the isomorphism ζsp : Xsp
τ2n

∼−→ (F la2n)sp is torus-equivariant.

The torus fixed points of the degenerate flag variety in type An have been studied in
[Fei11]. In that paper, an explicit bijection f with the set of Dellac configurations has
been provided. Hence it was shown that the number of torus fixed points is equal to a
normalized median Genocchi number.

Combining the theorem by Cerulli Irelli and Lanini with Theorem A, we obtain an-
other proof of this fact, using the classical set up of Schubert varieties only. Moreover,
we can show that the following diagram commutes (there, α denotes the natural iden-
tification of W J

≤τn with XT2n−1
τn )

(F lan)Tn
f //

ζ

��

DCn

b

��
XT2n−1
τn W J

≤τn
αoo

.
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In the symplectic case, the map f is not present, mainly because the construction of
symplectic Dellac configurations has not been seen in the literature before. Nevertheless,
we obtain a similar picture, namely the torus fixed points in the symplectic degenerate
flag variety are parametrized by SpDC2n. We should mention here that E. Feigin (via
the symplectic degenerate flag variety in [FFiL14]) as well as G. Cerulli Irelli (via the
quiver Grassmannian in [CFR12]) also conjectured the number of torus fixed points to
be a normalized median Euler number.

This paper is organized as follows. In Section 1, we prove our first theorem for sln,
while, in Section 2, we consider the symplectic case. In Section 3 we relate our results
to the framework of degenerate flag varieties.

Acknowledgments. The work of Xin Fang is supported by the Alexander von Hum-
boldt Foundation. The work of Ghislain Fourier is funded by the DFG priority program
1388 ”Representation Theory”. The authors would like to thank Evgeny Feigin and
Bruce Sagan for their helpful comments.

1. Symmetric groups and Median Genocchi numbers

1.1. Let W = S2n be the symmetric group generated by S = {s1, s2, . . . , s2n−1} where
si = (i, i+ 1). Let J = {s1, s3, . . . , s2n−1} ⊂ S and WJ be the subgroup generated by J ,
and let W J be the set of minimal representatives of right cosets of WJ in W . We define

τn = (snsn+1 · · · s2n−2) · · · (sksk+1 · · · s2k−2) · · · (s3s4)s2 ∈ W.
Then, for t = 1, 2, . . . , 2n, we have

τn(t) =

{
k, t = 2k − 1;

n+ k, t = 2k.
(1.1)

By construction, τn is a representative of minimal length in W/WJ , so τn ∈ W J . We
define

W≤τn = {w ∈ W | w ≤ τn}, W J
≤τn = {w ∈ W J | w ≤ τn},

where ≤ is the Bruhat order.

Definition 1. A Dellac configuration C is a board of 2n columns and n rows with 2n
marked cells such that:

(1) each column contains exactly one marked cell;
(2) each row contains exactly two marked cells;
(3) if the (i, j)-cell is marked, then i ≤ j ≤ n+ i.

Let DCn denote the set of such configurations.

It is worth pointing out that the definition of a Dellac configuration given above
differs from that in [Fei11] by a rotation of the board by 90◦.

The cardinality hn of the set DCn is called the n-th normalized median Genocchi
number (see [Fei11, Fei12] and the references therein). Consider the polynomials defined
recursively by: H0(x) = 1,

Hn(x) =
1

2
(x+ 1)((x+ 1)Hn−1(x+ 1)− xHn−1(x)).
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Then it is proved in [DR94] that hn = Hn(1).
The following theorem is originally proved by Cerulli Irelli and Lanini in [CL15] as a

corollary of their main result and a result of Feigin [Fei11] (see Remark 4 for details).

Theorem 1. For any integer n ≥ 1, we have hn = #W J
≤τn.

In this section, we provide a purely combinatorial proof of the theorem, in terms of
a bijection.

1.2. Rook configurations. Consider a board of n rows and columns. A rook config-
uration R is a filling of the cells by n marks such that each row and each column have
exactly one mark. Let Rn denote the set of all rook configurations. There is a bijection

ϕ : Rn
∼−→ Sn (1.2)

sending a rook configuration R to the permutation σR satisfying σR(i) = j if and only if
the cell (i, j) is marked in R, for i = 1, 2, . . . , n. For σ ∈ Sn, we denote Rσ := ϕ−1(σ).

Let R be a rook configuration. The convex hull of the marked cells in R is the smallest
right-aligned skew Ferrers board containing all marks in R.

From now on we consider S2n: Rτn is a board of 2n columns and rows. A restricted
rook configuration with respect to τn is a rook configuration such that all marked cells
in the board are contained in the convex hull (which is called the right hull in [Sjo07])
of the marked cells in Rτn . Let R≤τn denote the set of all restricted rook configurations
with respect to τn.

Example 1. We consider an example where n = 3. Then τ3 = 142536, and the shadowed
area is the convex hull of the marked cells in Rτ3 . We fix σ = 124536. The rook
configuration of σ is (given by the dots):

Rσ =

•
•

•
•

•
•

Rσ is the restricted rook configuration with respect to τ3.

It is clear that τn avoids the patterns 4231, 35142, 42513, and 351624. The following
result is a special case of Theorem 4 in [Sjo07].

Theorem 2 ([Sjo07]). The restriction of ϕ on R≤τn gives a bijection R≤τn
∼−→ W≤τn.

1.3. From rook configurations to Dellac configurations. We define two maps
m : R≤τn → DCn, called the melt map, and b : DCn → R≤τn , called the blow-up map.

Let R ∈ R≤τn be a restricted rook configuration. Consider a board CR of 2n columns
and n rows defined by: the cell (k, l) of CR is marked if and only if either the cell
(2k − 1, l) or the cell (2k, l) is marked in R. Intuitively, the k-th row of CR is obtained
by merging the (2k − 1)-st and the 2k-th row in R.

Lemma 1. The board CR is a Dellac configuration.
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Proof. By the definition of a rook configuration, each row of CR has exactly two marked
cells, and each column of CR has exactly one marked cell. Moreover, when R is restricted
with respect to τn, then, by (1.1), CR has the following property: if the cell (r, s) in CR
is marked, then r ≤ s ≤ n+ r. �

By using the lemma, we obtain a well-defined melt map

m(R) := CR.

Example 2. Let σ = 124536 be the permutation in Example 1. The corresponding
Dellac configuration via the melt procedure is given by:

• •
• •

• •

Let C ∈ DCn be a Dellac configuration. A board RC of 2n rows and columns is
associated to C in the following way: the cells (i, j) and (i, k) with j < k are marked in
C if and only if the cells (2i − 1, j) and (2i, k) are marked in RC . Intuitively, the i-th
row in C is split into two rows, where the first row gets the first marked point, while
the second row gets the second.

Lemma 2. The board RC is a restricted rook configuration with respect to τn.

Proof. Conditions (1) and (2) in the definition of the Dellac configuration guarantees
that RC is a rook configuration. The condition (3) means that RC is restricted with
respect to τn. �

By defining b(C) = RC , the blow-up map is well-defined by Lemma 2.

Lemma 3. The following statements hold:

(1) the map b is injective with im(b) = ϕ−1(W J
≤τn);

(2) we have m ◦ b = id.

Proof. By construction, the only thing to be proved is im(b) = ϕ−1(W J
≤τn). This relation

indeed holds by the following description of W J :

W J = {σ ∈ W | σ(2k − 1) < σ(2k) for 1 ≤ k ≤ n}. �

As an application of these maps, we provide a bijective proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, the blow-up map b induces a bijection DCn
∼−→

W J
≤τn . Since |DCn | = hn, we proved hn = #W J

≤τn . �

Remark 1. The normalized median Genocchi numbers hn count a combinatorial struc-
ture in S2n+2 called normalized Dumont permutations. Although a posteriori there
exists a bijection between the normalized Dumont permutations and W J

≤τn , our ap-
proach is different from the one in [K97], see also [Fei11].
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2. Symplectic case

2.1. Notations. Let W̃ = S4n be the symmetric group acting on {1, 2, . . . , 4n}, and

J̃ = {s1, s3, . . . , s4n−1}. Let ι be the involution of W̃ defined by

ι(σ)(k) = 4n+ 1− σ(4n+ 1− k) for σ ∈ W̃ and 1 ≤ k ≤ 4n.

The Weyl group W of the symplectic group Sp4n with generators {r1, r2, . . . , r2n} can

be embedded into W̃ via the map κ : W → W̃ , ri 7→ sis4n−i for 1 ≤ i ≤ 2n − 1

and r2n 7→ s2n. The image of κ consists of the set W̃ ι of ι-fixed elements in W . Let
J = {r1, r3, . . . , r2n−1}. We define

τ2n = (r2n · · · rn+1) · · · (r2nr2n−1r2n−2)(r2nr2n−1)r2n(rn · · · r2n−2) · · · (r4r5r6)(r3r4)r2 ∈W.

It is observed in [CLL15] that κ(τ 2n) = τ2n.
By Corollary 8.1.9 in [GTM05] (notice the differences between the indices here and

those in the reference), the restriction of κ to W≤τ2n gives a bijection

α : W≤τ2n
∼−→ (W̃≤τ2n)ι.

By passing to right cosets, α induces a bijection α′ : W J
≤τ2n

∼−→ (W̃ J̃
≤τ2n)ι.

2.2. Symplectic Dellac configurations.

Definition 2. A symplectic Dellac configuration C is a board of 4n columns and 2n
rows with 4n marked cells such that:

(1) each column contains exactly one marked cell;
(2) each row contains exactly two marked cells;
(3) if the (i, j)-cell is marked, then i ≤ j ≤ 2n+ i;
(4) for 1 ≤ i, j ≤ 2n, the (i, j)-cell is marked if and only if the (2n−i+1, 4n−j+1)-

cell is marked.

Let SpDC2n denote the set of such configurations and en its cardinality.

We have e1 = 1, e2 = 2, e3 = 10, e4 = 98, e5 = 1594. Consider the sequence of
polynomials defined by recursion: E0(x) = 1,

En(x) =
1

2
(x+ 1)((x+ 2)En−1(x+ 2)− xEn−1(x)).

Conjecture 1. For any n ≥ 0, we have en+1 = En(1).

Remark 2. Giovanni Cerulli Irelli and Evgeny Feigin kindly informed us that they have
also a similar conjecture.

If this conjecture were true, these numbers en coincide with the numbers rn in [RZ96]
(see A098279 in OEIS), where the continued fraction expansion of the corresponding
generating function is given (Théorème 29 in loc. cit.).
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2.3. Main result. The main result of this section is the following.

Theorem 3. For any integer n ≥ 1, we have en = #W J
≤τ2n.

Proof. We prove the theorem by establishing a bijection between W J
≤τ2n and SpDC2n,

following the strategy in the proof of Theorem 1.
A symplectic rook configuration C is a board of 4n columns and rows with 4n marked

points satisfying:

(1) C is a rook configuration;
(2) for 1 ≤ i ≤ 4n and 1 ≤ j ≤ 2n, the cell (i, j) is marked if and only if the cell

(4n+ 1− i, 4n+ 1− j) is marked.

The set of symplectic rook configurations is denoted by SR4n. Similarly to Sec-
tion 1.2, we can define the restricted symplectic rook configurations with respect to
τ2n: SR≤τ2n := SR4n ∩R≤τ2n .

Consider the bijection ϕ : R4n
∼−→ S4n from (1.2).

Lemma 4. (1) The restriction of the map ϕ induces a bijection ϕ′ : SR4n
∼−→

W̃ ι = W .
(2) The restriction of the map ϕ′ induces a bijection ψ : SR≤τ2n

∼−→ (W̃≤τ2n)ι.

Proof. (1) Take a board R in SR4n. Condition (2) in its definition implies that ϕ(R) is

invariant under the involution ι. It suffices to show that ϕ′ is surjective. Let σ ∈ W̃ . By
definition of ι, the element σ is fixed by the involution ι if and only if σ(4n+ 1− k) =
4n + 1 − σ(k) for all k with 1 ≤ k ≤ 4n, i.e., for all i and j with 1 ≤ i ≤ 4n and
1 ≤ j ≤ 2n, we have σ(i) = j if and only if σ(4n + 1 − i) = 4n + 1 − j. This implies
that ϕ−1(σ) is in SR4n.

(2) Since SR≤τ2n = SR4n ∩ R≤τ2n and (W̃≤τ2n)ι = W̃ ι ∩ W̃≤τ2n , the bijectivity of ψ
follows from (1) and Theorem 2. �

Moreover, consider the restriction of the melt map m : R≤τ2n → DC2n to SR≤τ2n .
Since Condition (2) in the definition of the symplectic rook configuration translates into
Condition (4) in the definition of the symplectic Dellac configuration under the melt
map, m induces a map m′ : SR≤τ2n → SpDC2n.

Example 3. Let us consider an example where n = 2 and the permutation is given by
the following rook configuration:

•
•

•
•

•
•

•
•

where the shadowed area is the convex hull of the marked cells in Rτ4 . It is straight-
forward to see that the rook configuration is fixed by ι and hence symplectic. The
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corresponding symplectic Dellac configuration via the melt map m is given by

• •
• •

• •
• •

Continuation of the proof of Theorem 3. The restriction of the blow-up map b : DC2n →
R≤τ2n to SpDC2n gives a map b′ : SpDC2n → SR≤τ2n . By Lemma 3, b is injective with

im(b) = ϕ−1(W̃ J̃
≤τ2n). This implies that b′ is injective with

im(b′) = ϕ−1(W̃ J̃
≤τ2n ∩ W̃

ι) = ψ−1((W̃ J̃
≤τ2n)ι)

and m′ ◦ b′ = id.
By the above argument, the blow-up map b′ gives a bijection SpDC2n

∼−→ (W̃ J̃
≤τ2n)ι.

Composing with (ϕ′)−1, we get a bijection SpDC2n
∼−→ W J

≤τ2n . �

3. Application to torus fixed points

We show how the construction in Section 1 is related to the study of the torus fixed
points in the degenerate flag variety.

3.1. Schubert varieties. Let σn ∈ S2n be the permutation defined by

σn(r) =

{
k, r = 2k;

n+ 1 + r, r = 2k + 1.
(3.1)

We see that σn can be obtained by restricting τn+1 ∈ S2n+2 to the set {2, . . . , 2n+ 1}.
We denote by Xσn the Schubert variety corresponding to σn in the projective variety

SLn/P , where P is the standard parabolic subalgebra defined as the stabilizer of the
highest weight line of weight $1 +$3 + · · ·+$2n−1. The maximal torus T2n−1 of SL2n

acts naturally on Xσn . Let XT2n−1
σn be the set of torus fixed points.

It is a standard result that the torus fixed points XT2n−1
σn can be identified with the

quotient W J
≤σn , where W = S2n and J = {2, 4, . . . , 2n − 2}. For τ ∈ W J

≤σn , the

corresponding torus fixed point in XT2n−1
σn is

〈eτ(1)〉C ⊂ 〈eτ(1), eτ(2), eτ(3)〉C ⊂ · · · ⊂ 〈eτ(1), eτ(2), . . . , eτ(2n−1)〉C ∈ Xσn ,

where e1, e2, . . . , e2n is a fixed basis of C2n.

3.2. Degenerate flag varieties. We fix a basis {f1, f2, . . . , fn+1} of Cn+1. Let F lan+1

be the degenerate flag variety of SLn+1 (see [Fei11] for details):

F lan+1 = {(V1, V2, . . . , Vn) ∈
n∏
i=1

Gri(Cn+1) | pri+1(Vi) ⊂ Vi+1 for i = 1, 2, . . . , n},

where pri : Cn+1 → Cn+1 is the linear projection along the line generated by fi. By
[CFR12], the torus T2n−1 acts on F lan+1. Let (F lan+1)

T2n−1 be the corresponding set of
torus fixed points.



TORUS FIXED POINTS AND GENOCCHI NUMBERS 9

In [CL15], it is shown that there exists a T2n−1-equivariant isomorphism of projective

varieties ζ : F lan+1
∼−→ Xσn ⊂ SL2n/P . We are particularly interested in the image of

torus fixed points under ζ.
Fix a basis {e1, e2, . . . , e2n} of C2n. For i = 1, 2, . . . , n, we write Un+i for the coordinate

subspace 〈e1, e2, . . . , en+i〉 ⊂ W . The surjection πi : Un+i → Cn+1 is defined by

πi(ek) =


0, if 1 ≤ k ≤ i− 1;

fk, if i ≤ k ≤ n+ 1;

fk−n−1, if n+ 2 ≤ k ≤ n+ i.

(3.2)

Define ζi : Gri(Cn+1)→ Gr2i−1(C2n) to be the concatenation of the maps

Gri(Cn+1)→ Gr2i−1(Un+i)→ Gr2i−1(C2n), U 7→ π−1i (U) 7→ π−1i (U).

Then ζ : F lan+1 → Xσn is given by
∏n

i=1 ζi (see Section 2 of [CL15] for details).
It is clear that the torus Tn of SLn+1 acts naturally on F lan+1. By results in Section 7.2

of [CFR12], any T2n−1-fixed point in F lan+1 is in fact a Tn-fixed point. In [Fei11], an
explicit bijection f between the T2n−1-fixed points and Dellac configuration is provided.

3.3. A commutative diagram. As a summary, starting with a Tn-fixed point in
F lan+1, there are two ways to obtain a Dellac configuration:

(1) via the bijection f given by [Fei11];
(2) consider this fixed point as a fixed point in the Schubert variety Xσn , hence iden-

tify it with an element in W J
≤σn , then melt the corresponding rook configuration

to get a Dellac configuration.

It is natural to ask whether the following diagram commutes:

(F lan+1)
T2n−1 = (F lan+1)

Tn f //

β

��

DCn+1

b

��
XT2n+1
τn+1

= XT2n−1
σn W J

≤τn+1

αoo

,

where the map α is given as follows: for σ ∈ W J
≤τn+1

, where W = S2n+2, we define the
map α as follows: α(σ) is the sequence of subspaces W1 ⊂ W2 ⊂ · · · ⊂ Wn such that Wi

is the subspace of C2n generated by eσ(1), eσ(2), . . . , eσ(2i−1), where σ is the (well-defined)
restriction of σ to S2n. We can identify this element in XT2n−1

σn with n subsets J1, . . . , Jn
of {1, 2, . . . , 2n} such that Ji = {σ(1), σ(2), . . . , σ(2i− 1)}.

It remains to consider the restriction of the map ζ to fixed points. Here we have to
include an extra twist, since the definition of the degenerate flag variety is slightly dif-
ferent in [Fei11] and [CL15]: let (V1, V2, . . . , Vn) ∈ (F lan+1)

Tn . This flag can be identified
(see [Fei11, Corollary 2.11]) with n subsets I1, I2, . . . , In of {1, 2, . . . , n + 1} such that
#Ik = k and, for k = 1, 2, . . . , n, Ik\{k + 1} ⊂ Ik+1.

We let κ = (12 · · ·n + 1)−1 be the inverse of the longest cycle in Sn+1. Suppose
that Il = {il,1, il,2, . . . , il,l}. We write Iκl = {κ(il,1), κ(il,2), . . . , κ(il,l)}. Furthermore, we
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define a map pl : {1, 2, . . . , n+ l} → {1, 2, . . . , n+ 1} by

pl(s) =


0, if 1 ≤ s ≤ l − 1;

s, if l ≤ k ≤ n+ 1;

s− n− 1, if n+ 2 ≤ k ≤ n+ l.

(3.3)

Then β((I1, I2, . . . , In)) = (T1, T2, . . . , Tn), where Tl = p−1l (Iκl ).

Theorem 4. The diagram above commutes, i.e., ζ = α ◦ b ◦ f .

The proof consists of a case-by-case examination. We only provide a sketch.

Proof. We pick I = (I1, I2, . . . , In) ∈ (F lan+1)
Tn+1 . Recall that the map f is given in

[Fei11, Proposition 3.1].

(1) Suppose that l /∈ Il−1. Then Il\Il−1 = {j}. We consider the case j > l: in
the Dellac configuration f(I), the cells (l, l) and (l, j) are marked. Then, by
definition, σ = b(f(I)) satisfies σ(2l − 1) = l and σ(2l) = j. Hence, in α(σ),
Jl\Jl−1 = {l − 1, j − 1}.

We compute β(I): it is clear that Iκl \Iκl−1 = {j−1}. Then p−1l (Iκl )\p−1l−1(Iκl−1) =

p−1l ({l−1, j−1}) = {l−1, j−1}. Therefore Tl\Tl−1 = {l−1, j−1}, i.e., Jl = Tl.
The case j < l can be dealt with similarly.

(2) Suppose that l ∈ Il−1 and l ∈ Il. Then Il\Il−1 = {j}. We study the case j < l: in
the corresponding Dellac configuration, the cells (l, l+n+1) and (l, j+n+1) are
marked. The associated permutation σ = b(f(I)) satisfies σ(2l− 1) = j + n+ 1
and σ(2l) = l + n+ 1. Hence, in α(σ), Jl\Jl−1 = {j + n, l + n}.

For β(I): l ∈ Il−1 ∩ Il and Il\Il−1 = {j} imply that l − 1 ∈ Iκl−1 ∩ Iκl and

Iκl \Iκl−1 = {κ(j)}. Notice that, no matter whether j = 1 or j > 1, p−1l (κ(j)) =
j + n. By the assumption j < l, we have

p−1l (Iκl )\p−1l−1(I
κ
l−1) = p−1l ({l − 1, κ(j)}) = {j + n, l + n},

which establishes Jl = Tl.
The case where j > l can be dealt with similarly.

(3) Suppose that l ∈ Il−1 and l /∈ Il. Then there exist j1 and j2 such that Il\Il−1 =
{j1, j2}. We assume that j1 < l and j2 > l. In the corresponding Dellac
configuration, the cells (l, j1+n+1) and (l, j2) are marked. Hence, in α(b(f(I))),
Jl\Jl−1 = {j1 + n, j2 − 1}.

For β(I), we have

p−1l (Iκl )\p−1l−1(I
κ
l−1) = p−1l ({κ(j1), j2 − 1}) = {j1 + n, j2 − 1},

therefore Jl = Tl.
All other cases can be proved in the same way. �

Remark 3. A similar diagram without the map f exists in the symplectic case by chang-
ing

(1) the degenerate flag variety to the symplectic degenerate flag variety (see
[FFiL14]);

(2) the Schubert variety of SL2n by the Schubert variety in the symplectic group
(see [CL15]);
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(3) the Dellac configuration by the symplectic Dellac configuration;
(4) the set W J

≤τn+1
by W J

≤τ2n+2
.

Remark 4. The original proof of Theorem 1 is given by showing that the composition
α−1 ◦β ◦ f−1 is a bijection: that f is a bijection is shown in [Fei11]; by the main theorem
of [CL15], β is a bijection; α is a well-known bijection. Our proof of the theorem uses
the intuitive map b to avoid the geometrical proof.
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