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WORD BELL POLYNOMIALS

AMMAR ABOUD†, JEAN-PAUL BULTEL¶, ALI CHOURIA‡, JEAN-GABRIEL LUQUE‡,
AND OLIVIER MALLET‡

Abstract. Multivariate partial Bell polynomials have been de�ned by E.T. Bell in
1934. These polynomials have numerous applications in Combinatorics, Analysis, Alge-
bra, Probabilities, etc. Many of the formulas on Bell polynomials involve combinatorial
objects (set partitions, set partitions into lists, permutations, etc.). So it seems natural to
investigate analogous formulas in some combinatorial Hopf algebras with bases indexed
by these objects. In this paper we investigate the connections between Bell polynomials
and several combinatorial Hopf algebras: the Hopf algebra of symmetric functions, the
Faà di Bruno algebra, the Hopf algebra of word symmetric functions, etc. We show that
Bell polynomials can be de�ned in all these algebras, and we give analogs of classical
results. To this aim, we construct and study a family of combinatorial Hopf algebras
whose bases are indexed by colored set partitions.

1. Introduction

Multivariate partial Bell polynomials (Bell polynomials for short) have been de�ned
by E.T. Bell in [1] in 1934. But their name is due to Riordan [29], who studied the
Faà di Bruno formula [11, 12] allowing one to write the nth derivative of a composition
f ◦ g in terms of the derivatives of f and g [28]. The applications of Bell polynomials in
Combinatorics, Analysis, Algebra, Probability Theory, etc. are so numerous that it would
take too long to exhaustively list them here. Let us give only a few seminal examples.

• The main applications to Probability Theory are based on the fact that the nth
moment of a probability distribution is a complete Bell polynomial of the cumu-
lants.
• Partial Bell polynomials are linked to Lagrange inversion. This follows from the
Faà di Bruno formula.
• Many combinatorial formulas for Bell polynomials involve classical combinatorial
numbers like Stirling numbers, Lah numbers, etc.

The Faà di Bruno formula and many combinatorial identities can be found in [7]. The
Ph.D. thesis of Mihoubi [24] contains a rather complete survey of the applications of these
polynomials together with numerous formulas.
Some of the simplest formulas are related to the enumeration of combinatorial objects

(set partitions, set partitions into lists, permutations, etc.). So it seems natural to in-
vestigate analogous formulas in some combinatorial Hopf algebras with bases indexed by
these objects. We recall that combinatorial Hopf algebras are graded bialgebras with
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bases indexed by combinatorial objects such that the product and the coproduct have
some compatibilities.
This paper is organized as follows. In Section 2, we investigate the combinatorial prop-

erties of colored set partitions. Section 3 is devoted to the study of the Hopf algebras
of colored set partitions. After having introduced this family of algebras, we give some
special cases which can be found in the literature. The main application explains the con-
nections with Sym, the algebra of symmetric functions. This explains that we can recover
some identities for Bell polynomials when the variables are specialized to combinatorial
numbers from analogous identities in some combinatorial Hopf algebras. We show that the
algebra WSym of word symmetric functions has an important role for this construction.
In Section 4, we give a few analogs of complete and partial Bell polynomials in WSym,
ΠQSym = WSym∗, and C〈A〉 where A = {a1, . . . , an, . . . } is an in�nite alphabet and
investigate their main properties. Finally, in Section 5 we investigate the connection with
other noncommutative analogs of Bell polynomials de�ned by Munthe-Kaas [33].

2. Definition, background and basic properties of colored set partitions

2.1. Colored set partitions. Let a = (am)m≥1 be a sequence of nonnegative integers.
A colored set partition associated with the sequence a is a set of pairs

Π = {[π1, i1], [π2, i2], . . . , [πk, ik]}
such that π = {π1, . . . , πk} is a partition of {1, . . . , n} for some n ∈ N, and 1 ≤ i` ≤ a#π`

for 1 ≤ ` ≤ k, where #s denotes the cardinality of the set s. The integer n is the size

of Π. We write |Π| = n, Π � n, and Π V π. We denote the set of colored partitions of
size n associated with the sequence a by CPn(a). Notice that these sets are �nite. We
also set CP(a) =

⋃
n CPn(a). We endow CP with the additional statistic #Π, and set

CPn,k(a) = {Π ∈ CPn(a) : #Π = k}.
Example 1. Consider the sequence whose �rst terms are a = (1, 2, 3, . . . ). The colored
partitions of size 3 associated with a are

CP3(a) = {{[{1, 2, 3}, 1]}, {[{1, 2, 3}, 2]}, {[{1, 2, 3}, 3]}, {[{1, 2}, 1], [{3}, 1]},
{[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]}, {[{1, 3}, 2], [{2}, 1]},

{[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}, {[{1}, 1], [{2}, 1], [{3}, 1]}}.
The colored partitions of size 3 and cardinality 2 are

CP3,2(a) = {{[{1, 2}, 1], [{3}, 1]}, {[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]},
{[{1, 3}, 2], [{2}, 1]}, {[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}}.

It is well-known (see, e.g., [24]) that the number of colored set partitions of size n
for a given sequence a = (an)n is equal to the evaluation of the complete Bell poly-
nomial An(a1, . . . , am, . . . ). It is also known that the number of colored set partitions
of size n and cardinality k is given by the evaluation of the partial Bell polynomial
Bn,k(a1, a2, . . . , am, . . . ). That is,

#CPn(a) = An(a1, a2, . . . ) and #CPn,k(a) = Bn,k(a1, a2, . . . ).

Now, let Π = {[π1, i1], . . . [πk, ik]} be a set such that the πj's are �nite sets of nonnegative
integers with the property that no integer belongs to more than one πj, and 1 ≤ ij ≤ a#(πj)
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for any j. Then the standardization std(Π) of Π is well-de�ned as the unique colored set
partition obtained by replacing the ith smallest integer in the πj's by i.

Example 2. For instance, we have

std({[{1, 4, 7}, 1], [{3, 8}, 1], [{5}, 3]}) = {[{1, 3, 5}, 1], [{2, 6}, 1], [{4}, 3]} .

We de�ne two binary operations, ] : CPn,k(a)⊗ CPn′,k′(a) −→ CPn+n′,k+k′(a),

Π ] Π′ = Π ∪ Π′[n],

where Π′[n] means that we add n to each integer occurring in the sets of Π′, and
d: CPn,k ⊗ CPn′,k′ −→ P(CPn+n′,k+k′),

Π d Π′ = {Π̂ ∪ Π̂′ ∈ CPn+n′,k+k′(a) : std(Π̂) = Π and std(Π̂′) = Π′}.

Example 3. We have

{[{1, 3}, 5], [{2}, 3]} ] {[{1}, 2], [{2, 3}, 4]} = {[{1, 3}, 5], [{2}, 3], [{4}, 2], [{5, 6}, 4]},
and

{[{1}, 5], [{2}, 3]} d {[{1, 2}, 2]} = {{[{1}, 5], [{2}, 3], [{3, 4}, 2]},
{[{1}, 5], [{3}, 3], [{2, 4}, 2]}, {[{1}, 5], [{4}, 3], [{2, 3}, 2]},

{[{2}, 5], [{3}, 3], [{1, 4}, 2]}, {[{2}, 5], [{4}, 3], [{1, 3}, 2]}, {[{3}, 5], [{4}, 3], [{1, 2}, 2]}}.

The operator d provides an algorithm which computes all colored partitions:

CPn,k(a) =
⋃

i1+···+ik=n

ai1⋃
j1=1

· · ·
aik⋃
jk=1

{[{1, . . . , i1}, j1]} d · · · d {[{1, . . . , ik}, jk]}. (2.1)

Nevertheless, some colored partitions are generated more than once using this process.
For a triple (Π,Π′,Π′′), we denote by αΠ

Π′,Π′′ the number of pairs of disjoint subsets (Π̂′,

Π̂′′) of Π such that Π̂′ ∪ Π̂′′ = Π, std(Π̂′) = Π′, and std(Π̂′′) = Π′′.

Remark 4. Notice that, for a = 1 = (1, 1, . . . ) (i.e., the ordinary set partitions), there is
an alternative way to construct the set CPn(1) e�ciently. It su�ces to use the induction

CP0(1) = {∅},
CPn+1(1) = {π ∪ {{n+ 1}} : π ∈ CPn(1)} ∪ {(π \ {e}) (2.2)

∪ {e ∪ {n+ 1}} : π ∈ CPn(1), e ∈ π}}.
By the application of this recurrence, the set partitions of CPn+1(1) are each obtained
exactly once from the set partitions of CPn(1).

2.2. Generating functions. The generating functions of the colored set partitions CP(a)
is obtained from the cycle generating function for the species of colored set partitions.
The construction is rather classical, see, e.g., [3]. Recall �rst that a species of structures
is a rule F which produces for each �nite set U , a �nite set F [U ], and for each bijection
φ : U −→ V , a function F [φ] : F [U ] −→ F [V ] satisfying the following properties:

• for all pairs of bijections φ : U −→ V and ψ : V −→ W , we have F [ψ ◦ φ] =
F [ψ] ◦ F [φ];
• if IdU denotes the identity map on U , then F [IdU ] = IdF [U ].
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An element s ∈ F [U ] is called an F -structure on U . The cycle generating function of a
species F is the formal power series in in�nitely many independent variables p1, p2, . . .
(called power sums) de�ned by the formula

ZF (p1, p2, . . . ) =
∞∑
n=0

1

n!

∑
σ∈Sn

|F ([n])σ|pct(σ), (2.3)

where F ([n])σ denotes the set of F -structures on [n] := {1, . . . , n} which are �xed by
the permutation σ, ct(σ) is the cycle type of σ, that is, the decreasing vector of the
cardinalities of the cycles of σ, and pλ = pλ1 · · · pλk if λ is the vector [λ1, . . . , λk]. For
instance, the trivial species TRIV has only one TRIV-structure for every n. Hence, its
cycle generating function is nothing else but the Cauchy function

σ1 := exp

{∑
n≥1

pn
n

}
=
∑
n≥0

hn. (2.4)

Here, hn denotes the complete function hn =
∑

λ`n
1
zλ
pλ, where λ ` n means that λ is a

partition of n, and zλ =
∏

i i
mi(λ)mi(λ)! if mi(λ) is the multiplicity of the part i in λ.

We consider also the species NCS(a) of non-empty colored sets having an NCS(a)-
structures on [n] which are invariant under permutations. Its cycle generating function
is

ZNCS(a) =
∑
n≥1

anhn. (2.5)

As a species, CP(a) is the composition TRIV ◦ NCS(a). Hence, its cycle generating
function is obtained by computing the plethysm

ZNCS(a)(p1, p2, . . . ) = σ1[ZNCS(a)] = exp

{∑
n>0

1

n

∑
k>0

akpn[hk]

}
. (2.6)

The exponential generating function of CP(a) is obtained by setting p1 = t and pi = 0 for
i > 1 in (2.6): ∑

n≥0

An(a1, a2, . . . )
tn

n!
= exp

{∑
i>0

ai
i!
ti

}
. (2.7)

We deduce easily that the An(a1, a2, . . . ) are multivariate polynomials in the variables
ai's. These polynomials are called complete Bell polynomials [1]. The double generating
function of #(CPn,k(a)) is easily deduced from (2.7) by

∑
n≥0

∑
k≥0

Bn,k(a1, a2, . . . )
xktn

n!
= exp

{
x
∑
i>0

ai
i!
ti

}
. (2.8)

Hence, ∑
n≥k

Bn,k(a1, a2, . . . )
tn

n!
=

1

k!

(∑
i>0

ai
i!
ti

)n

. (2.9)
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So, we have

An(a1, a2, . . . ) =
n∑
k=1

Bn,k(a1, a2, . . . ), for all n > 1 and A0(a1, a2, . . . ) = 1. (2.10)

The multivariate polynomials Bn,k(a1, a2, . . . ) are called partial Bell polynomials [1].
Let Sn,k denote the Stirling number of the second kind, which counts the number of ways
to partition a set of n objects into k nonempty subsets. We have

Bn,k(1, 1, . . . ) = Sn,k. (2.11)

Note also that An(x, x, . . . ) =
∑n

k=0 Sn,kx
k is the classical univariate Bell polynomial

denoted by φn(x) in [1]. There are several other identities that involve combinatorial
numbers, for instance, we have

Bn,k(1!, 2!, 3!, . . . ) =

(
n− 1

k − 1

)
n!

k!
, (Unsigned Lah numbers A105278 in [30]), (2.12)

Bn,k(1, 2, 3, . . . ) =

(
n

k

)
kn−k, (Idempotent numbers A059297 in [30]), (2.13)

Bn,k(0!, 1!, 2!, . . . ) = |sn,k|, (Stirling numbers of the �rst kind A048994 in [30]). (2.14)

We can also �nd many other examples in [1, 7, 23, 34, 25].

Remark 5. Without loss of generality, when needed, we will suppose a1 = 1 in the re-
mainder of this paper. Indeed, if a1 6= 0, then the generating function gives

Bn,k(a1, a2, . . . , ap, . . . ) = ak1Bn,k

(
1,
a2

a1

, · · · , ap
a1

)
(2.15)

and, when a1 = 0,

Bn,k(0, a2, . . . , ap, . . . ) =

{
0, if n < k,
n!

(n−k)!
Bn,k(a2, . . . , ap, . . . ), if n ≥ k.

(2.16)

Notice that the ordinary series of the isomorphism types of CP(a) is obtained by setting
pi = ti in (2.6). Observing that under this specialization we have pk[hn] = tnk, we obtain,
unsurprisingly, the ordinary generating function of colored (integer) partitions∏

i>0

1

(1− ti)ai
. (2.17)

2.3. Bell polynomials and symmetric functions. The algebra of symmetric func-
tions [22, 20] is isomorphic to its polynomial realization Sym(X) on an in�nite set X =
{x1, x2, . . . } of commuting variables, where the algebra Sym(X) is de�ned as the set of
polynomials invariant under permutation of the variables. As an algebra, Sym(X) is freely
generated by the power sum symmetric functions pn(X), de�ned by pn(X) =

∑
i>1 x

n
i , or

the complete symmetric functions hn, where hn is the sum of all monomials of total degree
n in the variables x1, x2, . . . . The generating function for the hn, called Cauchy function,
is

σt(X) =
∑
n>0

hn(X)tn =
∏
i>1

(1− xit)−1. (2.18)

http://oeis.org/A105278
http://oeis.org/A059297
http://oeis.org/A048994
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The relationship between the two families (pn)n∈N and (hn)n∈N is described in terms of
generating functions by the Newton formula:

σt(X) = exp

{∑
n>1

pn(X)
tn

n

}
. (2.19)

Notice that Sym is the free commutative algebra generated by p1, p2 . . . , i.e., Sym =
C[p1, p2, . . . ] and Sym(X) = C[p1(X), p2(X), . . . ] when X is an in�nite alphabet without
relations among the variables. As a consequence of the Newton Formula (2.19), it is also
the free commutative algebra generated by h1, h2, . . . . The freeness of the algebra provides
a mechanism of specialization. For any sequence of commuting scalars u = (un)n∈N, there
is an algebra homomorphism φu sending pn to un, for n ∈ N (respectively sending hn to
a certain vn which can be deduced from u). These homomorphisms are manipulated as if

there exists an underlying alphabet (so called virtual alphabet) Xu such that pn(Xu) = un
(respectively hn(Xu) = vn). The interest of such a vision is that one de�nes operations
on sequences and symmetric functions by manipulating alphabets.
The bases of Sym are indexed by the partitions λ ` n of all the integers n. A partition

λ of n is a �nite nondecreasing sequence of positive integers (λ1 ≥ λ2 ≥ · · · ) such that∑
i λi = n.
By specializing either the power sums pi or the complete functions hi to the numbers

ai
i!
, the partial and complete Bell polynomials are identi�ed with well-known bases.
The algebra Sym is usually endowed with three coproducts:

• the coproduct ∆ such that the power sums are Lie-like (∆(pn) = pn⊗ 1 + 1⊗ pn);
• the coproduct ∆′ such that the power sums are group-like (∆′(pn) = pn ⊗ pn);
• the coproduct of Faà di Bruno (see, e.g., [9, 18]).

Most of the formulas on Bell polynomials can be stated and proved using specializations
and these three coproducts. Since this is not really the purpose of our article, we have
deferred a list of examples which are alternative proofs, in terms of symmetric functions,
of existing formulas to Appendix A. One of the aims of our paper is to lift some of these
identities to other combinatorial Hopf algebras.

3. Hopf algebras of colored set partitions

3.1. The Hopf algebras CWSym(a) and CΠQSym(a). Let CWSym(a) (CWSym
for short when there is no ambiguity) be the algebra de�ned by its basis (ΦΠ)Π∈CP(a)

indexed by colored set partitions associated with the sequence a = (am)m≥1 and the
product

ΦΠΦΠ′ = ΦΠ]Π′ . (3.1)

Example 6. For instance,

Φ{[{1,3,5},3],[{2,4},1]}Φ{[{1,2,5},4],[{3},1],[{4},2]} = Φ{[{1,3,5},3],[{2,4},1],[{6,7,10},4],[{8},1],[{9},2]}.

LetCWSymn be the subspace generated by the elements ΦΠ with Π � n. For any n, we
consider an in�nite alphabet An of noncommuting variables, and we suppose An∩Am = ∅
when n 6= m.
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For any colored set partition Π = {[π1, i1], [π2, i2], . . . , [πk, ik]}, we construct a polyno-
mial ΦΠ(A1,A2, . . . ) ∈ C 〈

⋃
nAn〉,

ΦΠ(A1,A2, . . . ) :=
∑

w=a1...an

w, (3.2)

where the sum is over the words w = a1 . . . an satisfying

• For 1 ≤ ` ≤ k, aj ∈ Ai` if and only if j ∈ π`.
• If j1, j2 ∈ π`, then aj1 = aj2 .

Example 7. We have

Φ{[{1,3},3],[{2},1],[{4},3]}(A1,A2, . . . ) =
∑

a1,a2∈A3
b∈A1

a1ba1a2.

Proposition 8. The family

Φ(a) := (ΦΠ(A1,A2, . . . ))Π∈CP(a)

spans a subalgebra of C 〈
⋃
nAn〉 which is isomorphic to CWSym(a).

Proof. First, observe that span(Φ(a)) is stable under concatenation. Indeed,

ΦΠ(A1,A2, . . . )ΦΠ′(A1,A2, . . . ) = ΦΠ]Π′(A1,A2, . . . ).

Furthermore, this shows that span(Φ(a)) is homomorphic to CWSym(a) and that an
explicit (surjective) homomorphism is given by ΦΠ −→ ΦΠ(A1,A2, . . . ). Observing that
the family Φ(a) is linearly independent, the fact that the algebra CWSym(a) is graded
in �nite dimension implies the result. �

We turn CWSym into a Hopf algebra by de�ning the coproduct

∆(ΦΠ) =
∑

Π̂1∪Π̂2=Π
Π̂1∩Π̂2=∅

Φstd(Π̂1) ⊗ Φstd(Π̂2) =
∑

Π1,Π2

αΠ
Π1,Π2

ΦΠ1 ⊗ ΦΠ2 . (3.3)

Indeed, CWSym splits as a direct sum of �nite dimension spaces as

CWSym =
⊕
n

CWSymn.

This de�nes a natural graduation on CWSym. Hence, since it is a connected algebra, it
su�ces to verify that it is a bialgebra. More precisely:

∆(ΦΠΦΠ′) = ∆(ΦΠ]Π′)

=
∑

Π̂1∪Π̂2=Π,Π̂′1∪Π̂′2=Π′[n]

Π̂1∩Π̂2=∅,Π̂′1∩Π̂′2=∅

Φstd(Π̂1)]std(Π̂′1) ⊗ Φstd(Π̂2)]std(Π̂′2)

= ∆(ΦΠ)∆(ΦΠ′).

Notice that ∆ is cocommutative.

Example 9. For instance,

∆
(
Φ{[{1,3},5],[{2},3]}

)
= Φ{[{1,3},5],[{2},3]} ⊗ 1 + Φ{[{1,2},5]} ⊗ Φ{[{1},3]}

+ Φ{[{1},3]} ⊗ Φ{[{1,2},5]} + 1⊗ Φ{[{1,3},5],[{2},3]}.
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The graded dual CΠQSym(a) (which will be called CΠQSym for short when there is
no ambiguity) of CWSym is the Hopf algebra generated as a space by the dual basis
(ΨΠ)Π∈CP(a) of (ΦΠ)Π∈CP(a). Its product and its coproduct are given by

ΨΠ′ΨΠ′′ =
∑

Π∈Π′dΠ′′

αΠ
Π′,Π′′ΨΠ and ∆(ΨΠ) =

∑
Π′]Π′′=Π

ΨΠ′ ⊗ΨΠ′′ .

Example 10. For instance, we have

Ψ{[{1,2},3]}Ψ{[{1},4],[{2},1]} = Ψ{[{1,2},3],[{3},4],[{4},1]} + Ψ{[{1,3},3],[{2},4],[{4},1]}

+ Ψ{[{1,4},3],[{2},4],[{3},1]} + Ψ{[{2,3},3],[{1},4],[{4},1]}

+ Ψ{[{2,4},3],[{1},4],[{3},1]} + Ψ{[{3,4},3],[{1},4],[{2},1]}

and

∆(Ψ{[{1,3},3],[{2},4],[{4},1]}) = 1⊗Ψ{[{1,3},3],[{2},4],[{4},1]} + Ψ{[{1,3},3],[{2},4]} ⊗Ψ{[{1},1]}

+ Ψ{[{1,3},3],[{2},4],[{4},1]} ⊗ 1.

3.2. Special cases. In this section, we investigate a few interesting special cases of the
construction that we presented in the previous section.

3.2.1. Word symmetric functions. The most prominent example follows from the special-
ization an = 1 for all n. In this case, the Hopf algebra CWSym is isomorphic to WSym,
the Hopf algebra of word symmetric functions. Let us brie�y recall its construction. The
algebra of word symmetric functions is a way to construct a noncommutative analog of
the algebra Sym. Its bases are indexed by set partitions. After the seminal paper [32],
this algebra was investigated in [2, 16] as well as an abstract algebra as in its realization
with noncommutative variables. Its name comes from its realization as a subalgebra of
C〈A〉 where A = {a1, . . . , an, . . . } is an in�nite alphabet.
Consider the family of functions Φ := {Φπ}π whose elements are indexed by set par-

titions of {1, . . . , n}. The algebra WSym is formally generated by Φ using the shifted
concatenation product: ΦπΦπ′ = Φππ′[n], where π and π′ are set partitions of {1, . . . , n}
and {1, . . . ,m}, respectively, and π′[n] is the partition arising from π′ by adding n to
each integer occurring in π′. The polynomial realization WSym(A) ⊂ C〈A〉 is de�ned by
Φπ(A) =

∑
w w, where the sum is over the words w = a1 · · · an, and where i, j ∈ π` implies

ai = aj, if π = {π1, . . . , πk} is a set partition of {1, . . . , n}.

Example 11. For instance, we have Φ{{1,4},{2,5,6},{3,7}}(A) =
∑

a,b,c∈A abcabbc.

Although the construction of WSym(A), the polynomial realization of WSym, seems
to be close to Sym(X), the structures of the two algebras are quite di�erent since the Hopf
algebra WSym is not self-dual. The graded dual ΠQSym := WSym∗ of WSym admits
a realization in the same subspace (WSym(A)) of C〈A〉, but for the shu�e product.
With no surprise, we notice the following fact:

Proposition 12.

• The algebras CWSym(1, 1, . . . ), WSym, and WSym(A) are isomorphic.

• The algebras CΠQSym(1, 1, . . . ), ΠQSym, and (WSym(A), ) are isomorphic.
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In the rest of the paper, when there is no ambiguity, we will identify the algebras
WSym and WSym(A).
The word analog of the basis (cλ)λ of Sym 1 is the dual basis (Ψπ)π of (Φπ)π.
Other bases are known, for example, the word monomial functions de�ned by Φπ =∑
π≤π′Mπ′ , where π ≤ π′ indicates that π is �ner than π′, i.e., that each block of π′ is a

union of blocks of π.

Example 13. For instance,

Φ{{1,4},{2,5,6},{3,7}} = M{{1,4},{2,5,6},{3,7}} +M{{1,2,4,5,6},{3,7}} +M{{1,3,4,7},{2,5,6}}

+M{{1,4},{2,3,5,6,7}} +M{{1,2,3,4,5,6,7}}.

From the de�nition of the Mπ, we deduce that the polynomial representation of the
word monomial functions is given by Mπ(A) =

∑
w w where the sum is over the words

w = a1 · · · an where i, j ∈ π` if and only if ai = aj, where π = {π1, . . . , πk} is a set
partition of {1, . . . , n}.

Example 14. M{{1,4},{2,5,6},{3,7}}(A) =
∑

a,b,c∈A
a 6=b,a6=c,b6=c

abcabbc.

The analog of complete symmetric functions is the basis (Sπ)π of ΠQSym which is the
dual of the basis (Mπ)π of WSym.
The algebra ΠQSym is also realized in the space WSym(A): it is the subalgebra of

(C〈A〉, ) generated by Ψπ(A) = π! Φπ(A) where π! = #π1! · · ·#πk! for π = {π1, . . . , πk}.
Indeed, the linear map Ψπ −→ Ψπ(A) is a bijection sending Ψπ1Ψπ2 to∑

π=π′1∪π′2, π′1∩π′2=∅
π1=std(π′1), π2=std(π′2)

Ψπ(A) = π1! π2!
∑

π=π′1∪π′2, π′1∩π′2=∅
π1=std(π′1), π2=std(π′2)

Φπ(A)

= π1! π2!Φπ1(A) Φπ2(A) = Ψπ1(A) Ψπ2(A).

With these notations the image of Sπ is Sπ(A) =
∑

π′≤π Ψπ′(A). For our realization,
the duality bracket 〈 | 〉 implements the scalar product 〈 | 〉 on the space WSym(A) for
which 〈Sπ1(A)|Mπ2(A)〉 = 〈Φπ1(A)|Ψπ2(A)〉 = δπ1,π2 .
The subalgebra of (WSym(A), ) generated by the complete functions S{{1,...,n}}(A)

is isomorphic to Sym. Therefore, we de�ne σWt (A) and φWt (A) by

σWt (A) =
∑
n≥0

S{{1,...,n}}(A)tn

and
φWt (A) =

∑
n≥1

Ψ{{1,...,n}}(A)tn−1.

These series are linked by the equality

σWt (A) = exp
(
φWt (A)

)
, (3.4)

where exp is the exponential in (WSym(A), ). Furthermore, the coproduct ofWSym
consists in identifying the algebra WSym⊗WSym with WSym(A + B), where A and
B are two alphabets such that the letters of A commute with those of B. Hence, we have

1 The basis (cλ)λ, with cλ = pλ
zλ
, denotes, as usual, the dual basis of the power sum basis (pλ)λ.
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σWt (A + B) = σWt (A) σWt (B). In particular, we de�ne the multiplication of an alphabet
A by a constant k ∈ N by

σWt (kA) =
∑
n≥0

S{{1,...,n}}(kA)tn = σWt (A)k.

Unlike in Sym, the knowledge of the complete functions S{{1,...,n}}(A) does not allow us
to recover all the polynomials using only the algebraic operations. In [5], we made an
attempt to de�ne virtual alphabets by reconstituting the whole algebra using the action
of an operad. Although the general mechanism remains to be de�ned, the case where
each complete function S{{1,...,n}}(A) is specialized to a sum of words of length n can be
understood via this construction. More precisely, we consider the family of multilinear k-
ary operators Π indexed by set compositions (a set composition is a sequence [π1, . . . , πk]
of subsets of {1, . . . , n} such that {π1, . . . , πk} is a set partition of {1, . . . , n}) acting on
words by [π1,...,πk](a

1
1 · · · a1

n1
, . . . , ak1 · · · aknk) = b1 · · · bn with bip` = ap` if πp = {ip1 < · · · <

ipnp} and [π1,...,πk](a
1
1 · · · a1

n1
, . . . , ak1 · · · aknk) = 0 if #πp 6= np for some 1 ≤ p ≤ k.

Let P = (Pn)n≥1 be a family of homogeneous word polynomials such that deg(Pn) = n
for all n. We set S{{1,...,n}}

[
A(P )

]
= Pn and

S{π1,...,πk}
[
A(P )

]
= [π1,...,πk](S{{1,...,#π1}}

[
A(P )

]
, . . . , S{{1,...,#πk}}

[
A(P )

]
).

The space WSym
[
A(P )

]
generated by the polynomials S{π1,...,πk}

[
A(P )

]
and endowed

with the two products · and is homomorphic to the double algebra (WSym(A), ·, ).
Indeed, let π = {π1, . . . , πk} 
 n and π′ = {π′1, . . . , π′k′} 
 n′ be two set partitions. Then
we have

Sπ
[
A(P )

]
· Sπ′

[
A(P )

]
= [{1,...,n},{n+1,...,n+n′}]

(
Sπ
[
A(P )

]
, Sπ′

[
A(P )

])
= [π1,...,πk,π

′
1[n],...,π′

k′ [n]]

(
S{1,...,#π1}

[
A(P )

]
, . . . , S{1,...,#πk}

[
A(P )

]
,

S{1,...,#π′1}
[
A(P )

]
, . . . , S{1,...,#π′

k′}
[
A(P )

])
= Sπ]π′

[
A(P )

]
and

Sπ
[
A(P )

]
Sπ′
[
A(P )

]
=

∑
I∪J={1,...,n+n′}, I∩J=∅

[I,J ]

(
Sπ
[
A(P )

]
, Sπ′

[
A(P )

])
=
∑

[π′′1 ,...,π
′′
k+k′ ]

(
S{1,...,#π1}

[
A(P )

]
, . . . , S{1,...,#πk}

[
A(P )

]
,

S{1,...,#π′1}
[
A(P )

]
, . . . , S{1,...,#π′

k′}
(
A(P )

])
,

where the second sum is over the partitions {π′′1 , . . . , π′′k+k′} ∈ π d π′ satisfying
std({π′′1 , . . . , π′′k}) = π, std({π′′k+1, . . . , π

′′
k+k′}) = π′, #π′′i = πi, for k + 1 ≤ i ≤ k + k′.

Hence,

Sπ
[
A(P )

]
Sπ′
[
A(P )

]
=

∑
π′′∈πdπ′

Sπ′′
[
A(P )

]
.

In other words, we consider the elements of WSym
[
A(P )

]
as word polynomials in the

virtual alphabet A(P ) specializing the elements of WSym(A).
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3.2.2. Biword symmetric functions. The bi-indexed word algebra BWSym was de�ned
in [5]. We recall its de�nition here: the bases of BWSym are indexed by set partitions
into lists, which can be constructed from a set partition by ordering each block. We
denote the set of the set partitions of {1, . . . , n} into lists by PLn.

Example 15. The sets {[1, 2, 3], [4, 5]} and {[3, 1, 2], [5, 4]} are two distinct set partitions
into lists of the set {1, 2, 3, 4, 5}.

The number of set partitions into lists of an n-element set (or set partitions into lists
of size n) is given by Sloane's sequence A000262 [30]. The �rst values are

1, 1, 3, 13, 73, 501, 4051, . . .

If Π̂ is a set partition into lists of {1, . . . , n}, we write Π � n. Set

Π̂ ] Π̂′ = Π̂ ∪ {[l1 + n, . . . , lk + n] : [l1, . . . , lk] ∈ Π̂′} � n+ n′.

Let Π̂′ ⊂ Π̂ � n. Since the integers appearing in Π̂′ are all distinct, the standardization
std(Π̂′) of Π̂′ is the unique set partition into lists obtained by replacing the ith smallest

integer in Π̂ by i. For example, std({[5, 2], [3, 10], [6, 8]}) = {[3, 1], [2, 6], [4, 5]}.
The Hopf algebra BWSym is formally de�ned by its basis (ΦΠ̂), where the Π̂'s are set

partitions into lists, its product

ΦΠ̂ΦΠ̂′ = ΦΠ̂]Π̂′ (3.5)

and its coproduct

∆(ΦΠ̂) =
∑

Φstd(Π̂′) ⊗ Φstd(Π̂′′), (3.6)

where the sum is over the pairs (Π̂′, Π̂′′) such that Π̂′ ∪ Π̂′′ = Π̂ and Π̂′ ∩ Π̂′′ = ∅.
The product of the graded dual BΠQSym of BWSym is completely described in the

dual basis (ΨΠ̂)Π̂ of (ΦΠ̂)Π̂ by

ΨΠ̂1
ΨΠ̂2

=
∑

ΨΠ̂, (3.7)

where the sum is over the Π̂'s such that there exist Π̂′1 and Π̂′2 satisfying Π̂ = Π̂′1 ∪ Π̂′2,

Π̂′1 ∩ Π̂′2 = ∅, std(Π̂′1) = Π̂1, and std(Π̂′2) = Π̂2.
Now consider a sequence of bijections ιn from {1, . . . , n!} to the symmetric group Sn,

for all positive integers n. The linear map κ : CP(1!, 2!, 3!, . . . ) −→ PL :=
⋃
PLn sending

{[{i11, . . . , i1n1
},m1], . . . , [{ik1, . . . , iknk},mk]} ∈ CPn(1!, 2!, 3!, . . . ),

with ij1 ≤ · · · ≤ ijnj , to

{[i1(ιn1 (m1))1
, . . . , i1(ιn1 (m1))n1

], . . . , [ik(ιnk (mk))1
, . . . , ik(ιnk (mk))nk

]}

is a bijection. Hence, a simple check shows that the linear map sending ΨΠ to Ψκ(Π) is an
isomorphism. Thus, we have the following facts.

Proposition 16.

• The Hopf algebras CWSym(1!, 2!, 3!, . . . ) and BWSym are isomorphic.

• The Hopf algebras CΠQSym(1!, 2!, 3!, . . . ) and BΠQSym are isomorphic.

http://oeis.org/A000262
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3.2.3. Word symmetric functions of level 2. We consider the algebra WSym(2) which
is spanned by the ΦΠ's where Π is a set partition of level 2, that is, a partition of a
partition π of {1, . . . , n} for some n. More explicitly, a partition of partition of size n is a
set {{π1,1, . . . , π1,m1}, . . . , {πk,1, . . . , πk,mk}} such that the πi,j's are pairwise disjoint and
π1,1 ∪ · · · ∪ π1,m1 ∪ · · · ∪ πk,1 ∪ · · · ∪ πk,mk = {1, . . . , n}.

Example 17. The 12 partitions of partition of size 3 are

{{{1}}, {{2}}, {{3}}} ,
{{{1}, {2}}, {{3}}}, {{{1, 2}}, {{3}}}, {{{1, 2}, {3}}},
{{{1}, {3}}, {{2}}}, {{{1, 3}}, {{2}}}, {{{1, 3}, {2}}},
{{{2}, {3}}, {{1}}}, {{{2, 3}}, {{1}}}, {{{2, 3}, {1}}},
{{{1}, {2}, {3}}}, {{{1, 2, 3}}}.

To obtain this set, it su�ces to list the set partitions of size 3 and replace each block by the
partitions of the block in all the possible ways. For instance, the set partition {{1, 3}, {2}}
yields the 2 partitions of partition {{{1, 3}}, {{2}}} and {{{1}, {3}}, {{2}}}.

Notice that partitions of partition are in bijection with pairs of partitions (Π1,Π2) such
that Π2 is coarser than Π1, for instance,

{{{1, 3, 4}, {5}}, {{2, 6}, {7}}, {{8}}}
∼ ({{1, 3, 4}, {2, 6}, {5}, {7}, {8}}, {{1, 3, 4, 5}, {2, 7, 6}, {8}})

The product of this algebra is given by ΦΠΦΠ′ = ΦΠ∪Π′[n], where Π′[n] = {e[n] : e ∈
Π′}. The dimensions of the homogeneous components of this algebra are given by the
exponential generating function∑

i

b
(2)
i

ti

i!
= exp(exp(exp(t)− 1)− 1).

The �rst values are

1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, . . .

see sequence A000258 of [30].
The coproduct is de�ned by

∆(ΦΠ) =
∑

Π′∪Π′′=Π
Π′∩Π′′=∅

Φstd(Π′) ⊗ Φstd(Π′′),

where, if Π is a partition of a partition of {i1, . . . , ik}, std(Π) denotes the standardization of
Π, that is, the partition of partition of {1, . . . , k} obtained by replacing each occurrence
of ij by j in Π. The coproduct being co-commutative, the dual algebra ΠQSym(2) :=
WSym∗(2) is commutative. The algebra ΠQSym(2) is spanned by a basis (ΨΠ)Π satisfying

ΨΠΨΠ′ =
∑

Π′′ C
Π′′

Π,Π′ΨΠ′′ , where C
Π′′

Π,Π′ is the number of ways to write Π′′ = A ∪ B with
A ∩B = ∅, std(A) = Π, and std(B) = Π′.
Let bn be the nth Bell number An(1, 1, . . . ). Considering a bijection from {1, . . . , bn}

to the set of the set partitions of {1, . . . , n} for all n, we obtain, in the same way as in
the previous subsection, the following result.

http://oeis.org/A000258
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Proposition 18.

• The Hopf algebras CWSym(b1, b2, b3, . . . ) and WSym(2) are isomorphic.

• The Hopf algebras CΠQSym(b1, b2, b3, . . . ) and ΠQSym(2) are isomorphic.

3.2.4. Cycle word symmetric functions. We consider the Grossman�Larson Hopf algebra
of heap-ordered trees SSym [15]. The combinatorics of this algebra has been extensively
investigated in [16]. This Hopf algebra is spanned by the Φσ where σ is a permutation.
We identify each permutation with the set of its cycles (for example, the permutation 321
is {(13), (2)}). The product in this algebra is given by ΦσΦτ = Φσ∪τ [n], where n is the
size of the permutation σ and τ [n] = {(i1 + n, i2 + n, . . . , ik + n) | (i1, . . . , ik) ∈ τ}. The
coproduct is given by

∆(Φσ) =
∑

Φstd(σ|I) ⊗ Φstd(σ|J ), (3.8)

where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the
action of σ leaves the sets I and J globally invariant, σ|I denotes the restriction of the
permutation σ to the set I and std(σ|I) is the permutation obtained from σ|I by replacing
the ith smallest label by i in σ|I .

Example 19. We have

∆(Φ3241) = Φ3241 ⊗ 1 + Φ1 ⊗ Φ231 + Φ231 ⊗ Φ1 + 1⊗ Φ3241.

The basis (Φσ) and its dual basis (Ψσ) are denoted by (Sσ) and (Mσ), respectively,
in [16]. The Hopf algebra SSym is not commutative but it is cocommutative, so it is not
self-dual and not isomorphic to the Hopf algebra of free quasi-symmetric functions.
Let ιn be a bijection from the set of the permutations of Sn that are cycles to
{1, . . . , (n− 1)!}. We de�ne the bijection κ : Sn ↔ CP(0!, 1!, 2!, . . . ) by

κ(σ) =
{

[support(c1), ι#support(c1)(std(c1))], . . . , [support(ck), ι#support(ck)(std(ck))]
}
,

if σ = c1 · · · ck is the decomposition of σ into disjoint cycles and support(c) denotes the
support of the cycle c, i.e., the set of the elements which are permuted by the cycle.

Example 20. For instance, set

ι1(1) = 1, ι3(231) = 2, and ι3(312) = 1.

Then we have

κ(32415867) = {[{2}, 1], [{1, 3, 4}, 2], [{5}, 1], [{6, 7, 8}, 1]}.

The linear map K : SSym −→ CWSym(0!, 1!, 2!, . . .) sending Φσ to Φκ(σ) is an
algebra isomorphism. Indeed, it is straightforward to see that it is a bijection, furthermore
κ(σ ∪ τ [n]) = κ(σ)] κ(τ). Moreover, if σ ∈ Sn is a permutation and {I, J} is a partition
of {1, . . . , n} into two subsets such that the action of σ leaves I and J globally invariant,
we check that κ(σ) = Π1 ∪ Π2 with Π1 ∩ Π2 = ∅, std(Π1) = κ(std(σ|I)), and std(Π2) =
κ(std(σ|J)). Conversely, if κ(σ) = Π1 ∪Π2 with Π1 ∩Π2 = ∅, then there exists a partition
{I, J} of {1, . . . , n} into two subsets such that the action of σ leaves I and J globally
invariant, std(Π1) = κ(std(σ|I)), and std(Π2) = κ(std(σ|J)).
In other words,

∆(Φκ(σ)) =
∑

Φκ(std(σ|I)) ⊗ Φκ(std(σ|J ), (3.9)
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where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the action
of σ leaves the sets I and J globally invariant. Hence K is a coalgebra homomorphism
and, as with the previous examples, we have the following isomorphism property.

Proposition 21.

• The Hopf algebras CWSym(0!, 1!, 2!, . . .) and SSym are isomorphic.

• The Hopf algebras CΠQSym(0!, 1!, 2!, . . .) and SSym∗ are isomorphic.

3.2.5. Miscellaneous subalgebras of the Hopf algebra of endofunctions. We denote by End
the combinatorial class of endofunctions (an endofunction of size n ∈ N is a function from
{1, . . . , n} to itself). Given a function f from a �nite subset A of N to itself, we denote
by std(f) the endofunction φ ◦ f ◦ φ−1, where φ is the unique increasing bijection from
A to {1, 2, . . . ,#(A)}. Given a function g from a �nite subset B of N (disjoint from A)
to itself, we denote by f ∪ g the function from A ∪ B to itself whose f and g are the
restrictions to A and B, respectively. Finally, given two endofunctions f and g, of size
n and m, respectively, we denote the endofunction f ∪ g̃ by f • g, where g̃ is the unique
function from {n+ 1, n+ 2, . . . , n+m} to itself such that std(g̃) = g.
Now, let EQSym be the Hopf algebra of endofunctions [16]. This Hopf algebra is de�ned

by its basis (Ψf ) indexed by endofunctions, the product

ΨfΨg =
∑

std(f̃)=f,std(g̃)=g,f̃∪g̃∈End

Ψf̃∪g̃ (3.10)

and the coproduct

∆(Ψh) =
∑
f•g=h

Ψf ⊗Ψg. (3.11)

This algebra is commutative but not cocommutative. We denote its graded dual by
ESym := EQSym∗ and the basis of ESym dual to (Ψf ) by (Φf ). In [16], the bases (Φσ)
and (Ψσ) are denoted by (Sσ) and (Mσ), respectively. The product and the coproduct in
ESym are given by

ΦfΦg = Φf•g (3.12)

and

∆(Φh) =
∑
f∪g=h

Φstd(f) ⊗ Φstd(g), (3.13)

respectively.

Remark 22. The Ψf 's, where f is a bijective endofunction, span a Hopf subalgebra
of EQSym obviously isomorphic to SQSym := SSym∗, that is, isomorphic to
CΠQSym(0!, 1!, 2!, . . . ) from Section 3.2.4.

As suggested by [16], we investigate a few other Hopf subalgebras of EQSym.

• The Hopf algebra of idempotent endofunctions is isomorphic to the Hopf algebra
CΠQSym(1, 2, 3, . . . ) . The explicit isomorphism sends Ψf to Ψφ(f), where, for
any idempotent endofunction f of size n,

φ(f) =

{[
f−1(i),#({j ∈ f−1(i) | j ≤ i})

]∣∣∣∣1 ≤ i ≤ n, f−1(i) 6= ∅
}
. (3.14)
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• The Hopf algebra of involutive endofunctions is isomorphic to

CΠQSym(1, 1, 0, . . . , 0, . . . ) ↪→ ΠQSym.

Namely, it is a Hopf subalgebra of SQSym, and the natural isomorphism from
SQSym to CΠQSym(0!, 1!, 2!, . . .) sends it to the subalgebra CΠQSym(1, 1, 0, . . . ,
0, . . . ).
• In the same way, the endofunctions such that f 3 = Id generate a Hopf subalgebra of
SQSym ↪→ EQSym isomorphic to the Hopf algebra CΠQSym(1, 0, 2, 0, . . . , 0, . . .).
• More generally, the endofunctions such that fp = Id generate a Hopf subalgebra
of SQSym ↪→ EQSym isomorphic to CΠQSym(τ(p)), where τ(p)i = (i−1)! if i | p
and τ(p)i = 0 otherwise.

3.3. Specializations. The aim of this section is to show how the specialization cn −→ an
n!

factorizes through ΠQSym and CΠQSym.
Firstly, we notice that the algebra Sym is isomorphic to the subalgebra of ΠQSym

generated by the family (Ψ{{1,...,n}})n∈N; the explicit isomorphism α sends cn to Ψ{{1,...,n}}.
The image of hn is S{{1,...,n}}, and the image of cλ = 1

λ!
cλ1 · · · cλk is

∑
π
λ Ψπ, where π 
 λ

means that π = {π1, . . . , πk} is a set partition such that #π1 = λ1, . . . ,#πk = λk, and
λ! = λ1···λk

zλ
=
∏

imi(λ)!, where mi(λ) denotes the multiplicity of i in λ. Indeed, cλ is

mapped to 1
λ!

Ψ{{1,...,λ1}} · · ·Ψ{{1,...,λk}} and Ψ{{1,...,λ1}} · · ·Ψ{{1,...,λk}} = λ!
∑

π
λ Ψπ.

Now, the linear map βa : ΠQSym −→ CΠQSym(a) sending Ψπ to the element
∑
ΠVπ

ΨΠ

for all π is an algebra homomorphism and the subalgebra Π̃QSym := βa(ΠQSym) is
isomorphic to ΠQSym if and only if a ∈ (N \ {0})N.
Let γa : CΠQSym(a) −→ C be the linear map sending ΨΠ to 1

|Π|! . We have

γa(ΨΠ1ΨΠ2) =
∑

Π=Π′1∪Π′2,Π
′
1∩Π′2=∅

std(Π′1)=Π1, std(Π′2)=Π2

γa(ΨΠ). (3.15)

We remark that, for each Π occurring on the right-hand side of (3.15), we have γa(Π) =

1
(|Π1|+|Π2|)! . The number of terms in the sum being

(
|Π1|+ |Π2|
|Π1|

)
, one obtains

γa(ΨΠ1ΨΠ2) =
1

(|Π1|+ |Π2|)!

(
|Π1|+ |Π2|
|Π1|

)
=

1

|Π1|! |Π2|!
= γa(ΨΠ1)γa(ΨΠ2). (3.16)

In other words, γa is an algebra homomorphism. Furthermore, the restriction γ̂a of γa to

Π̃QSym is an algebra homomorphism that sends βa(Ψ{{1,...,n}}) to an
n!
. It follows that, if

f ∈ Sym, then we have

f(X(a)) = γ̂a(βa(α(f))). (3.17)

The following theorem summarizes this section.
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Theorem 23. The diagram

CΠQSym(a) oo ? _

γa (( ((

Π̃QSym oooo βa

γ̂a
����

ΠQSym
OO

α

� ?
C = Sym[X(a)] Symoooo

is commutative.

4. Word Bell polynomials

4.1. Bell polynomials in ΠQSym. Since Sym is isomorphic to the subalgebra of ΠQSym
generated by the elements Ψ{{1,...,n}}, we can compute

An(Ψ{{1}},Ψ{{1,2}}, . . . ,Ψ{{1,...,m}}, . . . ).

From (3.4), we have

An(1! Ψ{{1}}, 2! Ψ{{1,2}}, . . . ,m! Ψ{{1,...,m}}, . . . ) = n!S{{1,...,n}} = n!
∑
π
n

Ψπ. (4.1)

Notice that, from the previous section, the image of the Bell polynomial

An(Ψ{{1}},Ψ{{1,2}}, . . . ,Ψ{{1,...,m}}, . . . )

under the homomorphism γ sending Ψ{{1,...,n}} to
1
n!
is

γ(An(1! Ψ{{1}}, 2! Ψ{{1,2}}, . . . ,m! Ψ{{1,...,m}}, . . . )) = bn = An(1, 1, . . . ).

In the same way, we have

Bn,k(1! Ψ{{1}}, 2! Ψ{{1,2}}, . . . ,m! Ψ{{1,...,m}}, . . . ) = n!
∑
π
n

#π=k

Ψπ. (4.2)

If (Fn)n is a homogeneous family of elements of ΠQSym, such that |Fn| = n, we de�ne

An(F1, F2, . . . ) =
1

n!
An(1!F1, 2!F2, . . . ,m!Fm, . . . ) (4.3)

and

Bn,k(F1, F2, . . . ) =
1

n!
Bn,k(1!F1, 2!F2, . . . ,m!Fm, . . . ). (4.4)

By considering the map βa ◦ α as a specialization of Sym, we see that the following
identities hold in CΠQSym(a):

An

( ∑
1≤i≤a1

Ψ{[{1},i]},
∑

1≤i≤a2

Ψ{[{1,2},i]}, . . . ,
∑

1≤i≤am

Ψ{[{1,...,m},i]}, . . .

)
=
∑
Π�n

ΨΠ

and

Bn,k

( ∑
1≤i≤a1

Ψ{[{1},i]},
∑

1≤i≤a2

Ψ{[{1,2},i]}, . . . ,
∑

1≤i≤am

Ψ{[{1,...,m},i]}, . . .

)
=
∑
Π�n

#Π=k

ΨΠ.
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Example 24. In BΠQSym ∼ CΠQSym(1!, 2!, . . . ), we have

Bn,k

(
Ψ{[1]},Ψ{[1,2]} + Ψ{[2,1]}, . . . ,

∑
σ∈Sm

Ψ{[σ]}, . . .

)
=
∑
Π̂�n

#Π̂=k

ΨΠ̂,

where the sum on the right is over the set partitions of {1, . . . , n} into k lists. By consid-
ering the homomorphism sending Ψ{[σ1,...,σn]} to

1
n!
, we see that Theorem 23 allows us to

recover Bn,k(1!, 2!, 3!, . . . ) = Ln,k, the number of set partitions of {1, . . . , n} into k lists.

Example 25. In ΠQSym(2) ∼ CΠQSym(b1, b2, . . . ), we have

Bn,k

(
Ψ{{{1}}},Ψ{{{1,2}}} + Ψ{{{1},{2}}}, . . . ,

∑
π
m

Ψ{π}, . . .

)
=

∑
Π partition of π
n

#Π=k

ΨΠ,

where the sum on the right is over the set partitions of {1, . . . , n} of level 2 into k blocks.
By considering the homomorphism sending Ψ{π} to

1
n!
for π 
 n, we see that Theorem 23

allows us to recover Bn,k(b1, b2, b3, . . . ) = S
(2)
n,k, the number of set partitions into k sets of

a partition of {1, . . . , n}.

Example 26. In SSym∗ ∼ CΠQSym(0!, 1!, 2! . . . ), we have

Bn,k

Ψ[1],Ψ[2,1],Ψ[2,3,1] + Ψ[3,1,2], . . . ,
∑
σ∈Sn

σ is a cycle

Ψ{π}, . . .

 =
∑
σ∈Sn

σ has k cycles

Ψσ,

where the sum on the right is over the permutations of size n having k cycles. By
considering the homomorphism sending Ψσ to 1

n!
for σ ∈ Sn, we see that Theorem 23

allows us to recover Bn,k(0!, 1!, 2!, . . . ) = sn,k, the number of permutations of Sn having
exactly k cycles.

Example 27. In the Hopf algebra of idempotent endofunctions, we have

Bn,k
(
Ψf1,1 ,Ψf2,1 + Ψf2,2 ,Ψf3,1 + Ψf3,2 + Ψf3,3 , . . . ,

∑n
i=1 Ψfn,i , . . .

)
=

∑
|f |=n,#(f({1,...,n}))=k

Ψf ,

where for i ≥ j ≥ 1, fi,j is the constant endofunction of size i and of image {j}. Here, the
sum on the right is over idempotent endofunctions f of size n such that the cardinality
of the image of f is k. By considering the homomorphism sending Ψf to 1

n!
for |f | = n,

we see that Theorem 23 allows us to recover that Bn,k(1, 2, 3, . . . ) is the number of these
idempotent endofunctions. This number equals the idempotent number

(
n
k

)
kn−k [17, 31].

4.2. Bell polynomials in WSym. Bell polynomials can alternatively be de�ned re-
cursively by using the derivative that sends letter ai to ai+1 for all i. This de�nition
is particularly interesting since noncommutative analogs (Munthe-Kaas polynomials) are
de�ned in the same way (see [10] and Section 5). In this section we describe a word analog
of this formula.
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We de�ne the operator ∂ acting linearly on the right of WSym by

1∂ = 0 and Φ{π1,...,πk}∂ =
k∑
i=1

Φ({π1,...,πk}\πi)∪{πi∪{n+1}}.

In fact, the operator ∂ acts on Φπ almost as the multiplication of M{{1}} on Mπ. More
precisely, we have the following relation.

Proposition 28. We have:

∂ = φ−1 ◦ µ ◦ φ− µ,
where φ is the linear operator satisfying Mπφ = Φπ, and µ is the multiplication by Φ{{1}}.

Example 29. For instance, we have

Φ{{1,3},{2,4}}∂ = Φ{{1,3},{2,4}}(φ
−1µφ− µ)

= M{{1,3},{2,4}}µφ− Φ{{1,3},{2,4},{5}}

= (M{{1,3,5},{2,4}} +M{{1,3},{2,4,5}} +M{{1,3},{2,4},{5}})φ− Φ{{1,3},{2,4},{5}}

= Φ{{1,3,5},{2,4}} + Φ{{1,3},{2,4,5}} + Φ{{1,3},{2,4},{5}} − Φ{{1,3},{2,4},{5}}

= Φ{{1,3,5},{2,4}} + Φ{{1,3},{2,4,5}}.

Following Remark 4, we de�ne the elements An of WSym recursively as

A0 = 1, An+1 = An(Φ{{1}} + ∂). (4.5)

So we have

An = 1(Φ{{1}} + ∂)n. (4.6)

Easily, one shows that An provides an analog of complete Bell polynomials in WSym.

Proposition 30.

An =
∑
π
n

Φπ.

Noticing that the multiplication by Φ{{1}} adds one block to each partition, we give the
following analog for partial Bell polynomials.

Proposition 31. If we set

Bn,k = [tk]1(tΦ{{1}} + ∂)n, (4.7)

then we have Bn,k =
∑
π
n

#π=k

Φπ.

Example 32. We have

1(tΦ{{1}} + ∂)4 = t4Φ{{1},{2},{3},{4}} + t3(Φ{{1,2},{3},{4}} + Φ{{1,3},{2},{4}}

+ Φ{{1},{2,3},{4}} + Φ{{1,4},{2},{3}} + Φ{{1},{2,4},{3}} + Φ{{1},{2},{3,4}})

+ t2(Φ{{1,3,4},{2}} + Φ{{1,2,3},{4}} + Φ{{1,2,4},{3}} + Φ{{1,2},{3,4}} + Φ{{1,3},{2,4}}

+ Φ{{1,4},{2,3}} + Φ{{1},{2,3,4}}) + tΦ{{1},{3},{4},{2}}.
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Hence,

B4,2 = Φ{{1,3,4},{2}} + Φ{{1,2,3},{4}} + Φ{{1,2,4},{3}} + Φ{{1,2},{3,4}}

+ Φ{{1,3},{2,4}} + Φ{{1,4},{2,3}} + Φ{{1},{2,3,4}}.

4.3. Bell polynomials in C〈A〉. Both WSym and ΠQSym admit word polynomial
realizations in a subspace WSym(A) of the free associative algebra C〈A〉 over an in�nite
alphabet A. When endowed with the concatenation product, WSym(A) is isomorphic
to WSym, and, when endowed with the shu�e product, it is isomorphic to ΠQSym.
Alternatively to the de�nitions of partial Bell polynomials in ΠQSym (4.4) and inWSym,
we set, for a sequence of polynomials (Fi)i∈N in C〈A〉,

∑
n≥0

Bn,k(F1, . . . , Fm, . . . )t
n =

1

k!

(∑
i

Fit
i

) k

(4.8)

and

An(F1, . . . , Fm, . . . ) =
∑
k≥1

Bn,k(F1, . . . , Fm, . . . ). (4.9)

This de�nition generalizes (4.4) and (4.7) in the following sense.

Proposition 33. We have

Bn,k(Ψ{{1}}(A), . . . ,Ψ{{1,...,m}}(A), . . . ) = Bn,k(Ψ{{1}}(A), . . . ,Ψ{{1,...,m}}(A), . . . )

and

Bn,k(Φ{{1}}(A), . . . ,Φ{{1,...,m}}(A), . . . ) = Bn,k(A).

Proof. The two identities follow from

Ψπ1(A) Ψπ2(A) =
∑

π=π′1∪π′2, π′1∩π′2=∅
std(π′1)=π1, std(π′2)=π2

Ψπ(A). �

Equality (4.8) allows us to show more general properties. For instance, let A′ and A′′
be two disjoint subalphabets of A, and set

SA′
n (A′′) = S{{1}}(A′) S{{1,...,n−1}}(A′′).

Observing that∑
n

Bn,k(S
A′
1 (A′′), . . . , SA′

m (A′′), . . . )tn

= tkS{{1},...,{k}}(A′) (
∑
n≥0

S{{1,...,n}}(A′′)tn) k = tkS{{1},...,{k}}(A′) σWt (kA′′),

we obtain a word analog of the formula allowing one to write a Bell polynomial as a
symmetric function (see Eq. (A.8) in Appendix A).

Proposition 34. We have

Bn,k(S
A′
1 (A′′), . . . , SA′

m (A′′), . . . ) = S{{1},...,{k}}(A′) S{{1,...,n−k}}(kA′′).



20 A. ABOUD, J.-P. BULTEL, A. CHOURIA, J.-G. LUQUE, AND O. MALLET

For simplicity, let us write BA
′

n,k(A′′) := Bn,k(S
A′
1 (A′′), . . . , SA′

m (A′′), . . . ).
Let k = k1 + k2. From

S{{1},...,{k1}}(A′) S{{1},...,{k2}}(A′) =

(
k

k1

)
S{{1},...,{k}}(A′)

and

S{{1,...,n−k}}(kA′′) =
∑

i+j=n−k

S{{1,...,i}}(k1A′′) S{{1,...,i}}(k2A′′),

we deduce an analog of the binomiality of the partial Bell polynomials (see Eq. (A.9) in
Appendix A).

Corollary 35. Let k = k1 + k2 be three nonnegative integers. Then we have(
k

k1

)
BA
′

n,k(A′′) =
n∑
i=0

BA
′

i,k1
(A′′) BA

′

n−i,k2(A
′′). (4.10)

Example 36. Consider a family of functions (fk)k such that fk : N −→ C〈A〉 and

f0 = 1 and fn(α + β) =
∑
n=i+j

fi(α) fj(β). (4.11)

From (4.8), we obtain

Bn,k(f0(a), . . . , fm−1(a), . . . )tn =
1

k!

∑
i1+···+ik=n−k

fi1(a) · · · fik(a).

Hence, iterating (4.11), we deduce

Bn,k(f0(a), . . . , fm−1(a), . . . ) =
1

k!
fn−k(ka).

Set fn(k) = k! BA
′

n,k(A′′) and f0(k) = 1. By (4.10), the family (fn)n∈N satis�es (4.11).
Hence we obtain an analog of the composition formula (see Eq. (A.13) in Appendix A):

k1! Bn,k1(1, . . . , k2! BA
′

m−1,k2
(A′′), . . . ) = (k1k2)! BA

′

n−k1,k1k2(A
′′).

Suppose now that A′′ = A′′1 + A′′2. By

S{{1,...,n}}(A′′) =
n∑
i=0

S{{1,...,i}}(A′′1) S{{1,...,n−i}}(A′′2),

Proposition 34 allows us to write a word analog of the convolution formula for Bell poly-
nomials (see formula (A.10) in Appendix A).

Corollary 37. We have

S{{1},...,{k}}(A′) BA
′

n,k(A′′) =
n∑
i=0

BA
′

i,k(A′′1) BA
′

n−i,k(A′′2). (4.12)
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Let k1 and k2 be two positive integers. We have∑
n

Bn,k1(B
A′
k2,k2

(A′′), . . . , BA′k2+m−1,k2
(A′′), . . . )tn =

1

k1!

(∑
m≥1

BA
′

k2+m−1,k2
(A′′)tm

) k1

= tk1S{{1},...,{k2k1}}(A′) σWt (k1k2A′′).

This implies the following identity.

Proposition 38. We have

Bn,k1(B
A′
k2,k2

(A′′), . . . , BA′k2+m−1,k2
(A′′), . . . ) = BA

′

n−k1+k1k2,k1k2
(A′′). (4.13)

4.4. Specialization again. In [5], we have shown that one can construct a double algebra
which is homomorphic to (WSym(A), ., ). This is a general construction which is an
attempt to properly de�ne the concept of a virtual alphabet for WSym. In our context,
the construction is simpler and can be described as follows.
Let F = (Fπ(A))π be a basis of WSym(A). We say that F is shu�e-compatible if

F{π1,...,πk}(A) = [π1,...,πk]

(
F{{1,...,#π1}}(A), . . . , F{{1,...,#πk}}(A)

)
.

Then we have

Fπ1(A) Fπ2(A) =
∑

π=π′1∪π′2,π′1∩π′2=∅
std(π′1)=π1,std(π′2)=π2

Fπ and Fπ1(A).Fπ2(A) = Fπ1]π2(A).

Example 39. The bases (Sπ(A))π, (Φπ(A))π, and (Ψπ(A))π are shu�e-compatible but
not the basis (Mπ(A))π.

Straightforwardly, we have the following fact.

Claim 40. Let (Fπ(A))π be a shu�e-compatible basis of WSym(A). Let B be another

alphabet and let P = (Pk)k>0 be a family of noncommutative polynomials of C〈B〉 such
that degPk = k. Then the space spanned by the polynomials

F{π1,...,πk}[A
(P )
F ] := [π1,...,πk] (P#π1 , . . . , P#πk)

is stable under concatenation and shu�e product in C〈B〉. So it is a double algebra which

is homomorphic to (WSym(A), ., ). We denote this double algebra by WSym[A(P )
F ]

and the image of an element f ∈WSym(A) under the homomorphism WSym(A) −→
WSym[A(P )

F ] sending F{π1,...,πk} to F{π1,...,πk}[A
(P )
F ] by f [A(P )

F ].

With these notations, we have

Bn,k(P1, . . . , Pm, . . . ) = Bn,k[A(P )
Φ ].

Example 41. We de�ne a specialization by setting

Φ{{1,...,n}}[S] =
∑
σ∈Sn
σ1=1

bσ[1] . . . bσ[n],

where the letters bi belong to an alphabet B. Let σ ∈ Sn be a permutation and σ = c1◦· · ·◦
ck its decomposition into disjoint cycles. Each cycle c(i) is denoted by a sequence of integers
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(n
(i)
1 , . . . , n

(i)
`i

) such that n
(i)
1 = min{n(i)

1 , . . . , n
(i)
`i

). Let c̃(i) ∈ S`i be the permutation which

is the standardization of the sequence n
(i)
1 . . . n

(i)
`i
. The cycle support of σ is the partition

support(σ) = {{n(1)
1 , . . . , n

(1)

`(i)
}, . . . , {n(k)

1 , . . . , n
(k)

`(k)
}}.

We de�ne w[c(i)] = b
c̃(i)[1]

· · · b
c̃(i)[`(i)]

and w[σ] = [π1,...,πk](w[c(1)], . . . , w[c(k)]), where πi =

{n(i)
1 , . . . , n

(i)

`(i)
} for 1 ≤ i ≤ k.

For instance, if σ = 312654 = (132)(46)(5), we have w[(132)] = b1b3b2, w[(46)] = b1b2,
w[(5)] = b1, and w[σ] = b1b3b2b1b1b2.
So, we have

Bn,k(Φ{{1}}[S], . . . ,Φ{{1,...,m}}[S], . . . ) = Bn,k[S] =
∑
π
n

#π=k

Φπ[S] =
∑
σ∈Sn

#support(σ)=k

w[σ].

For instance,

B4,2(b1, b1b2, b1b2b3 + b1b3b2, b1b2b3b4 + b1b3b2b4 + b1b2b4b3 + b1b3b4b2

+ b1b4b2b3 + b1b4b3b2, . . . )

= Φ{{1},{2,3,4}}[S] + Φ{{2},{1,3,4}}[S] + Φ{{3},{1,2,4}}[S] + Φ{{4},{1,2,3}}[S]

+ Φ{{1,2},{3,4}}[S] + Φ{{1,3},{2,4}}[S] + Φ{{1,4},{2,3}}[S]

= 2b1b1b2b3 + 2b1b1b3b2 + b1b2b1b3 + b1b3b2b1 + b1b2b3b1 + b1b3b2b1

+ b1b2b1b2 + 2b1b1b2b2.

Notice that the sum of the coe�cients of the words occurring in the expansion of Bn,k[S]
is equal to the Stirling number sn,k. Hence, this specialization gives another word analog
of formula (2.14).

5. Munthe-Kaas polynomials

5.1. Munthe-Kaas polynomials from WSym. In order to generalize the Runge�
Kutta method to integration on manifolds, Munthe-Kaas [33] introduced a noncommu-
tative version of Bell polynomials. We recall here the construction in a slightly di�erent
variant adapted to our notation, the operators acting on the right of the algebra. Con-
sider an alphabet D = {d1, d2, . . . }. The algebra C〈D〉 is equipped with the derivative
de�ned by di∂ = di+1. The noncommutative Munthe-Kaas Bell polynomials are de�ned
by setting t = 1 in MBn(t) = 1.(td1 + ∂)n. The partial noncommutative Bell polynomial
MBn,k is the coe�cient of tk in MBn(t).

Example 42. We have

• MB1(t) = d1t,
• MB2(t) = d2

1t
2 + d2t,

• MB3(t) = d3
1t

3 + (2d2d1 + d1d2)t2 + d3t,
• MB4(t) = d4

1t
4 + (3d2d

2
1 + 2d1d2d1 + d2

1d2)t3 + (3d3d1 + 3d2
2 + d1d3)t2 + d4t.

We consider the map χ which sends a set partition π = {π1, . . . , πk}, where min(πi) <
min(πi+1) for 0 < i < k, to the integer composition [#(π1), . . . ,#(πk)]. The linear map
Ξ sending Φπ to dχ(π)[1] · · · dχ(π)[k] is an algebra homomorphism. Hence, we deduce the
following proposition.
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Proposition 43. We have

Ξ (Bn,k) = MBn,k. (5.1)

Example 44. We have

Ξ (B3,2) = Ξ
(
Φ{{1},{2,3}} + Φ{{1,3},{2}} + Φ{{1,2},{3}}

)
= d1d2 + 2d2d1 = MB3,2.

We recover a result due to Ebrahimi-Fard et al. [10].

Theorem 45. If j1+· · ·+jk = n, the coe�cient of dj1 · · · djk in MBn,k is equal to the number

of partitions of {1, 2, . . . , n} into blocks π1, . . . , πk such that #(π`) = j` for 1 ≤ ` ≤ k and

min(π1) < · · · < min(πk).

5.2. Dendriform structure and quasideterminant formula. The algebra ΠQSym
is equipped with a Zinbiel structure. The notion of Zinbiel algebra is due to Loday [21].
This is an algebra equipped with two nonassociative products ≺ and � satisfying

• (u ≺ v) ≺ w = u ≺ (v ≺ w) + u ≺ (v � w),
• (u � v) ≺ w = u � (v ≺ w),
• u � (v � w) = (u ≺ v) � w + (u � v) � w,
• u ≺ v = v � u.

The Zinbiel structure on ΠQSym is de�ned for any π 
 n and π′ 
 m by Φπ ≺ Φπ′ =
′∑

Φπ[I]∪π′[J ] (respectively Φπ � Φπ′ =
′′∑

Φπ[I]∪π′[J ]), where
′∑

(respectively
′′∑
) means

that the sum is over the partitions I∪J = {1, . . . , n+m} ( I∩J = ∅) such that #(I) = n,
#(J) = m, and 1 ∈ I (respectively 1 ∈ J), and π[I] is obtained from π by replacing ` by i`
for all ` if I = {i1, . . . , in} and i1 < · · · < in. Refer to [26, 27, 13] for other combinatorial
Hopf algebras with a dendriform structure.
We notice that

∑
n

Bn,k(Φ{{1}},Φ{{1,2}}, . . . )tn =

(∑
i

Φ{{1,...,i}}t
i

)→≺ k
, (5.2)

where u
→
≺ k = u

→
≺ k − 1 ≺ u and u

→
≺ 0 = 1.

De�nition 46. Let An = (aij)1≤i≤j≤n be an upper triangular matrix whose entries are in
a Zinbiel algebra. We de�ne the polynomial

P(An; t) = t

n∑
k=1

P(Ak−1) ≺ ak,n and P(A0) = 1. (5.3)

Example 47. We have

P(A4, t) = tP(A3) ≺ a44 + tP(A2) ≺ a34 + tP(A1) ≺ a24 + tP(A0) ≺ a14

= t4((a11 ≺ a22) ≺ a33) ≺ a44 + t3(a11 ≺ a23) ≺ a44

+ t3(a12 ≺ a33) ≺ a44 + t3(a11 ≺ a22) ≺ a34 + t2a12 ≺ a34 + at211 ≺ a24 + ta14.



24 A. ABOUD, J.-P. BULTEL, A. CHOURIA, J.-G. LUQUE, AND O. MALLET

By induction, we �nd

P(An; t) = ta1n +
∑

1≤j1<j2
<···<jk

tk(· · · (a1j1 ≺ (aj1+1,j2) ≺ (aj2+1,j3) ≺ · · · ≺ ajk−1+1,jk) ≺ ajk+1,n).

(5.4)
Setting Mn := (Φ{{1,...,j−i+1}})1≤i≤j≤n, we get the following proposition.

Proposition 48. We have

Bn,k(Φ{{1}},Φ{{1,2}}, . . . ) = [tk]P(Mn; t). (5.5)

Example 49. We have

P(A3; t) = t3(a11 ≺ a22) ≺ a33 + t2(a11 ≺ a23 + a12 ≺ a33) + ta13.

Hence

P(M3; t) = t3(Φ{{1}} ≺ Φ{{1}}) ≺ Φ{{1}} + t2(Φ{{1}} ≺ Φ{{1,2}} + Φ{{1,2}} ≺ Φ{{1}})

+ tΦ{{1,2,3}}

= t3Φ{{1},{2},{3}} + t2(Φ{{1},{2,3}} + Φ{{1,2},{3}} + Φ{{1,3},{2}}) + tΦ{{1,2,3}}

= t3B3,3 + t2B3,2 + tB3,1.

Formula (5.4) is reminiscent of a well-known result on quasideterminants.

Proposition 50 (Gelfand et al. [14]). We have∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 · · · a1n

−1 a22 a23 · · · a2n

0 −1 a33 · · · a3n

· · ·
0 · · · 0 −1 ann

∣∣∣∣∣∣∣∣∣∣
= a1n +

∑
1≤j1<j2<···<jk<n

a1j1aj1+1,j2 · · · ajk+1,n. (5.6)

Furthermore, formula (5.5) is an analog of the following result of Ebrahimi-Fard et al.

Theorem 51 (Ebrahimi-Fard et al. [10]). We have

MBn(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n−1

0

)
d1

(
n−1

1

)
d2

(
n−1

2

)
d3 · · ·

(
n− 1

n− 1

)
dn

−1
(
n−2

0

)
d1

(
n−2

1

)
d2 · · ·

(
n−2
n−2

)
dn−1

0 −1
(
n−3

0

)
d1 · · ·

(
n−3
n−3

)
dn−3

· · ·
0 · · · 0 −1

(
0
0

)
d1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The connection between all these results remains to be investigated.
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Appendix A. Bell polynomials and coproducts in Sym

In fact, most of the identities on Bell polynomials can be obtained by manipulating
generating functions and they are closely related to some other identities occurring in the
literature. Typically, the relation between the complete Bell polynomials An(a1, a2, . . . )
and the variables a1, a2, . . . is very closely related to the Newton Formula which links the
generating function of complete symmetric functions hn (Cauchy series) to that of the
power sums pn. The symmetric functions form a commutative algebra Sym freely gen-
erated by the complete functions hn or the power sum functions pn. Hence, specializing
the variable an to some numbers is equivalent to specializing the power sum functions
pn. More soundly, the algebra Sym can be endowed with coproducts conferring to it the
structure of a Hopf algebra. For instance, the coproduct for which the power sums are
primitive turns Sym into a self-dual Hopf algebra. The coproduct can be translated in
terms of generating functions by a product of two Cauchy series. This kind of manipu-
lations appears also in the context of Bell polynomials, for instance when computing the
complete Bell polynomials of the sum of two sequences of variables a1 + b1, a2 + b2, . . . .
Another coproduct turns Sym into a non-cocommutative Hopf algebra called the Faà di
Bruno algebra which is related to Lagrange inversion. Finally, the coproduct such that the
power sums are group-like can be related also to a few other formulas on Bell polynomi-
als. The aim of this section is to investigate these connections and in particular to restate
some known results in terms of symmetric functions and virtual alphabets. We also give
a few new results that are di�cult to prove without the help of symmetric functions.

A.1. Bell polynomials as symmetric functions. First, let us recall some operations
on alphabets. Given two alphabets X and Y, we de�ne (see, e.g., [20]) the alphabet X+Y
by:

pn(X + Y) = pn(X) + pn(Y) (A.1)

and the alphabet αX (respectively XY), for α ∈ C by:

pn(αX) = αpn(X) (respectively pn(XY) = pn(X)pn(Y)). (A.2)

In terms of Cauchy functions, these transforms imply

σt(X + Y) = σt(X)σt(Y) (A.3)

and

σt(XY) =
∑
λ

1

zλ
pλ(X)pλ(Y)t|λ|. (A.4)
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In fact σt(XY) encodes the kernel of the scalar product de�ned by 〈pλ, cµ〉 = δλ,µ with

cλ = pλ

zλ
. Notice that cn = pn

n
and

Sym = C[c1, c2, . . . ]. (A.5)

From (2.7) and (2.19), we obtain the following identity.

Proposition 52. We have hn = 1
n!
An(1! c1, 2! c2, . . . ).

Conversely, Equality (A.5) implies that the homomorphism φa sending ci to
ai
i!
for all i

is well de�ned for any sequence of numbers a = (ai)i∈N\{0}, and φa(hn) = 1
n!
An(a1, a2, . . . ).

Let us also de�ne h
(k)
n (X) = [αk]hn(αX). From (2.19) and (A.2), we have

h(k)
n =

∑
λ=[λ1,...,λk]`n

cλ = [tn]
1

k!

(∑
i≥1

cit
i

)k

,

and thus everything works as if we use a special (virtual) alphabet X(a) satisfying
cn(X(a)) = n! an. More precisely, the following identity holds true.

Proposition 53. We have

φa(h
(k)
n ) = h(k)

n (X(a)) =
1

n!
Bn,k(a1, . . . , ak, . . . ). (A.6)

Example 54. Let 1 be the virtual alphabet de�ned by cn(1) = 1
n
for all n ∈ N. In this

case, the Newton Formula yields hn(1) = 1. Hence An(0!, 1!, 2!, . . . , (m − 1)!, . . . ) = n!
and

Bn,k(0!, 1!, 2!, . . . , (m− 1)!, . . . ) = n! [αk][tn]

(
1

1− t

)α
= sn,k,

the Stirling number of the �rst kind.

Example 55. A more complicated example is treated in [4, 19], where ai = ii−1. In this
case, the specialization gives

σt(αX(a)) = exp{−αW (−t)},

whereW (t) =
∑∞

n=1(−n)n−1 tn

n!
is the LambertW function satisfyingW (t) exp{W (t)} = t

(see, e.g., [6]). Hence,

σt(αX(a)) =

(
W (−t)
−t

)α
.

However, the expansion of the series
(
W (t)
t

)α
is known to be(

W (t)

t

)α
= 1 +

∞∑
n=1

1

n!
α(α + n)n−1(−t)n. (A.7)

Hence, we obtain Bn,k(1, 2, 3
2, . . . ,mm−1, . . . ) =

(
n−1
k−1

)
nn−k. Note that the expansion of

W (t) and (A.7) are usually obtained by the use of Lagrange inversion.
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Example 56. With these notations, we have Bn,k(a1 + b1, . . . ) = 1
n!
h

(k)
n (X(a) +X(b)), and

classical properties of Bell polynomials can be deduced from symmetric functions through
this formalism. For instance, the equalities cn(X(a) + X(b)) = cn(X(a)) + cn(X(b)) and
hn(X(a) + X(b)) =

∑
i+j=n hi(X(a))hj(X(b)) give

An(a1 + b1, . . . ) =
∑
i+j=n

(
n

i

)
Ai(a1, a2, . . . )Aj(b1, b2, . . . )

and

Bn,k(a1 + b1, . . . ) =
∑
r+s=k

∑
i+j=n

(
n

i

)
Bi,r(a1, a2, . . . )Bj,s(b1, b2, . . . ).

Example 57. Another example is given by

An(1a1b1, 2a2b2, . . . ,mambm, . . . ) = n!
∑
λ`n

det

(
Aλi−i+j(a1, a2, . . . )

(λi − i+ j)!

)
× det

(
Aλi−i+j(b1, b2, . . . )

(λi − i+ j)!

)
,

where we used the convention A−n = 0 for n > 0. This formula is a consequence of
the Jacobi�Trudi formula and is derived from the Cauchy kernel (A.4), observing that
cn(X(a)X(b)) = ncn(X(a))cn(X(b)) and

hn(X(a)X(b)) =
∑
λ`n

sλ(X(a))sλ(X(b)) =
∑
λ`n

det
(
h

(a)
λi−i+j(X

a)
)

det
(
h

(b)
λi−i+j(X

b)
)
,

where sλ = det
(
h

(a)
λi−i+j

)
is a Schur function (see, e.g., [22]).

A.2. Other interpretations. First we focus on Identity (2.9), and we interpret it as the

Cauchy function σt(kX̂(a)), where X̂(a) is the virtual alphabet such that hi−1(X̂(a)) = ai
i!
.

This means that we consider the homomorphism φ̂a : Sym −→ C sending hi to
ai+1

(i+1)!
.

We suppose that a1 = 1, otherwise we use (2.15) and (2.16). With these notations, the
following relation holds true.

Proposition 58. We have

Bn,k(a1, a2, . . . ) =
n!

k!
hn−k(kX̂(a)). (A.8)

Example 59. If ai = i, we have hi(X̂(a)) = 1
i!
, and so σt(kX̂(a)) = exp(kt). Hence, we

recover the classical result

Bn,k(1, 2, . . . ,m, . . . ) =

(
n

k

)
kn−k.

From hn(X + Y) =
∑

i+j=n hi(X)hj(Y), we deduce two classical identities, namely(
k1 + k2

k1

)
Bn,k1+k2(a1, a2, . . . ) =

n∑
i=0

(
n

i

)
Bi,k1(a1, a2, . . . )Bn−i,k2(a1, a2, . . . ) (A.9)
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and(
n

k

)
Bn−k,k

(
a1b1, . . . ,

1

m+ 1

m∑
i=1

(
m+ 1

i

)
aibm+1−i, . . .

)

=
n−k∑
i=k

(
n

i

)
Bi,k(a1, a2, . . . )Bi,k(b1, b2, . . . ). (A.10)

Indeed, formula (A.9) is obtained by setting X = k1X̂(a) and Y = k2X̂(a). Formula (A.10)
is called the convolution formula for Bell polynomials (see, e.g., [24]), and is obtained by

setting X = X̂(a) and Y = X̂(b) in the left-hand side and X = kX̂(a) and Y = kX̂(b) in the
right-hand side.

Example 60. The partial Bell polynomials are known to be involved in interesting iden-
tities for binomial functions. Let us �rst recall that a binomial sequence is a family of
functions (fn)n∈N satisfying f0(x) = 1 and

fn(a+ b) =
n∑
k=0

(
n

k

)
fk(a)fn−k(b), (A.11)

for all a, b ∈ C and n ∈ N. Setting hn(A) := fn(a)
n!

and hn(B) := fn(b)
n!

, with these notations
we have fn(ka) = n!hn(kA). Hence,

Bn,k(1, . . . , ifi−1(a), . . . ) =
n!

k!
hn−k(kA) =

(
n

k

)
fn−k(ka). (A.12)

Notice that from (A.9), we see that

fn(k) =

{(
n
k

)−1
Bn,k(a1, a2, . . . ), if n > 0,

1, if n = 0,

is binomial, and we obtain(
n

k1k2

)−1

Bn,k1(1, . . . , i

(
i− 1

k

)−1

Bi−1,k2(a1, a2, . . . ), . . . )

=

(
n− k1

k1k2

)−1

Bn−k1,k1k2(a1, a2, . . . ). (A.13)

Several related identities are compiled in [24].

Example 61. Extracting the coe�cient of tn−k−1 on the left-hand side and the right-hand
side of the equality d

dt
σt((k + 1)X) = (k + 1)

(
d
dt
σt(X)

)
σt(kX), we obtain

(n− k)hn−k((k + 1)X) = (k + 1)
n−k∑
i=1

ihi(X)hn−i−k(X),

and we recover the identity (see, e.g., [8])

Bn,k(a1, a2, . . . ) =
1

n− k

n−k∑
i=1

(
n

i

)[
(k + 1)− n+ 1

i+ 1

]
(i+ 1)aiBn−i,k(a1, a2, . . . ). (A.14)
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Example 62. Let (an)n>0 and (bn)n>0 be two sequences of numbers such that a1 = b1 = 1
and

dn = n!
∑
λ`n−1

det

(
aλi−i+j+1

(λi + j + 1)!

)
det

(
bλi−i+j+1

(λi + j + 1)!

)
with the convention a−n = b−n = 0 if n ≥ 0. The Cauchy kernel and the orthogonality of
Schur functions give

Bn,k(d1, d2, . . . ) =
n!

k!

∑
λ`n−k

(k1! k2!)`(λ) det

(
Bλi−i+j+k1,k1(a1, a2, . . . )

(λi − i+ j + k1)!

)
× det

(
Bλi−i+j+k1,k1(b1, b2, . . . )

(λi − i+ j + k1)!

)
,

for k1k2 = k. Indeed, it su�ces to use the fact that

hn(kX(a)X(b)) =
∑
λ`n

sλ(k1X(a))sλ(k2X(b)).

The sum X + Y and the product XY of alphabets are two examples of coproducts
endowing Sym with the structure of a Hopf algebra. The sum of alphabets encodes the
coproduct ∆ for which the power sums are of Lie type (i.e., ∆(pn) = pn ⊗ 1 + 1 ⊗ pn ∼
pn(X + Y) = pn(X) + pn(Y) by identifying f ⊗ g with f(X)g(Y)), whilst the product
of alphabets encodes the coproduct ∆′ for which the power sums are group-like (i.e.,
∆′(pn) = pn ⊗ pn ∼ pn(XY) = pn(X)pn(Y)).
The algebra of symmetric functions can be endowed with another coproduct that con-

fers the structure of a Hopf algebra: this is the Faà di Bruno algebra [9, 18]. This algebra
is rather important since it is related to the Lagrange�Bürmann formula. The Bell poly-
nomials also appear in this context. As a consequence, one can de�ne a new operation
on alphabets corresponding to the composition of Cauchy generating functions. Let X
and Y be two alphabets and set f(t) = tσt(X) and g(t) = tσt(Y). The composition X ◦Y
is de�ned by σt(X ◦ Y) = 1

t
(f ◦ g)(t). The relationship with Bell polynomials can be

established by observing that we have

1

t
f ◦ g =

∑
n≥0

(
n+1∑
k=1

k!

(n+ 1)!
hk−1(X)Bn+1,k(1, 2h1(Y), 3!h2(Y), . . . )

)
tn.

Equivalently,

hn(X ◦ Y) =
n∑
k=0

(k + 1)!

(n+ 1)!
hk(X)Bn+1;k+1(1, 2!h1(Y), 3!h2(Y), . . . ).

The antipode of the Faà di Bruno algebra is also described in terms of alphabets as the
operation which associates to an alphabet X the alphabet X〈−1〉 satisfying σt(X◦X〈−1〉) = 1.
More explicitly, we have

hn(X〈−1〉) =
n!

(2n+ 1)! (n+ 1)
B2n+1,n(1,−2! e1(X), 3! e2(X), . . . ), (A.15)

where the en(X)'s are the elementary symmetric functions de�ned by
∑

n en(X)tn = 1
σ−t(X)

.
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Example 63. Let ω(t) = tσt(X). The Lagrange inversion consists in �nding an alphabet
X′ such that φ(t) = σt(X′). According to (A.15), it su�ces to set X′ = −X〈−1〉.
Let F (t) = σt(Y). When stated in terms of alphabets, the Lagrange�Bürmann formula
reads

F (ω(t)) = 1 +
∑
n≥1

dn−1

dun−1
[σ′u(Y)σu(−nX〈−1〉)]

∣∣∣
u=0

tn

n!
.

In other words, we have hn−k(−nX〈−1〉) = (k−1)!
(n−1)!

Bn,k(1, 2!h1(X), 3!h3(X), . . . ). So we re-

cover a result due to Sadek Bouroubi and Moncef Abbas [4]:

Bn,k(1, h1(2X), . . . , (m− 1)!hm−1(mX), . . . ) =
(n− 1)!

(k − 1)!
hn−k(nX).
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