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THE PUSH-THE-BUTTON ALGORITHM FOR CONTRAGREDIENT
LIE SUPERALGEBRAS

R. FIORESI AND R. PALMIERI

Abstract. We apply the idea of the “push-the-button” algorithm, introduced by
Chuah and Hu in [J. Algebra 279 (2004), 22–37], to the Vogan superdiagram associated
to a contragredient Lie superalgebra. We obtain the Borel–de Siebenthal Theorem
in the supersetting, leading to the classification of the real forms of contragredient
Lie superalgebras (previously discussed in [V. G. Kac, Adv. Math. 26 (1977), 8–96;
V. Serganova, Funkt. Anal. Prilozhen. 17 (1983), 46–54; M. Parker, J. Math. Phys.
21 (1980), 689–798]).

1. Introduction

The “push-the-button” algorithm was originally introduced by Chuah et al. in [4] to
give an alternative proof of the Borel–de Siebenthal Theorem, a central result in the
problem of classification of the real forms of a given complex simple Lie algebra s.

The purpose of the present paper is to explain how the “push-the-button” algorithm
can be successfully applied to the Vogan superdiagram associated to a contragredient
Lie superalgebra, so to obtain the equivalent super version of the Borel–de Siebenthal
Theorem. Since in the supersetting black and grey vertices have an established meaning,
we will circle the non-compact roots, instead of coloring them.

The idea of the push-the-button algorithm is not novel in the supersetting. In fact
in [13], Hsin has used it to show how one can reduce the number of dark vertices of a
Dynkin diagram of a given contragredient Lie superalgebra, however with no mention
of the real forms of g. On the other hand, the problem of the classification of the real
forms of contragredient Lie superalgebras was successfully treated in the works by Kac
[14], Serganova [17], Parker [16].

We believe that our purely combinatorial approach can help to elucidate the ques-
tion whether or not two real forms of the same contragredient Lie superalgebra g are
isomorphic, since it reduces the question to examine the push-the-button algorithm on
the Vogan diagram of g0. Some care must of course be exerted, because there is not
a unique Dynkin diagram associated with g. Hence we prefer to work with extended
Dynkin diagrams and to single out the preferred one.

For clarity of exposition, we limit ourselves to the case

h ⊂ k, rk(k) = rk(g),

where no arrows appear in the Vogan superdiagrams (see Section 2 and (5) for more
details on our hypothesis). This case is very relevant for the applications (see [2], [3]).

Our paper is organized as follows. In Section 2, we recall few known facts about real
forms of contragredient Lie superalgebras. In Section 3, we introduce Vogan diagrams
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and superdiagrams. In Section 4, we show how to adapt the “push-the-button” algo-
rithm to Vogan superdiagrams. In the end, we examine some examples to show how
effectively the algorithm allows to decide whether or not two real forms of the same
contragredient Lie superalgebra are isomorphic.

Acknowledgements. We want to thank Prof. M.-K. Chuah and Prof. I. Dimitrov
for valuable comments.

2. Preliminaries

Let g = g0 ⊕ g1 be a contragredient Lie superalgebra, which is not a Lie algebra. g
is one of the following Lie superalgebras (see [14]):

sl(m,n), B(m,n), C(n), D(m,n), D(2, 1;α), F (4), G(3).

Let h be a Cartan subalgebra of g with root system ∆ ⊂ h∗ and root space decomposition

g = h⊕
∑
α∈∆

gα.

Let us fix a simple system Π. We can associate to g an extended Dynkin diagram. Its
vertices represent Π ∪ ϕ, ϕ the lowest root, with colors white, grey or black, together
with edges drawn according to [14, pp. 54–55]. As usual, with a common abuse of
language, we say “roots” also to refer to vertices of the Dynkin diagram. Let D0 be
the subdiagram of D consisting of the white vertices, and let D1 be the subdiagram of
dark (i.e., grey or black) vertices. There are distinct D due to the choice of Π, but we
can pick out a preferred one, characterized by the following theorem.

Theorem 2.1 ([5, Theorem 1.1]). There exists an extended Dynkin diagram D such
that

(a) D0 is the Dynkin diagram of gss0 (the semisimple part of g0);
(b) |D1| − 1 = dim z(g0) (the center of g0);
(c) D1 consists of the lowest roots of the adjoint g0-representation on g1.

Furthermore, there are unique positive integers {aα}D without nontrivial common factor
such that ∑

α∈D

aαα = 0. (1)

From now on, we will choose D as the preferred Dynkin diagram.

The real forms gR and their symmetric spaces have been classified and studied by
Parker [16] and Serganova [17]. We have a bijective correspondence:

{real forms gR ⊂ g} ↔ {θ ∈ aut{2,4}(g)}. (2)

In this correspondence θ stabilizes gR, and the restriction of θR to gR is a Cartan
automorphism. Hence we have the Cartan decomposition

g0,R = kR + p0,R, (3)

where kR and p0,R are the ±1-eigenspaces of θR on g0,R. Since θ has order 2 on g0 and
order 4 on g1, we have the corresponding complex Cartan decomposition

g = k + p, (4)
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where p = p0 + p1, p1 = g1 and we drop the index R to mean the complexification. So
we immediately have

[k, k] ⊂ k, [k, p] ⊂ p, [p0, p0] ⊂ k, [p0, p1] ⊂ p.

We assume that

h ⊂ k, rk(k) = rk(g). (5)

Hence k and p are sums of root spaces and we call a root compact or non-compact
depending on whether its root space sits in k or p.

3. Vogan diagrams and superdiagrams

In the ordinary setting, if s is a complex simple Lie algebra and Ds its Dynkin
diagram, we can associate to a real form sR a Vogan diagram (Ds, C), which corresponds
(under our assumption (5)) to a circling C of the non-compact vertices. Vice-versa,
every circling on the vertices of Ds gives a Vogan diagram corresponding to a real form
of s.

Unlike the Dynkin diagram Ds, that identifies uniquely the Lie algebra s, the Vogan
diagrams (Ds, C) do not correspond bijectively to the real forms of s; however we have
the following important result.

Theorem 3.1 (Borel–de Siebenthal; [15, Thms. 6.88 and 6.96]). Let s be a com-
plex simple Lie algebra. Any circling on the Dynkin diagram Ds is the Vogan diagram
of a real form of s. Furthermore, any real form sR of s is associated to a Vogan diagram
with at most one circled vertex.

This theorem allows us to associate to a real form a Vogan diagram with just one
circled vertex; we call such diagrams reduced. Two real forms of s are isomorphic if and
only if there is a diagram symmetry between their reduced Vogan diagrams (see [6]).

We now turn to examining the supersetting.

Definition 3.2. Let g be a complex contragredient Lie superalgebra. A Vogan super-
diagram is a pair (D,C), where D is the preferred Dynkin diagram of g, with vertices
Π ∪ ϕ, and the circling C is a subset of the even roots in Π ∪ ϕ.

If gR is a real form of of g, we can associate to it the Vogan superdiagram obtained
by taking as circling C the subset of the non-compact even roots in Π ∪ ϕ (see [7]).
Since the odd roots are always non-compact, we omit the circling on them. However,
more than one Vogan superdiagram may correspond to the same real form gR of g: this
depends on the choice of the simple system of g, which may give a different circling of
the even simple roots. For example, the following two Vogan superdiagrams correspond
to the same real form su(2, 1|1, 1) of sl(3|2):

We will see in the next section, how the push-the-button algorithm allows us to see
immediately that these two Vogan superdiagrams correspond to isomorphic superalge-
bras.

We have however an important difference with the ordinary setting: not all the
circlings on the preferred Dynkin D are associated with a real form of g, but only the
admissible ones. We have the following theorem.
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Figure 2

Theorem 3.3 ([7, Prop. 2.22]). A circling C on the preferred Dynkin diagram D of g
corresponds to a real form gR of g if and only if

∑
α∈C

aαα =

{
even, if g0 = sln(C),

odd, if g0 6= sln(C),
(6)

where the aα’s are defined in (1).

From now on we will consider only admissible circlings, that is circlings satisfying the
condition (6). We end the section with an example to clarify the condition (6), which
essentially gives necessary and sufficient conditions to extend a real form of g0 to a real
form of g.

Example 3.4. Let us consider g = D(4, 2) with the circling shown in Figure 2.
We notice that g0 = D4⊕C2 and that the circled vertex has label aα = 2. Hence this

circling is not admissible and this abstract Vogan superdiagram does not correspond to
any real form of g, despite the fact that there is a real form of g0 corresponding to the
(disconnected) Vogan diagram on g0:

Figure 3

Hence the real form of g0 described by the Vogan diagram in Figure 3 will not extend
to give a real form of the whole g.
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4. The push-the-button algorithm

We now define the operation Fi that will lead us to the push-the-button algorithm
(see [9]). Our purpose is to obtain the equivalent of Theorem 3.1 in the super setting.

Definition 4.1. Let (D,C) be a Vogan superdiagram. If i ∈ C is an even vertex, we
define Fi(D,C) as a new superdiagram (D,C ′), where all the vertices j adjacent to i
have reversed their circling (i.e., they become circled if they were not and become not
circled if they were circled), except when j is a longer root joined to i by a double edge
or j is odd.

In other words, if we define the neighborhood of vertex i by

N(i) = {vertices adjacent to i excluding i}, (7)

then Fi(D,C) = (D,C ′), where we reverse the circling of all j ∈ N(i), except when j
is a longer root joined to i by a double edge or j is odd.

We also say that the Vogan superdiagram (D,C ′) is obtained from (D,C) through
the operation Fi. The reader can see that an operation Fi can be visually understood
as “pressing” on the vertex i: the vertex itself will not change the circling, while the
adjacent vertices, if linked by a single edge, will.

We say that two Vogan superdiagrams are F -related, if there is a sequence of opera-
tions Fi’s transforming one into the other.

For example, consider the two diagrams in Figure 4.

ϕ

ϕ

Figure 4

It is immediate to verify that the above diagrams are F -related. In fact F2 followed
by F4 and F3 will transform one into the other (assuming the horizontal vertices are
labelled with consecutive integers 1, 2, . . . , 8). Similarly one can verify that the two
diagrams in Figure 1 are F -related: apply the operation F2.

Proposition 4.2. If Fi(D,C) = (D,C ′), then (D,C) and (D,C ′) correspond to the
same real form.

Proof. The operation Fi corresponds to the reflection si for the even vertex i. In fact,
if α = i is a circled root and β is adjacent to α we have

sα(β) = β − nβαα,
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where nβα = −1, −2, −3. Hence in the Dynkin diagram, the adjacent pair {α, β} is
replaced by the pair {−α, β − nβαα}. Since α is even, the pair {−α, β − nβαα} will
have the same parity as the pair {α, β}. Hence if β is odd, β − nβαα is also odd hence
it will not change its circling (recall odd roots are always non-compact, hence we omit
their circling). If β is even, the root β − nβαα will have same circling as β if and only
if nβα is even, hence the result. �

Remark 4.3. The sequence of Fi operations we used in the previous proposition to
transform (D,C) into (D,C ′) corresponds to the action of an element of the Weyl group
of g0. We cannot however claim that the simple system Γ, associated with (D,C) is
transformed by such element into the simple system Γ′ associated with (D,C ′). This
is because simple systems, even associated with the same Dynkin diagram, may not
be conjugated by the action of the Weyl group. However, with the push-the-button
algorithm, we bypass this difficulty, thus showing another advantage of this purely
combinatorial approach to the theory of real forms of contragredient Lie superalgebras.

In [4], Chuah has developed an algorithm (the push-the-button algorithm) to prove
that, starting from any Vogan diagram associated with the real form of a simple Lie
algebra, one can obtain, through Fi operations, a Vogan diagram with just one circled
vertex. All the Vogan diagrams obtained in this procedure correspond to the isomor-
phism class of the same real Lie algebra. It is our purpose to generalize this statement
to the super setting.

We are ready to prove the super version of Theorem 3.1.

Theorem 4.4 (Borel–de Siebenthal). Let g be a contragredient Lie algebra, D its
preferred Dynkin diagram. Any admissible circling on D is the Vogan superdiagram of a
real form of g. Furthermore, any real form gR of g is associated to a Vogan superdiagram
with an admissible circling having at most as many circled vertices as the number of
connected components of D \D1.

Proof. The first statement is a consequence of Proposition 2.22 in [7]. As for the second
statement, Proposition 4.2 says that two Vogan superdiagrams correspond to the same
real form if one can be transformed into the other by a sequence of Fi operations. By
Corollary 5.2 in [4], the push-the-button algorithm, for ordinary Lie algebras, after a
sequence of F -operations, we can obtain a Vogan diagram for each connected component
of D0, with at most one circled vertex. �

We call a Vogan superdiagram with at most as many circled vertices as the number
of connected components of D \ D1, reduced. This theorem allows us to determine
immediately whether two real forms of the same contragredient Lie superalgebra are
isomorphic. In fact, two real forms are isomorphic if and only if their reduced Vogan
superdiagrams are related by a diagram symmetry. Hence, given two real forms, we
first draw their Vogan superdiagrams and proceed with the push-the-button algorithm
so to obtain two reduced Vogan superdiagrams. Then, we verify if there is a diagram
symmetry sending one superdiagram to the other: if there is, the two real forms are
isomorphic, otherwise, they are not isomorphic.

Before we proceed to give examples to illustrate the above procedure, we give a quick
summary of the strategy to follow to obtain a reduced Vogan diagram in the ordinary
setting. The reader can find the details in [4].
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The ordinary push-the-button algorithm consists of two different steps that have to
be repeated until there is just one circled vertex left (i.e., a non-compact root). With
the first step, through repeated Fi operations, it is possible to bring a pair of circled
vertices to the right (respectively left) side of the Vogan diagram. Then the second step
consists in pushing the rightmost (respectively leftmost) vertex, so that the number of
circled vertices reduces by one. By repeating these two steps a number of times, we
can reach a reduced Vogan diagram equivalent to the previous one. We will see that
this strategy works also for Vogan superdiagrams, since the push-the-button algorithm
operates on the even part of the diagram as detailed in our previous propositions.

Example 4.5. Consider the two real forms of g = D(5, 3) corresponding to the follow-
ing two admissible circlings:

2

1
3 4 5 6 7 8

ϕ
9

2

1
3 4 5 6 7 8

ϕ
9

Applying Fi operations, we can reach the two following diagrams with only one circled
vertex:

2

1
3 4 5 6 7 8

ϕ
9

2

1
3 4 5 6 7 8

ϕ
9

For the first diagram we have to apply F2, F3, and finally F1. For the second one
F1, F3, and finally F2. We can easily see that two final diagrams are isomorphic by
applying a diagram symmetry.

Example 4.6. As before, let us consider the two following real forms of sl(3|2).

ϕ

7

1 2 3 4 5 6

ϕ

7

1 2 3 4 5 6
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We observe that the corresponding Vogan diagrams of the real forms of g0 are related
by a diagram symmetry; however here we cannot use this symmetry, because of the
presence of odd vertices. These Vogan superdiagrams nevertheless correspond to iso-
morphic real forms and in fact we can reach the second diagram, starting from the first
one, with a combination of Fi operations, namely F1, F2, F3.
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