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HOMOGENEOUS REPRESENTATIONS OF TYPE A

KLR-ALGEBRAS AND DYCK PATHS

GABRIEL FEINBERG AND KYU-HWAN LEE⋄

Abstract. The Khovanov–Lauda–Rouquier (KLR) algebra arose out of attempts to cat-

egorify quantum groups. Kleshchev and Ram proved a result reducing the representation

theory of these algebras of finite type to the study of irreducible cuspidal representations.

In type A, these cuspidal representations are included in the class of homogeneous repre-

sentations, which are related to fully commutative elements of the corresponding Coxeter

groups. In this paper, we study fully commutative elements using combinatorics of Dyck

paths. Thereby we classify and enumerate the homogeneous representations for KLR al-

gebras of types A and obtain a dimension formula for some of these representations from

combinatorics of Dyck paths.

Introduction

Introduced by Khovanov and Lauda [11] and independently by Rouquier [16], the Kho-

vanov–Lauda–Rouquier (KLR) algebras (also known as quiver Hecke algebras) have been

the focus of many recent studies. In particular, these algebras categorify the lower (or

upper) half of a quantum group. More precisely, the Cartan datum associated with a

Kac–Moody algebra g gives rise to a KLR algebra R. The category of finitely generated

projective graded modules of this algebra can be given a bialgebra structure by taking the

Grothendieck group, and taking the induction and restriction functors as multiplication

and co-multiplication. To say that the KLR algebra R categorifies the negative part U−
q (g)

of the quantum group, is to say that this bialgebra is isomorphic to Lusztig’s integral form

of U−
q (g).

In the paper [13], Kleshchev and Ram significantly reduce the problem of describing the

irreducible representations of the finite type KLR algebras. They defined a class of cuspidal

representations for these algebras, and showed that every irreducible representation appears

as the head of some induction of these cuspidals, and constructed almost all cuspidal

representations. Hill, Melvin, and Mondragon in [8] completed the construction of cuspidals

in all finite types, and re-frame them in a more unified manner.
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Furthermore, Lauda and Vazirani imposed a crystal structure on the isomorphism classes

of irreducible representations of a KLR algebra. They showed in [14] that this crystal is

isomorphic to the crystal B(∞) of the quantum group Uq(g). Crystals are also used by

Benkart, Kang, Oh, and Park in [1] to give a new approach towards the construction of

irreducible representations. For more background and other developments, see [4] and [10].

In the process of constructing the cuspidal representations, Kleshchev and Ram defined

a class of representations known as homogeneous representations [12], those that are con-

centrated in a single degree. Homogeneous representations include most of the cuspidal

representations for finite types with a suitable choice of ordering on words. Therefore it is

important to completely understand these representations. As shown in [12], homogeneous

representations can be constructed from the sets of reduced words of fully commutative

elements in the corresponding Coxeter group. These elements were studied by Fan [7] and

Stembridge [17, 18], and are closely related to Temperley–Lieb algebras [9].

Motivated by this connection to the homogeneous representations of KLR algebras,

we study, in this paper, fully commutative elements of the Coxeter groups of type An.

We decompose the set of fully commutative elements into natural subsets according to

the lengths of fully commutative elements, and study combinatorial properties of these

subsets. Our main result (Theorem 2.1) shows that the fully commutative elements of a

given length k can be parameterized by the Dyck paths of semi-length n with the property

that (sum of peak heights) − (number of peaks) = k. The main idea of the proof is to

investigate a canonical form of reduced words for fully commutative elements.1

After the parameterization is obtained, we classify and enumerate the homogeneous

representations of KLR algebras of type A according to the decomposition of the set of

fully commutative elements (Corollary 2.2). In their paper [12], Kleshchev and Ram gave

a parameterization of homogeneous representations using skew shapes. Our result uses

different combinatorial objects, i.e., Dyck paths, and gives a refinement of the classification.

Furthermore, we obtain a dimension formula for some homogeneous representations using

combinatorics of Dyck paths (Proposition 3.2), which is a reformulation of the Peterson–

Proctor formula. The precise relationship between skew shapes and Dyck paths is not

1After this paper was accepted, the authors were informed by C. Krattenthaler that the problem of
enumerating fully commutative elements by length was also studied by Biagioli, Jouhet and Nadeau in
[2]. Interestingly, they give a bijection to Motzkin paths with two types of horizontal steps. Since there is
a well-known bijection of these Motzkin paths to Dyck paths, one obtains a different bijection from fully
commutative elements to Dyck paths, where the length of a fully commutative element is given by half of
the sum of the heights of points of the corresponding Dyck path at even positions. Then, by combining
our result with their result and by going through the fully commutative elements, we obtain a bijection
from Dyck paths to Dyck paths, which is compatible with the two different ways to parameterize fully
commutative elements with respect to length.
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clear at the present; our Dyck path realization is more directly related to a canonical form

of fully commutative elements.

The outline of this paper is as follows. In Section 1, we fix notations, briefly review

the representations of KLR algebras, and explain the relationship between homogeneous

representations and fully commutative elements of a Coxeter group. In Section 2, we

introduce Dyck paths and study a canonical form of reduced words of fully commutative

elements and obtain the main results of this paper. In Section 3, we prove a dimension

formula for homogeneous representations when the corresponding Dyck paths satisfy a

certain condition.

Acknowledgments. Part of this research was performed while both authors were visiting

the Institute for Computational and Experimental Research in Mathematics (ICERM)

during the spring of 2013 for the special program “Automorphic Forms, Combinatorial

Representation Theory and Multiple Dirichlet Series”. They wish to thank the organizers

and staffs.

1. KLR Algebras and Homogeneous Representations

1.1. Definitions. To define a KLR algebra, we begin with a quiver Γ. In this paper, we

will focus mainly on quivers of Dynkin types An, but for the definition, any finite quiver

with no double bonds will suffice. Let I be the set indexing the vertices of Γ, and for indices

i 6= j, we will say that i and j are neighbors if i → j or i ← j. Define Q+ =
⊕

i∈I Z≥0 αi

as the non-negative lattice with basis {αi : i ∈ I}. The set of all words in the alphabet I

is denoted by 〈I〉, and for a fixed α =
∑

i∈I ciαi ∈ Q+, let 〈I〉α be the set of words w on

the alphabet I such that each i ∈ I occurs exactly ci times in w. We define the height of

α to be
∑

i∈I ci. We will write w = [w1, w2, . . . , wd], wj ∈ I.

Now, fix an arbitrary ground field F and choose an element α ∈ Q+. Then the Khovanov–

Lauda–Rouquier algebra Rα is the associative F-algebra generated by:

• idempotents {e(w) | w ∈ 〈I〉α},

• symmetric generators {ψ1, . . . , ψd−1} where d is the height of α,

• polynomial generators {y1, . . . , yd},

subject to the relations

e(w)e(v) = δwve(w),
∑

w∈〈I〉α

e(w) = 1;(1.1)

yke(w) = e(w)yk;(1.2)

ψke(w) = e(skw)ψk;(1.3)

ykyℓ = yℓyk;(1.4)

ykψℓ = ψℓyk for k 6= ℓ, ℓ+ 1;(1.5)
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(yk+1ψk − ψkyk)e(w) =

{

e(w), if wk = wk+1,

0, otherwise;
(1.6)

(ψkyk+1 − ykψk)e(w) =

{

e(w), if wk = wk+1,

0, otherwise;
(1.7)

ψ2
ke(w) =























0, if wk = wk+1,

(yk − yk+1)e(w), if wk → wk+1,

(yk+1 − yk)e(w), if wk ← wk+1,

e(w), otherwise;

(1.8)

ψkψℓ = ψℓψk for |k − ℓ| > 1;(1.9)

(ψk+1ψkψk+1 − ψkψk+1ψk)e(w) =















e(w), if wk+2 = wk → wk+1,

−e(w), if wk+2 = wk ← wk+1,

0, otherwise.

(1.10)

Here δwv in (1.1) is the Kronecker delta and, in (1.3), sk is the kth simple transposition

in the symmetric group Sd, acting on the word w by swapping the letters in the kth and

(k + 1)st positions. If Γ is a Dynkin-type quiver, we will say that Rα is a KLR algebra of

that type.

We impose a Z-grading on Rα by

deg(e(w)) = 0, deg(yi) = 2,(1.11)

deg(ψie(w)) =















−2, if wi = wi+1,

1, if wi, wi+1 are neighbors in Γ,

0, if wi, wi+1 are not neighbors in Γ.

(1.12)

Set R =
⊕

α∈Q+
Rα, and let Rep(R) be the category of finite dimensional graded R-

modules, and denote its Grothendieck group by [Rep(R)]. Then Rep(R) categorifies one

half of the quantum group. More precisely, let f and ′f be Lusztig’s algebras defined in [15,

Section 1.2] attached to the Cartan datum encoded in the quiver Γ over the field Q(v). We

put q = v−1 and A = Z[q, q−1], and let ′fA and fA be the A-forms of ′f and f , respectively.

Consider the graded duals ′f∗ and f∗, and their A-forms

′f∗A := {x ∈ ′f
∗
: x(′fA) ⊂ A} and f∗A := {x ∈ f∗ : x(fA) ⊂ A}.

Then Khovanov and Lauda [11] prove that there is an A-linear (bialgebra) isomorphism

[Rep(R)]
∼
−→ f∗A. More details can be found in [11, 13].
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A word w ∈ 〈I〉α is naturally considered as an element of ′f∗A which is dual to the

corresponding monomial in ′fA. Let M be a finite dimensional graded Rα-module. Define

the q-character of M by

chqM :=
∑

w∈〈I〉α

(dimqMw)w ∈ ′f
∗
A,

where Mw = e(w)M and dimq V :=
∑

n∈Z(dimVn) q
n ∈ A for V =

⊕

n∈Z Vn. A non-

empty word w is called Lyndon if it is lexicographically smaller than all its proper right

factors with respect to a fixed total ordering on I. For x ∈ ′f
∗ we denote by max(x) the

largest word appearing in x. A word w ∈ 〈I〉 is called good if there is x ∈ f∗ such that

w = max(x). Given a module L ∈ Rep(Rα), we say that w ∈ 〈I〉 is the highest weight of

L if w = max(chq L). An irreducible module L ∈ Rep(Rα) is called cuspidal if its highest

weight is a good Lyndon word.

The following theorem explains the importance of cuspidal representations as building

blocks for all irreducible representations of Rα.

Theorem 1.1 ([13]; [8], 4.1.1). Assume that Γ is of finite Dynkin type. Then any ir-

reducible graded Rα-module for α ∈ Q+ is given by an irreducible head of a standard

representation induced from cuspidal representations up to isomorphism and degree shift.

1.2. Homogeneous representations. We define a homogeneous representation of a KLR

algebra to be an irreducible, graded representation fixed in a single degree (with respect

to the Z-grading described in (1.11) and (1.12)). Homogeneous representations form an

important class of irreducible modules since most of the cuspidal representations are ho-

mogeneous with a suitable choice of ordering on 〈I〉 ([13, 8]). After introducing some

terminology, we will describe these representations in a combinatorial way. We continue

to assume that Γ is a simply-laced quiver.

Fix an α ∈ Q+ and let d be the height of α. For any word w ∈ 〈I〉α, we say that

the simple transposition sr ∈ Sd is an admissible transposition for w if the letters wr and

wr+1 are neither equal nor neighbors in the quiver Γ. Following Kleshchev and Ram [12],

we define the weight graph Gα with vertices given by 〈I〉α. Two words w, v ∈ 〈I〉α are

connected by an edge if there is an admissible transposition sr such that srw = v.

We say that a connected component C of the weight graph Gα is homogeneous if the

following property holds for every w ∈ C:

If wr = ws for some 1 ≤ r < s ≤ d, then there exist t, u(1.13)

with r < t < u < s such that wr is a neighbor of both wt and wu.

A word satisfying condition (1.13) will be called a homogeneous word.

A main theorem of [12] shows that the homogeneous components of Gα exactly param-

eterize the homogeneous representations of the KLR algebra Rα.
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Theorem 1.2 ([12], Theorem 3.4). Let C be a homogeneous component of the weight graph

Gα. Define an F-vector space S(C) with basis {vw : w ∈ C} labeled by the vertices in C.

Then we have an Rα-action on S(C) given by

e(w′)vw = δw,w′vw, w
′ ∈ 〈I〉α,w ∈ C,

yrvw = 0, 1 ≤ r ≤ d,w ∈ C,

ψrvw =

{

vsrw, if srw ∈ C,

0, otherwise,
1 ≤ r ≤ d− 1,w ∈ C,

which gives S(C) the structure of a homogeneous, irreducible Rα-module. Further S(C) ≇

S(C ′) if C 6= C ′, and this construction gives all of the irreducible homogeneous modules,

up to isomorphism.

As a result, the task of identifying homogeneous representations of a KLR algebra is

reduced to identifying homogeneous components in a weight graph. This is simplified

further by the following lemma.

Lemma 1.3 ([12], Lemma 3.3). A connected component C of the weight graph Gα is

homogeneous if and only if an element w ∈ C satisfies the condition (1.13).

Recall that we call a word satisfying condition (1.13) a homogeneous word. The homo-

geneous words have other combinatorial characterizations, which we explore in the next

subsection.

1.3. Fully commutative elements of Coxeter groups. Since the homogeneity of

w ∈ 〈I〉 does not depend on the orientation of a quiver, it is enough to consider Dynkin

diagrams and the corresponding Coxeter groups. Given a simply laced Dynkin diagram,

the corresponding Coxeter group will be denoted by W and the generators by si, i ∈ I. A

reduced expression si1 · · · sir will be identified with the word [i1, . . . , ir] in 〈I〉. The identity

element will be identified with the empty word [ ].

An element w ∈ W is said to be fully commutative if any reduced word for w can be

obtained from any other by interchanges of adjacent commuting generators, or equivalently

if no reduced word forw has [i, i′, i] as a subword where i and i′ are neighbors in the Dynkin

diagram. Now we have the following lemma, which was first observed by Kleshchev and

Ram.

Lemma 1.4 ([12]).

(1) A homogeneous component of the weight graph Gα contains as its vertices exactly

the set of reduced expressions for a fully commutative element in W .

(2) The set of homogeneous components is in bijection with the set of fully commutative

elements in W .
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Stembridge [17] classified all of the Coxeter groups that have finitely many fully com-

mutative elements, completing the work of Fan [7], who had done this for the simply-laced

types. Fan and Stembridge also enumerated the set of fully commutative elements. In

particular, they showed that the number of fully commutative elements in the Coxeter

group of type An is Cn+1, where Cn is the nth Catalan number, i.e., Cn = 1
n+1

(

2n
n

)

. This

fact has an immediate implication on homogeneous representations by Lemma 1.4.

Corollary 1.5. A KLR algebra R =
⊕

α∈Q+
Rα of type An has Cn+1 irreducible homoge-

neous representations.

In [12], Kleshchev and Ram parameterized homogeneous representations using skew

shapes. In this paper, we will decompose the set of fully commutative elements to give a

finer enumeration of homogeneous representations in type An. More precisely, in the next

section, our main result is a fine bijection between the family of irreducible homogeneous

representations and the set of Dyck paths in accordance with the decomposition of the set

of fully commutative elements. This bijection can be used to quickly enumerate the fully

commutative elements of a given length and the attached homogeneous representations.

2. Homogeneous Representations of Type An KLR Algebras

In this section, we describe all of the homogeneous representations of a KLR algebra of

type An, associated with a quiver whose underlying graph is

1 2 n

We begin by introducing the main combinatorial tool for our study.

2.1. Dyck paths. As in [5], we define a Dyck path as a lattice path in the first quadrant

consisting of steps 〈1, 1〉 (north-east) and 〈1,−1〉 (south-east), beginning at the origin and

ending at the point (2n, 0). We refer to n as the semi-length of the path. By a peak we

shall mean a rise 〈1, 1〉 followed by a fall 〈1,−1〉, while a valley is a fall, followed by a rise.

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0)

Figure 2.1. An example of a Dyck path of semilength 5.



8 G. FEINBERG AND K.-H. LEE

We will turn our focus to a particular statistic, k, on these Dyck paths. Denote by Dn,k

the set of all Dyck paths of semi-length n with the property that

(sum of peak heights) − (number of peaks) = k.

For the example path shown in figure 2.1 we have k = (2 + 3 + 1)− 3 = 3.

Let T (n, k) be the cardinality of the set Dn,k, as defined in [6]. It is known that T (n, k) =

0 when k > 1 + ⌊n
2

4
⌋. It is convenient to display the sequence of non-zero values as an

array with the entry T (n, k) in the nth row from the top (starting with n = 0) and the kth

column (beginning with k = 0). The top of the array is shown below.

(2.1)

1

1

1 1

1 2 2

1 3 5 4 1

1 4 9 12 10 4 2

1 5 14 25 31 26 16 9 4 1

It is well known that the number of Dyck paths of semi-length n is equal to the nth

Catalan number, Cn = 1
n+1

(

2n
n

)

, so we have

(2.2) Cn =
∑

k

T (n, k),

i.e., the sum of entries on the nth row is equal to Cn.

Now we consider fully commutative elements in the Coxeter group Sn+1 and state our

main result. Recall that the length of an element of Sn+1 is defined with respect to the

generators (simple transpositions s1, . . . , sn) of Sn+1.

Theorem 2.1. Let Cn,k be the set of fully commutative elements of length k in Sn+1 for

k ≥ 0. Then there is a natural bijection Φ : Cn,k → Dn+1,k. In particular, we have, for

k ≥ 0,

|Cn,k| = T (n+ 1, k).

By Lemma 1.4, we will identify Cn,k with the set of homogeneous components of weight

graphs Gα with α having height k. It follows from Theorem 1.2 that a homogeneous

representation is completely determined by a homogeneous component of a weight graph.

Thus Theorem 2.1 implies the following results regarding the homogeneous representations.

Corollary 2.2.
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(1) There exists a bijection between the irreducible homogeneous representations of the

KLR algebra R of type An and the Dyck paths of semi-length n + 1. Under this

bijection, a representation given by a homogeneous component of words with length

k corresponds to a Dyck path with

(sum of peak heights) − (number of peaks) = k.

(2) The total number of homogeneous representations of the KLR algebra R of type An,

given by homogeneous words of length k is T (n+ 1, k).

We will prove Theorem 2.1 in Section 2.3, after we construct canonical words for fully

commutative elements in the next subsection.

2.2. Canonical reduced words. We define the decreasing segments

T
j
i =

{

[j, j − 1, . . . , i+ 1, i], for i ≤ j,

[ ], for i > j.

The word T j
i will also be considered as the element sjsj−1 · · · si+1si ∈ Sn+1. In particular,

the product T j
i T

j′

i′ given by concatenation is well defined.

These segments will be fundamental, so we record some facts here that we will use freely.

Lemma 2.3. Let T j
i be a segment, as defined above. Then we have, for i, i′, j, j′ ∈ I:

(1) T j
i is a homogeneous word;

(2) if i− 1 = j′ ≥ i′ then T j
i T

j′

i′ = T
j

i′;

(3) if j′ < i− 1 then T j
i T

j′

i′ = T
j′

i′ T
j
i .

Proof. These statements follow directly from the definitions. �

We can use these segments to obtain a canonical form for the elements in the Coxeter

group Sn+1:

Lemma 2.4. Every element in Sn+1 can be written in the form

(2.3) T 1
i1
T 2
i2
· · ·T n

in
,

where 1 ≤ ij ≤ j + 1 for all 1 ≤ j ≤ n.

Remark 2.5. As a check, notice that there are (n + 1)! choices for the ij ’s in this form,

and hence (n+ 1)! elements in Sn+1. The above lemma is standard. One can find a proof

in Lemma 3.2 of [3], which uses a Gröbner–Shirshov basis.

Using the canonical form (2.3), we can describe canonical representatives of homogeneous

components or fully commutative elements of Sn+1 in a coherent way.
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Proposition 2.6. Every homogeneous component of a weight graph contains a unique

word of the form

(2.4) Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ

where ij ≤ mj for each j, 1 ≤ i1 < i2 < · · · < iℓ ≤ n and m1 < m2 < · · · < mℓ.

Equivalently, a fully commutative element of Sn+1 can be uniquely written in the form

(2.4).

Proof. Clearly, every homogeneous component has a unique word of the form (2.3). After

omitting, if any, segments of the form T
j
j+1, we obtain w = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
with ij ≤ mj

for each j and m1 < m2 < · · · < mℓ. We only need to prove 1 ≤ i1 < i2 < · · · < iℓ ≤ n.

For the sake of contradiction, assume that ir ≥ is for some r < s. Without loss of

generality, suppose that i1 ≥ i2. Then w has as a subword [m1, . . . , i1, m2, . . . , i1, . . . , i2].

But this subword has two occurrences of the letter i1 separated by only one neighbor i1+1,

therefore violating the homogeneity assumption. The equivalence of the second assertion

follows from Lemma 1.4. �

2.3. A bijection—proof of Theorem 2.1. Recall that Cn,k is the set of fully commuta-

tive elements of length k in Sn+1 for k ≥ 0. By Lemma 1.4, we will also consider Cn,k as

the set of homogeneous components from all weight graphs Gα with α having height k. We

need to establish a bijection Φ: Cn,k → Dn+1,k to prove Theorem 2.1. We first construct

a lattice as shown in Figure 2.2, ranging (horizontally) from (0, 0) to (2n + 2, 0). Notice

that each square block corresponds to T j
i = [j, j − 1, . . . , i + 1, i] for some i ≤ j, and a

Dyck path can have peaks at squares T j
i or at bottom triangles. Now suppose that we

have a homogeneous component C ∈ Cn,k. By Proposition 2.6, we can choose a canonical

representative wC = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
with ij ≤ mj for each j, where i1 < i2 < · · · < iℓ and

m1 < m2 < · · · < mℓ. We write w = wC if there is no peril of confusion.

Definition 2.7. Suppose that C ∈ Cn,k and w = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
are as above. Then

the Dyck path Φ(C) is defined to be the path with peaks only at the square blocks (see

Figure 2.2) containing T
mj

ij
(j = 1, 2, . . . , ℓ) and possibly, at bottom triangles.

Before we check that the map Φ is well-defined, i.e., Φ(C) ∈ Dn+1,k, we consider an

example to see how the definition works.

Example 2.8. Suppose the quiver Γ is of type A4, and the homogeneous component C is
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(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (2n, 0) (2n+ 2, 0)

1 2 3 4 · · · n

21 32 43 · · · · · ·

321 432 · · · · · ·

4321 · · · · · ·

· · · · · ·

n · · · 1

Figure 2.2. The triangular lattice for tracing Dyck paths

32143

32413

34213

34231

32431

Then the canonical representative of this component is w = [3, 2, 1, 4, 3] = T 3
1 T

4
3 , and

the Dyck path Φ(C) is given by:

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0)

1 2 3 4

21 32 43

321 432

4321

Here the sum of peak heights of the Dyck path is 4 + 3 = 7, while the number of peaks

is 2. Then we see that k = 7 − 2 = 5 is equal to the length of the corresponding word

w = [3, 2, 1, 4, 3].

Lemma 2.9. The map Φ is well-defined.

Proof. Let C ∈ Cn,k be a homogeneous component with canonical representative

w = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
.
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Since i1 < i2 < · · · < iℓ and m1 < m2 < · · · < mℓ, there is no redundancy among the peaks

and the corresponding Dyck path D is uniquely determined. Note that each segment T
mj

ij

contains mj − ij + 1 letters. Since w has k letters by assumption, we have

k =

ℓ
∑

j=1

[(mj − ij) + 1] = ℓ+

ℓ
∑

j=1

(mj − ij).

On the other hand, in the path Φ(C), each of the ℓ segments T
mj

ij
corresponds to a peak

with height (mj − ij) + 2. We then have

(sum of peak heights) − (# of peaks) =
ℓ

∑

j=1

[(mj − ij) + 2]− ℓ = ℓ+
ℓ

∑

j=1

(mj − ij) = k.

Thus Φ(C) ∈ Dn+1,k as desired. �

Definition 2.10. To define the inverse, Ψ : Dn+1,k → Cn,k, we simply read the words

contained in the square blocks of the peaks of the Dyck path D from left to right, ignoring

peaks at bottom triangles. Then we obtain w = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
, and w determines the

corresponding homogeneous component Ψ(D).

A similar argument as in Lemma 2.9 shows that the map Ψ is well-defined.

Example 2.11. Suppose that we have the Dyck path D:

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0)

1 2 3 4

21 32 43

321 432

4321

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0)

Reading, from left to right, the segments contained in the peaks, we see that the compo-

nent Ψ(D) is represented by the word [2, 4, 3] = T 2
2 T

4
3 . This is the homogeneous component

243

423

Note that the sum of peak heights is 1 + 2 + 3 = 6 and the number of peaks is 3. The

value of k = 6− 3 = 3 equals the length of w = [2, 4, 3].



HOMOGENEOUS REPRESENTATIONS AND DYCK PATHS 13

Now we complete the proof that the map Φ is a bijection with inverse Ψ. It is clear

from the construction that the blocks in the lattice that form the peaks of Φ(C) contain

the words, Tm1

i1
, Tm2

i2
, . . . , T

mℓ

ij
, respectively. Thus, we see that Ψ(Φ(C)) = C. Conversely,

suppose that D ∈ D is a Dyck path that has been superimposed on the triangular lattice,

and assume that D has ℓ peaks (ℓ > 0) that correspond to square blocks. Reading the

words occurring at each of these peaks, we obtain Tm1

i1
, Tm2

i2
, . . . , T

mℓ

iℓ
. We notice that, by

construction, i1 < i2 < · · · < iℓ and m1 < m2 < · · · < mℓ. By Proposition 2.6, the word

Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
represents a homogeneous component. We also see that Φ(Ψ(D)) = D,

and so Ψ is a two-sided inverse of Φ, proving the bijection. This completes the proof of

Theorem 2.1.

3. Dimensions of Homogeneous Representations

In [12], Kleshchev and Ram explain how each fully commutative element w of the Weyl

group An can be associated with an abacus diagram, which gives rise to a skew tableau λ.

Further, if w is a dominant minuscule element, the Peterson–Proctor hook formula applied

to this tableau will count the number of reduced expressions for the fully commutative

element, and thus count the dimension of the corresponding Rα-module.

In this section, we will adopt our parameterization of the homogeneous modules and

obtain a dimension formula only using combinatorics of Dyck paths. We begin by extending

the ascents on the Dyck path to connect peaks of the Dyck path with the corresponding

points on the x-axis, and highlighting any square block that appears directly under one of

these extended ascents. For example, we have

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

1 3 5

21 43

321

2

32

4

Figure 3.1. A Dyck path with extended ascents

Now, for any block T j
i that appears on an extended ascent, we draw a subpath PD(i, j)

according to the following instructions:

(1) Draw a path from the x-axis past blocks T i
i , T

i+1
i , . . . up to the peak of block T j

i .

(2) From there, the path descends until it hits another extended ascent. If the path

does not hit any extended ascent, it returns to the x-axis.
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(3) If the path hits an extended ascent (before it returns to the x-axis), take one step

up, and then go back to step (2).

(4) When the path returns to the x-axis, the process is complete.

Example 3.1. If D is the Dyck path in Figure 3.1, then we obtain:

PD(1, 1)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

2 3 5

21 43

321

32

41

PD(1, 2)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

2

32 43

5

321

41 3

2121

PD(1, 3)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

2 3

32

41

21

5

21 43

321

PD(3, 3)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

31

21

5

21 43

321

2

32

4

PD(3, 4)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

21

21 32

321

4

43

3 5
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PD(5, 5)

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0) (10, 0) (12, 0)

52

32

41

21

3

21 43

321

Now we define the number pD(i, j) by

(3.1) pD(i, j) := (# of steps in the ascents of PD(i, j))− 1.

Then we observe

pD(i, j) = (# of blocks in the ascents)

= (# of peaks) + (height of the first peak)− 2.

Recall that we have the map Ψ from the set of Dyck paths into the set of fully commutative

elements. Now we state the main result of this section.

Proposition 3.2. Assume that a Dyck path D does not have an ascent longer than 1 step

except for an ascent beginning on the x-axis. Then the dimension dD of the homogeneous

module S(Ψ(D)) is given by the formula

(3.2) dD =
∏ k!

pD(i, j)

where k = (sum of peak heights)− (# of peaks) for the path D and the product runs over

all blocks T j
i on the extended ascents of D.

A proof of the above proposition will be given in the rest of this section. Let us see an

example before we begin the proof.

Example 3.3. For the path D in Figure 3.1, the numbers pD(i, j) are shown here:

(i, j) (1, 1) (1, 2) (1, 3) (3, 3) (3, 4) (5, 5)

pD(i, j) 1 3 5 1 3 1

Then the dimension of the homogeneous module corresponding to the fully commutative

element Ψ(D) = 321435 is

dD =
6!

1 · 3 · 5 · 1 · 3 · 1
= 16.

Recall that an element w ∈ Sn+1 is called dominant minuscule if there is a dominant

integral weight Λ and a reduced expression w = si1si2 · · · sid such that

siksik+1
· · · sidΛ = Λ− αik − αik+1

− · · · − αid , 1 ≤ k ≤ d.
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It is known that dominant minuscule elements are fully commutative. We have the follow-

ing characterization of dominant minuscule elements.

Proposition 3.4 ([19, Proposition 2.5]). If w = si1si2 · · · sid ∈ Sn+1 is a reduced ex-

pression, then w is dominant minuscule if and only if the following two conditions are

satisfied:

(1) between every pair of occurrences of a generator si (with no other occurrences of si
in between) there are exactly two generators (possibly equal to each other) that do

not commute with si;

(2) the last occurrence of each generator si is followed by at most one generator that

does not commute with si.

For a Dyck path D, it is clear that Ψ(D)−1 is also a fully commutative element. The

following corollary characterizes dominant minuscule elements using shapes of Dyck paths.

One can compare it with Lemma 3.9 in [12], where straight shapes are used.

Lemma 3.5. Let D be a Dyck path. Then Ψ(D)−1 is dominant minuscule if and only if

any ascent in D not beginning on the x-axis has a length of 1.

Proof. Assume that D has no ascents longer than 1 besides those that begin on the x-

axis. Since we must have a descent and then an ascent to get from one peak to the next,

we see that the condition (i) of Proposition 3.4 is satisfied by Ψ(D) and Ψ(D)−1. Write

Ψ(D) = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
as before. Then every generator in Tm1

i1
first appears in Ψ(D) and

there is at most one generator before its occurrence that does not commute with it. Thus

Ψ(D)−1 satisfies the condition (ii) of Proposition 3.4 with the generators in Tm1

i1
.

Consider now the peak corresponding to the segment Tm2

i2
. If we arrive there after an

ascent of length 1, then m2 = m1 + 1 and i1 < i2. Thus the only new generator appearing

in Tm2

i2
is sm2

= sm1+1 and it commutes with all the generators preceding it except sm1
. On

the other hand, if we arrive at this peak after following an ascent longer than 1 step then,

by assumption, this ascent begins on the x-axis. Then, we necessarily find that i2 > m1+1.

So every generator in Tm2

i2
appears here for the first time, but commutes with all generators

appearing previously. We can continue inductively, analyzing the generators appearing for

the first time in each segment T
mj

ij
, and see that the condition (ii) of Proposition 3.4 is

satisfied by Ψ(D)−1. Therefore, the element Ψ(D)−1 is dominant minuscule.

Conversely, if Ψ(D)−1 is dominant minuscule, the condition (ii) of Proposition 3.4 implies

that any generator appearing for the first time in a segment T
mj

ij
will either commute with

all previously appearing generators (thus the ascent begins on the x-axis), or that it does

not commute with exactly one previously appearing generator (thus mj−1 = mj − 1, and

the ascent is of length 1). �
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Proof of Proposition 3.2. We will obtain the formula (3.2) as a reformulation of the Peter-

son–Proctor formula [12, Theorem 3.10]. Writew = Ψ(D). It follows from Lemma 3.5 that

w
−1 is dominant minuscule. Then we only need to establish two things: first, a bijective

correspondence between

{β ∈ ∆+ : w(β) < 0} and {PD(i, j) : T
j
i is on the extended ascents of D},

where ∆+ is the set of positive roots; second, the equality ht(β) = pD(i, j) when β corre-

sponds to the path PD(i, j).

We write Ψ(D) = Tm1

i1
Tm2

i2
· · ·Tmℓ

iℓ
. Each β ∈ ∆+ with w(β) < 0 determines a unique

(ik, nk), ik ≤ nk ≤ mk, such that

β = αnk
T

nk−1
ik

T
mk+1

ik+1
· · ·Tml

il
= αnk

T
nk−1
ik

T
nk+1
ik+1

T
nk+2
ik+2

· · ·T nk+l−k
il

,

where the action on αnk
is from the right. On the other hand, each block T nk

ik
, ik ≤ nk ≤ mk,

is on an extended ascent and

Ψ(PD(ik, nk)) = T
nk

ik
T

nk+1
ik+1

T
nk+2
ik+2

· · ·T nk+l−k
il

.

Then the correspondence β 7→ PD(ik, nk) is clearly one-to-one and onto.

Furthermore, we see that

β = αnk
T

nk−1
ik

T
nk+1
ik+1

T
nk+2
ik+2

· · ·T nk+l−k
il

= (αik + · · ·+ αnk
) + αnk+1 + · · ·+ αnk+l−k,

and ht(β) = nk − ik + 1 + l − k = (# of steps in the ascents)− 1 = pD(ik, nk) from (3.1).

This completes the proof. �

Even when Proposition 3.2 does not apply directly, we may still find the dimension of

the corresponding module: we can

• consider the reverse path (reflected left to right), or

• invert the corresponding fully commutative element, and consider the associated

Dyck path.

Note that reversing a path corresponds to the graph automorphism of the Dynkin dia-

gram. The two options would give distinct paths, but if either satisfies the condition of

Proposition 3.2, then we can obtain the correct dimension using the formula.

Example 3.6. The path D in Figure 3.2 below does not satisfy the condition of Propo-

sition 3.2. However, we note that the reverse of the path D is nothing but the path in

Figure 3.1, for which we computed the dimension in Example 3.3. Thus we obtain the

same dimension, 16, for the homogeneous representation corresponding to D.
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Figure 3.2. A Dyck Path for which the formula does not work directly
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