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WORD BELL POLYNOMIALS

AMMAR ABOUDT, JEAN-PAUL BULTELY, ALI CHOURIA#, JEAN-GABRIEL LUQUE?,
AND OLIVIER MALLET!

ABSTRACT. Multivariate partial Bell polynomials have been defined by E.T. Bell in
1934. These polynomials have numerous applications in Combinatorics, Analysis, Alge-
bra, Probabilities, etc. Many of the formulas on Bell polynomials involve combinatorial
objects (set partitions, set partitions into lists, permutations, etc.). So it seems natural to
investigate analogous formulas in some combinatorial Hopf algebras with bases indexed
by these objects. In this paper we investigate the connections between Bell polynomials
and several combinatorial Hopf algebras: the Hopf algebra of symmetric functions, the
Faa di Bruno algebra, the Hopf algebra of word symmetric functions, etc. We show that
Bell polynomials can be defined in all these algebras, and we give analogs of classical
results. To this aim, we construct and study a family of combinatorial Hopf algebras
whose bases are indexed by colored set partitions.

1. INTRODUCTION

Multivariate partial Bell polynomials (Bell polynomials for short) have been defined
by E.T. Bell in [1] in 1934. But their name is due to Riordan [29], who studied the
Faa di Bruno formula [11, 12| allowing one to write the nth derivative of a composition
f o g in terms of the derivatives of f and g [28|. The applications of Bell polynomials in
Combinatorics, Analysis, Algebra, Probability Theory, etc. are so numerous that it would
take too long to exhaustively list them here. Let us give only a few seminal examples.

e The main applications to Probability Theory are based on the fact that the nth
moment of a probability distribution is a complete Bell polynomial of the cumu-
lants.

e Partial Bell polynomials are linked to Lagrange inversion. This follows from the
Faa di Bruno formula.

e Many combinatorial formulas for Bell polynomials involve classical combinatorial
numbers like Stirling numbers, Lah numbers, etc.

The Faa di Bruno formula and many combinatorial identities can be found in [7]. The
Ph.D. thesis of Mihoubi [24| contains a rather complete survey of the applications of these
polynomials together with numerous formulas.

Some of the simplest formulas are related to the enumeration of combinatorial objects
(set partitions, set partitions into lists, permutations, etc.). So it seems natural to in-
vestigate analogous formulas in some combinatorial Hopf algebras with bases indexed by
these objects. We recall that combinatorial Hopf algebras are graded bialgebras with
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bases indexed by combinatorial objects such that the product and the coproduct have
some compatibilities.

This paper is organized as follows. In Section 2, we investigate the combinatorial prop-
erties of colored set partitions. Section 3 is devoted to the study of the Hopf algebras
of colored set partitions. After having introduced this family of algebras, we give some
special cases which can be found in the literature. The main application explains the con-
nections with Sym, the algebra of symmetric functions. This explains that we can recover
some identities for Bell polynomials when the variables are specialized to combinatorial
numbers from analogous identities in some combinatorial Hopf algebras. We show that the
algebra WSym of word symmetric functions has an important role for this construction.
In Section 4, we give a few analogs of complete and partial Bell polynomials in WSym,
IIQSym = WSym*, and C(A) where A = {a;,...,a,,...} is an infinite alphabet and
investigate their main properties. Finally, in Section 5 we investigate the connection with
other noncommutative analogs of Bell polynomials defined by Munthe-Kaas [33].

2. DEFINITION, BACKGROUND AND BASIC PROPERTIES OF COLORED SET PARTITIONS

2.1. Colored set partitions. Let a = (a,,)m>1 be a sequence of nonnegative integers.
A colored set partition associated with the sequence a is a set of pairs

T = {[my,d1], [m2,42], . . ., [k, k] }

such that m = {my,..., 7} is a partition of {1,...,n} for some n € N, and 1 < iy < ay,,
for 1 < ¢ < k, where #s denotes the cardinality of the set s. The integer n is the size
of II. We write |II| = n, Il E n, and II = 7. We denote the set of colored partitions of
size n associated with the sequence a by CP,(a). Notice that these sets are finite. We
also set CP(a) = U, CP,(a). We endow CP with the additional statistic #II, and set
CPni(a) ={Il € CP,(a): #II = k}.

Example 1. Consider the sequence whose first terms are a = (1,2,3,...). The colored
partitions of size 3 associated with a are

CPs(a) = {{[{1,2,3}, 1]}, {{1, 2,3}, 21}, {[{1, 2,3}, 3]}, {[{1, 2}, 1], {3}, 1]},
{[{1, 23,20, [{33, 113, {H{1, 33, 1], {23, 13, {[{1, 33, 20, [{21, 113,
{2,351 {1 403, {2, 3%, 20 [y, 1 {11 1, ({23, 10, [{31: 11 -

The colored partitions of size 3 and cardinality 2 are

CPs2(a) = {{[{1, 2}, 1], [{3}, 11}, {[{1, 2}, 21, [{3}, 1}, {[{1, 3}, 1], [{2}, 1]},
{[{1, 3%, 2] {23, 101 {[{2, 35, 10, {1}, 13 {[{2, 3%, 2] [{13, 103 -

It is well-known (see, e.g., [24]) that the number of colored set partitions of size n
for a given sequence a = (a,), is equal to the evaluation of the complete Bell poly-
nomial A,(ay,...,am,...). It is also known that the number of colored set partitions
of size n and cardinality k is given by the evaluation of the partial Bell polynomial
Byx(ar,ag, ... am,...). That is,

#CP,(a) = Ay(ar, ag,...) and #CP, x(a) = By i(ar, as, ... ).

Now, let IT = {[my, 1], ... [k, 1] } be a set such that the 7;’s are finite sets of nonnegative
integers with the property that no integer belongs to more than one 7;, and 1 < 15 < ag(r)
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for any j. Then the standardization std(IT) of II is well-defined as the unique colored set
partition obtained by replacing the ith smallest integer in the m;’s by i.

Example 2. For instance, we have

std({[{1,4, 73, 1], [{13, 8}, 1. [{53, 3]}) = {[{1, 3,5}, 1), [{2, 6}, 1], [{4}, 3]} -
We define two binary operations, W : CP, x(a) @ CPy pr(a) — CPpsw kvir (@),
Ol =TTUIl'[n],
where II'[n] means that we add n to each integer occurring in the sets of I, and
W: CPpp @ CPppr — P(CPint hihr),
MUIT = {ITUITI' € CPpp i (a) : std(IT) = II and std(IT') = IT'}.
Example 3. We have

{[{1, 33,5, [{2}, 3]} w{[{1}, 2], {2, 3}, 4]} = {[{1,3},5], {2}, 3], [{4}, 2], {5, 6}, 4]},

and

{[{1}, 5], {2}, 3]y w{[{1, 2}, 2]} = {{[{1}, 5], {2}, 3], [{3, 4}, 2]},
{[{1},5], {3}, 3], {2, 4}, 2}, {[{1}, 5], [{4}, 3], {2, 3}, 2]3,
{[{23, 5], {3}, 3], {1, 4}, 21, {[{2}, 5], [{453, 3], {1, 3}, 2]3, {[{3}, 5], [{4}, 3], [{1, 2}, 21} }-
The operator U provides an algorithm which computes all colored partitions:
CP,x(a) = | U 'U U ({1, i}, Ay U W {[{L, .. i ey (2.1)
Nevertheless, some colored partitions are generated more than once using this process.
For a triple (IL,II',I1”), we denote by alr-[[,ﬂ,, the number of pairs of disjoint subsets (ﬂ’,

TT") of II such that IT" U TI” = II, std(IT') = IT', and std(IT") = II”.

Remark 4. Notice that, for a =1 = (1,1,...) (i.e., the ordinary set partitions), there is
an alternative way to construct the set CP, (1) efficiently. It suffices to use the induction

CPpyi(1) ={nu{{n+1}} :7meCP, (1)} U{(n\ {e}) (2.2)
U{eU{n+1}}:m€CP,(1), ecm}}.

By the application of this recurrence, the set partitions of CP,,1(1) are each obtained
exactly once from the set partitions of CP,(1).

2.2. Generating functions. The generating functions of the colored set partitions CP(a)
is obtained from the cycle generating function for the species of colored set partitions.
The construction is rather classical, see, e.g., [3]. Recall first that a species of structures
is a rule I which produces for each finite set U, a finite set F[U], and for each bijection
¢ : U — V, afunction F[¢| : F[U] — F[V] satisfying the following properties:

e for all pairs of bijections ¢ : U — V and ¢ : V. — W, we have F[¢ o ¢] =

Fy] o Flg);
e if Idy denotes the identity map on U, then F[Idy] = Idpy).
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An element s € F[U] is called an F-structure on U. The cycle generating function of a
species F' is the formal power series in infinitely many independent variables pq, po, . ..
(called power sums) defined by the formula

Ze(ppn ) = S0~ 3 IF() ), (2.3

where F'([n])? denotes the set of F-structures on [n] := {1,...,n} which are fixed by
the permutation o, ct(o) is the cycle type of o, that is, the decreasing vector of the
cardinalities of the cycles of o, and p* = py, -+ -py, if A is the vector [Ay,..., Ax]. For
instance, the trivial species TRIV has only one TRIV-structure for every n. Hence, its
cycle generating function is nothing else but the Cauchy function

p
o1 := exp {Z En} = Z R (2.4)
n>1 n>0

Here, h,, denotes the complete function h, = > _,, %pk, where A\ - n means that \ is a

partition of n, and z, = [, ™ Mm,;(N\)! if m;()) is the multiplicity of the part i in \.
We consider also the species NCS(a) of non-empty colored sets having a,, NCS(a)-

structures on [n| which are invariant under permutations. Its cycle generating function

is

ZNCS(@) - Zanhn (25)

n>1

As a species, CP(a) is the composition TRIV o NCS(a). Hence, its cycle generating
function is obtained by computing the plethysm

Znes(a) (P1:p2s - - - ) = 01[Znes(a)] = exp {Z % Z kan[hk]} : (2.6)

n>0 k>0

The exponential generating function of CP(a) is obtained by setting p; =t and p; = 0 for
i>1in (2.6):

t" a; ;
E An(al,ag,...)a :exp{ E Et } (2.7)
n>0 >0

We deduce easily that the A,(aq,as,...) are multivariate polynomials in the variables
a;’s. These polynomials are called complete Bell polynomials [1]. The double generating
function of #(CP,,x(a)) is easily deduced from (2.7) by

k4n .
ZZBmk(al,ag,...)xnf = exp {xz%t’} ) (2.8)

n>0 k>0

Hence,

t" 1 a; ,; "
ZBn,k(a17a27 e )m - E (Z ’L_'t> . (29)

n>k
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So, we have
An(ay,ag,...) = ZBn7k(CL1,a2, ...), foralln>1and Ay(a,as,...)=1. (2.10)
k=1

The multivariate polynomials B, (a1, as,...) are called partial Bell polynomials [1].
Let S, i denote the Stirling number of the second kind, which counts the number of ways
to partition a set of n objects into k£ nonempty subsets. We have

Bui(1,1,...) = Sus. (2.11)

Note also that A,(z,z,...) = >;_, Snxz”™ is the classical univariate Bell polynomial
denoted by ¢,(x) in [1]. There are several other identities that involve combinatorial
numbers, for instance, we have

— 1\ n!
B, (11,2131 ...) = (Z B 1) %, (Unsigned Lah numbers A105278 in [30]),  (2.12)

Bux(1,2,3,...) = (Z

Bk (01,1121 .. 0) = |suk|, (Stirling numbers of the first kind A048994 in [30]). (2.14)
We can also find many other examples in [1, 7, 23, 34, 25|.

)k”_k, (Idempotent numbers A059297 in [30]), (2.13)

Remark 5. Without loss of generality, when needed, we will suppose a; = 1 in the re-
mainder of this paper. Indeed, if a; # 0, then the generating function gives

Byk(ar,ag, ... ap,...) = a’an,k (1, %, e ,%) (2.15)
aq aq
and, when a; = 0,
0, ifn<k
Bni(0,a9,...,a,,...) =% "~ ’ . 2.16
#(0, a2 O, +) {(n"—!k)!Bnk(az,...,ap,...), if n>k. (2.16)

Notice that the ordinary series of the isomorphism types of CP(a) is obtained by setting
p; = t' in (2.6). Observing that under this specialization we have py[h,] = t™*, we obtain,
unsurprisingly, the ordinary generating function of colored (integer) partitions

1

TR (2.17)
g (1 —th)e
2.3. Bell polynomials and symmetric functions. The algebra of symmetric func-
tions [22, 20| is isomorphic to its polynomial realization Sym(X) on an infinite set X =
{1, x9,...} of commuting variables, where the algebra Sym(X) is defined as the set of
polynomials invariant under permutation of the variables. As an algebra, Sym(X) is freely
generated by the power sum symmetric functions p,(X), defined by p,(X) = >_,., z}, or
the complete symmetric functions h,,, where h,, is the sum of all monomials of total degree
n in the variables 1, x5, .... The generating function for the h,,, called Cauchy function,
is

0i(X) =Y ha(X)t" = [ (1 —mit) ™" (2.18)

n=0 i1
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The relationship between the two families (p,)nen and (hy,)nen is described in terms of
generating functions by the Newton formula:

o4(X) = exp {an@g)%} | (2.19)

n>1

Notice that Sym is the free commutative algebra generated by py,ps..., ie., Sym =
Clp1,p2, - - .| and Sym(X) = C[p1(X), p2(X),...] when X is an infinite alphabet without
relations among the variables. As a consequence of the Newton Formula (2.19), it is also
the free commutative algebra generated by hq, hs,.... The freeness of the algebra provides
a mechanism of specialization. For any sequence of commuting scalars u = (uy, ),en, there
is an algebra homomorphism ¢, sending p, to u,, for n € N (respectively sending h,, to
a certain v, which can be deduced from w). These homomorphisms are manipulated as if
there exists an underlying alphabet (so called virtual alphabet) X, such that p,(X,) = u,
(respectively h,(X,) = v,). The interest of such a vision is that one defines operations
on sequences and symmetric functions by manipulating alphabets.

The bases of Sym are indexed by the partitions A = n of all the integers n. A partition
A of m is a finite nondecreasing sequence of positive integers (A\; > Ay > ---) such that
Zi )\i = n.

By specializing either the power sums p; or the complete functions h; to the numbers
%, the partial and complete Bell polynomials are identified with well-known bases.

The algebra Sym is usually endowed with three coproducts:

e the coproduct A such that the power sums are Lie-like (A(p,) = p, @ 1+ 1R py,);
e the coproduct A’ such that the power sums are group-like (A'(p,) = pn @ pn);
e the coproduct of Faa di Bruno (see, e.g., |9, 18]).

Most of the formulas on Bell polynomials can be stated and proved using specializations
and these three coproducts. Since this is not really the purpose of our article, we have
deferred a list of examples which are alternative proofs, in terms of symmetric functions,
of existing formulas to Appendix A. One of the aims of our paper is to lift some of these
identities to other combinatorial Hopf algebras.

3. HOPF ALGEBRAS OF COLORED SET PARTITIONS

3.1. The Hopf algebras CWSym(a) and CIIQSym(a). Let CWSym(a) (CWSym
for short when there is no ambiguity) be the algebra defined by its basis (Pr)necp(a)
indexed by colored set partitions associated with the sequence a = (a;;)m>1 and the
product

CI)H(I)H/ = CDH&JH/- (31)
Example 6. For instance,

Dyr1.8.5).3) 12431 PLi(1. 2504181101443 2 = Po{1,3.5),8).[{2.4) 11.[{6.7.10} 41 [{8} 11, [{9}.2]}

Let CWSym,, be the subspace generated by the elements &y with II F n. For any n, we
consider an infinite alphabet A,, of noncommuting variables, and we suppose A, NA,, = ()
when n # m.
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For any colored set partition IT = {[my, 4], [m2, 42|, ..., [mk, k] }, We construct a polyno-
mial (I)H<A1, AQ, c. ) eC <Un An>7

(I)H(Al,AQ,...) = Z w, (32)
w=aij...an
where the sum is over the words w = a; . .. a,, satisfying
o For 1 <(¢<k,aj €A if and only if j € 7.
o If ji,jo € my, then a;, = aj,.
Example 7. We have
Pyiq1,31.3 1420101 a3 (A, Ag, ) = Z arbajas.

aj,ag€Ag
bEA

Proposition 8. The family
P(a) == (Pr(Ar, Ag, ... ))nicer(a)
spans a subalgebra of C(lJ, A,) which is isomorphic to CWSym(a).
Proof. First, observe that span(®(a)) is stable under concatenation. Indeed,
Or(Ar, Ay, .. )P (A, Ay, o) = P (A, A, .0 ).

Furthermore, this shows that span(®(a)) is homomorphic to CWSym(a) and that an
explicit (surjective) homomorphism is given by & — ®p(Aq, Ay, ...). Observing that
the family ®(a) is linearly independent, the fact that the algebra CWSym/(a) is graded
in finite dimension implies the result. O

We turn CWSym into a Hopf algebra by defining the coproduct

A(Pq) = Z (I)std(fll) ® q)std(flg) = Z agl,nz‘bnl ® Py, . (3.3)
=11 .13
11N =0

Indeed, CWSym splits as a direct sum of finite dimension spaces as

CWSym = (H CWSym,.

This defines a natural graduation on CWSym. Hence, since it is a connected algebra, it
suffices to verify that it is a bialgebra. More precisely:

A(@H(I)H/) - A((I)H@H/)

= E : (I)std(fh)tdstd(f[’l) ® ¢Std(ﬁ2)w8td(ﬁ/2)
ﬁluﬁgzn,ﬁiuﬁéznl[n]
1Ty NI =0,IT} N1, =0

- A(@]‘OA(@H/)
Notice that A is cocommutative.
Example 9. For instance,

A (Paaysiieray) = Papsyalizay ® 1+ Pruays)y © @)
+ Qe © Prprarsy + 1@ Pz, 12330
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The graded dual CIIQSym(a) (which will be called CIIQSym for short when there is
no ambiguity) of CWSym is the Hopf algebra generated as a space by the dual basis
(Vi) neer(a) of (Pr)recp(a)- 1ts product and its coproduct are given by

\IIH’\I/H" = Z aH, HH‘IJH and A \I/H Z \IJH/ X \IIH//

ITell’uIl” eIl =

Example 10. For instance, we have

Wi ersy Y en = Y2 s isha gy T Yinsyslieha {41
+ Va3 2naehr  Y{2,s) s AL a1

+ Wizap,3 10403010+ V(3,430 013,41, [{2),1}

and

A (1,333, 12han ) = 1@ Yiaayanenan i + Yusyaniena © Yay
+ Wy1,33,3, {24, {4y @ 1

3.2. Special cases. In this section, we investigate a few interesting special cases of the
construction that we presented in the previous section.

3.2.1. Word symmetric functions. The most prominent example follows from the special-
ization a, = 1 for all n. In this case, the Hopf algebra CW Sym is isomorphic to WSym,
the Hopf algebra of word symmetric functions. Let us briefly recall its construction. The
algebra of word symmetric functions is a way to construct a noncommutative analog of
the algebra Sym. Its bases are indexed by set partitions. After the seminal paper [32],
this algebra was investigated in [2, 16] as well as an abstract algebra as in its realization
with noncommutative variables. Its name comes from its realization as a subalgebra of
C(A) where A = {a;,...,a,,...} is an infinite alphabet.

Consider the family of functions ® := {®,}, whose elements are indexed by set par-
titions of {1,...,n}. The algebra WSym is formally generated by ® using the shifted
concatenation product: ®,®.; = @, where m and 7’ are set partitions of {1,...,n}
and {1,...,m}, respectively, and 7'[n] is the partition arising from 7’ by adding n to
each integer occurring in 7’. The polynomial realization WSym(A) C C(A) is defined by
¢, (A) =) w, where the sum is over the words w = a; - - - a,, and where ¢, j € 7, implies
a; = a;, if m={m,...,m;} is a set partition of {1,...,n}.

Example 11. For instance, we have @1 43 12563,13711 (A) = Za7b7c6A abcabbc.

Although the construction of WSym(A), the polynomial realization of WSym, seems
to be close to Sym(X), the structures of the two algebras are quite different since the Hopf
algebra WSym is not self-dual. The graded dual [IQSym := WSym™ of WSym admits
a realization in the same subspace (WSym(A)) of C(A), but for the shuffle product.

With no surprise, we notice the following fact:

Proposition 12.

o The algebras CWSym(1,1,...), WSym, and WSym(A) are isomorphic.
e The algebras CIIQSym(1,1,...), [IQSym, and (WSym(A), L) are isomorphic.
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In the rest of the paper, when there is no ambiguity, we will identify the algebras
WSym and WSym(A).

The word analog of the basis (cy)y of Sym ! is the dual basis (¥, ), of (D).

Other bases are known, for example, the word monomial functions defined by &, =
Y nen Mz, where m < 7’ indicates that 7 is finer than 7', i.e., that each block of 7’ is a
union of blocks of .

Example 13. For instance,

Q14302560437 = Mypia 42561037 T Mig,24563.43,7 + Mif1,3.47 42,561
+ M14y,4023567) T Mi{123456,7)}

From the definition of the M,, we deduce that the polynomial representation of the
word monomial functions is given by M, (A) = > w where the sum is over the words
W = a;---a, where ¢,j € m, if and only if a; = a;, where 7 = {m,..., 7} is a set
partition of {1,... n}.

Example 14. M{{174},{27576}7{377}}(A) = Z abcabbc.
a,b,c€A
a#b,a7#c,b#c

The analog of complete symmetric functions is the basis (S;), of IIQSym which is the
dual of the basis (M), of WSym.

The algebra IIQSym is also realized in the space WSym(A): it is the subalgebra of
(C(A), W) generated by U, (A) = 7! ©,(A) where ! = #m! - - - #mp! for m = {my, ..., m}.
Indeed, the linear map ¥, — W, (A) is a bijection sending V., V., to

> U (A) = mlm) > ®.(A)

m=miUrh, mNrh=0 m=mUrh, T Nmh=0
mi=std(m]), ma=std(m}) mi=std(m]), ma=std(n})

= m! 7T2!(I)7r1 (A) L (I)ﬂ’Q (A) = \I[ﬂ'l (A) L \I[ﬂ'? (A)

With these notations the image of Sy is S;(A) = >, W (A). For our realization,
the duality bracket ( | ) implements the scalar product ( | ) on the space WSym(A) for
which (S, (A)| Mz, (A)) = (P, (A)[Wr, (A)) = O,y

-----

is isomorphic to Sym. Therefore, we define ¢}" (A) and ¢}" (A) by

n>0
and
ZV(A) = Z\If{{l ..... n}}(A)tn !
n>1
These series are linked by the equality
at’ (A) = expy, (¢, (A)) (3.4)

where exp , is the exponential in (WSym(A), ). Furthermore, the coproduct of WSym
consists in identifying the algebra WSym @ WSym with WSym(A + B), where A and
B are two alphabets such that the letters of A commute with those of B. Hence, we have

I The basis (ex)a, with ¢y = ’z’—i, denotes, as usual, the dual basis of the power sum basis (px)x.-
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oV (A +B) = 0}V (A) o}V (B). In particular, we define the multiplication of an alphabet
A by a constant £ € N by

o (KA) = Stqr,.py (kA" = o} (A)".

-----

to recover all the polynomials using only the algebraic operations. In [5], we made an
attempt to define virtual alphabets by reconstituting the whole algebra using the action
of an operad. Although the general mechanism remains to be defined, the case where

.....

understood via this construction. More precisely, we consider the family of multilinear k-

ary operators Wy indexed by set compositions (a set composition is a sequence [my, . . ., 7]
of subsets of {1,...,n} such that {m,..., 7} is a set partition of {1,...,n}) acting on
words by Wee, _xg(al---ah,...,af---ay ) = by--by with bp = af if m, = {if <--- <
# yand W, xy(al---a), ... a)---ay ) = 0if #m, # n, for some 1 <p < k.

77777

.....

with the two products - and W is homomorphic to the double algebra (WSym(A), -, w).
Indeed, let m = {my,...,m} lF nand 7" = {x],..., 7, } IF n’ be two set partitions. Then
we have

Se [AD] - S0 [AD] = Wi, ny gnt1,ntny) (Sx [AP] S [AP)])

S AP WS, [AP) = Y Wi (S, (A7), [A7)])

where the second sum is over the partitions {7{,..., 7 .} € 7 U 7' satisfying
std({77,....m}) = m, std({m 4, .., M pw}) = 7, #m = m, for k+1 < i < k4 K.
Hence,
S (AP W, M) = Y 5[],
' enWmn’
In other words, we consider the elements of WSym [A(P )] as word polynomials in the
virtual alphabet A(") specializing the elements of WSym(A).
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3.2.2. Biword symmetric functions. The bi-indexed word algebra BWSym was defined
in [5]. We recall its definition here: the bases of BWSym are indexed by set partitions
into lists, which can be constructed from a set partition by ordering each block. We
denote the set of the set partitions of {1,...,n} into lists by PL,.

Example 15. The sets {[1,2,3],[4,5]} and {[3,1,2],[5,4]} are two distinct set partitions
into lists of the set {1,2,3,4,5}.

The number of set partitions into lists of an n-element set (or set partitions into lists
of size n) is given by Sloane’s sequence A000262 [30]. The first values are

1,1,3,13,73,501,4051, . ..
If I1 is a set partition into lists of {1,...,n}, we write IT lIF n. Set
MWl =TU{[lh+n,....0u+n]: [, ... L] ell'}IFn+n'

Let lf[' - f[AIH— n. Since the integers appearing in I are all distinct, the standardization
std(II") of II' is the unique set partition into lists obtained by replacing the ith smallest
integer in II by 4. For example, std({[5, 2], [3, 10], [6, 8]}) = {[3, 1], [2, 6], [4, 5]}
The Hopf algebra BWSym is formally defined by its basis (®y), where the II’s are set
partitions into lists, its product
O Pr = Prypy (3.5)
and its coproduct
A(Py) = Z Poraciy @ Paraciin)s (3.6)

where the sum is over the pairs (IT', II”) such that II' UTI” = IT and II' N II” = 0.
The product of the graded dual BIIQSym of BWSym is completely described in the
dual basis (V)5 of (Pg)p by

Uy Uy, = > Wy, (3.7)
where the sum is over the II's such that there exist ITj and II} satisfying I = T} U II},
Iy N 11, = @, std(I1}) = Iy, and std (1)) = Il,.

Now consider a sequence of bijections ¢, from {1,...,n!} to the symmetric group G,,,
for all positive integers n. The linear map x : CP(11,2!,3!,...) — PL := [JPL, sending

{H{eg, - in, bomal, o [{dY, ik b my]} € CPL(10,21,31 L),

with i} <.+ <, to
.1 -1 -k -k
UGy s+ Wy myg o+ [ i+ g (i) )3

is a bijection. Hence, a simple check shows that the linear map sending ¥ to U*( is an
isomorphism. Thus, we have the following facts.

Proposition 16.

e The Hopf algebras CWSym(1!,2!,3!,...) and BWSym are isomorphic.
e The Hopf algebras CIIQSym(1!,2!,3!,...) and BIIQSym are isomorphic.
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3.2.3. Word symmetric functions of level 2. We cousider the algebra WSym,,) which
is spanned by the ®p’s where II is a set partition of level 2, that is, a partition of a
partition 7 of {1,...,n} for some n. More explicitly, a partition of partition of size n is a
set {{mi1, -, Timitseo o {1y oo, Thom, }} such that the m; ;’s are pairwise disjoint and
MU Uiy U Umpy Ue e Umgn, = {1,..., 10}

Example 17. The 12 partitions of partition of size 3 are

{13 {23 {83

{0 23 {30 (UL 23 {33 ({1, 23, {83},
{0 B3 {20 (UL 3 {201 L 35 {20
{25 B33 {0 2,30 ({1 {2, 35 {13,
{1 25 {3031 {1, 2,3} )

To obtain this set, it suffices to list the set partitions of size 3 and replace each block by the
partitions of the block in all the possible ways. For instance, the set partition {{1, 3}, {2}}

yields the 2 partitions of partition {{{1,3}},{{2}}} and {{{1}, {3}}, {{2}}}.

Notice that partitions of partition are in bijection with pairs of partitions (II, II5) such
that I, is coarser than II;, for instance,

{{{1,3,4},{5}}, {{2,6}, {7}}, {{8}}}
~ ({{1,3,4},{2,6}, {5}, {7}, {8}}, {{1,3,4,5},{2,7,6},{8}})

The product of this algebra is given by ®n®r = Prump,), where II'[n] = {e[n] : e €
II'}. The dimensions of the homogeneous components of this algebra are given by the
exponential generating function

ti
b7 = explexp(exp(t) — 1) — 1).

The first values are
1,3,12,60, 358, 2471, 19302, 167894, 1606137, . ..

see sequence A000258 of [30].
The coproduct is defined by

A(Pn) = Z Pty ® Pota(rrys

'un’ =I1
I’ NI =0

where, if IT is a partition of a partition of {iy, ..., i}, std(II) denotes the standardization of
I1, that is, the partition of partition of {1,...,k} obtained by replacing each occurrence
of 7; by j in II. The coproduct being co-commutative, the dual algebra IIQSym ) =
WSym(, is commutative. The algebra IIQSym,,) is spanned by a basis (¥n);; satisfying
U = Y Cl 1y v, where Cfi 7y, is the number of ways to write I = AU B with
AN B =1, std(A) =1I, and std(B) = IT'.

Let b, be the nth Bell number A,(1,1,...). Considering a bijection from {1,...,b,}
to the set of the set partitions of {1,...,n} for all n, we obtain, in the same way as in
the previous subsection, the following result.
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Proposition 18.

o The Hopf algebras CWSym(by, by, bs, ... ) and WSym,, are isomorphic.
e The Hopf algebras CTIIQSym(by, by, b3, ... ) and TIQSym,, are isomorphic.

3.2.4. Cycle word symmetric functions. We consider the Grossman-Larson Hopf algebra
of heap-ordered trees GSym [15]. The combinatorics of this algebra has been extensively
investigated in [16]. This Hopf algebra is spanned by the ®, where o is a permutation.
We identify each permutation with the set of its cycles (for example, the permutation 321
is {(13),(2)}). The product in this algebra is given by ®,®, = ®, ., where n is the
size of the permutation o and 7[n| = {(i; + n,is +n,... i +n) | (i1,...,i) € 7}. The
coproduct is given by

A<q)0> - Z q)std(dh) & q)std(0'|(])7 (38)

where the sum is over the partitions of {1,...,n} into 2 sets [ and J such that the
action of o leaves the sets I and J globally invariant, o|; denotes the restriction of the
permutation o to the set I and std(c|;) is the permutation obtained from o|; by replacing
the ith smallest label by i in ;.

Example 19. We have
A(D3941) = P3941 @ 14+ P @ Pozp + Poz; @ Py + 1 ® D3oyy.

The basis (®,) and its dual basis (¥, ) are denoted by (S7) and (M,), respectively,
in [16]. The Hopf algebra GSym is not commutative but it is cocommutative, so it is not
self-dual and not isomorphic to the Hopf algebra of free quasi-symmetric functions.

Let ¢, be a bijection from the set of the permutations of &, that are cycles to
{1,...,(n — 1)!}. We define the bijection x : &, <> CP(0!,1,2!,...) by

k(o) = {[support(cl), Lgsupport(cy) (Std(c1))], . . ., [support(cy), L#Support(ck)(std(ck))]} ,

if 0 = ¢;--- ¢ is the decomposition of ¢ into disjoint cycles and support(c) denotes the
support of the cycle ¢, i.e., the set of the elements which are permuted by the cycle.

Example 20. For instance, set
11(1) =1, 13(231) = 2, and ¢3(312) = 1.
Then we have
k(32415867) = {[{2},1], [{1, 3, 4},2], [{5}, 1], [{6, 7,8}, 1] }.

The linear map K : &Sym — CWSym(0!,1!,2!,...) sending ®, to P, is an
algebra isomorphism. Indeed, it is straightforward to see that it is a bijection, furthermore
k(e UT[n]) = k(o) Wk(T). Moreover, if o € &, is a permutation and {I, J} is a partition
of {1,...,n} into two subsets such that the action of o leaves I and J globally invariant,
we check that k(o) = Iy UTly with II; NIy = 0, std(IT;) = s(std(eo|r)), and std(Ily) =
k(std(o|y)). Conversely, if k(o) = IT; U, with IT; NTI, = (), then there exists a partition
{I,J} of {1,...,n} into two subsets such that the action of o leaves I and J globally
invariant, std(Il;) = x(std(o|)), and std(Ily) = k(std(a|,)).

In other words,

A(@po)) = Z DQrstd(olr)) @ Pr(std(ol ) (3.9)
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where the sum is over the partitions of {1,...,n} into 2 sets I and J such that the action
of o leaves the sets I and J globally invariant. Hence K is a coalgebra homomorphism
and, as with the previous examples, we have the following isomorphism property.

Proposition 21.

e The Hopf algebras CWSym(0!,1!,2!,...) and GSym are isomorphic.
e The Hopf algebras CIIQSym(0!, 1!, 2!, ...) and SGSym™ are isomorphic.

3.2.5. Miscellaneous subalgebras of the Hopf algebra of endofunctions. We denote by End
the combinatorial class of endofunctions (an endofunction of size n € N is a function from
{1,...,n} to itself). Given a function f from a finite subset A of N to itself, we denote
by std(f) the endofunction ¢ o f o ¢!, where ¢ is the unique increasing bijection from
Ato {1,2,...,4#(A)}. Given a function g from a finite subset B of N (disjoint from A)
to itself, we denote by f U g the function from A U B to itself whose f and ¢ are the
restrictions to A and B, respectively. Finally, given two endofunctions f and g, of size
n and m, respectively, we denote the endofunction f U g by f e g, where g is the unique
function from {n+ 1,n +2,...,n 4+ m} to itself such that std(g) = g.

Now, let EQSym be the Hopf algebra of endofunctions [16]. This Hopf algebra is defined
by its basis (V) indexed by endofunctions, the product

AT > L (3.10)
std(f)=f,std(§)=g,fUGEEnd
and the coproduct
ATy =) T;07, (3.11)
feg=h
This algebra is commutative but not cocommutative. We denote its graded dual by
ESym := EQSym" and the basis of ESym dual to (¥f) by (®f). In [16], the bases (®,)

and (W, ) are denoted by (S?) and (M, ), respectively. The product and the coproduct in
ESym are given by

PPy = Drog (3.12)
and
A(Py) = Z DPsia(r) @ Pstacg)s (3.13)
fUg=h
respectively.

Remark 22. The Wy's, where f is a bijective endofunction, span a Hopf subalgebra
of EQSym obviously isomorphic to &QSym := G&Sym®, that is, isomorphic to
CIIQSym(0!, 1!, 2! .. .) from Section 3.2.4.

As suggested by [16], we investigate a few other Hopf subalgebras of EQSym.

e The Hopf algebra of idempotent endofunctions is isomorphic to the Hopf algebra
CIIQSym(1,2,3,...) . The explicit isomorphism sends Wy to Wy, where, for
any idempotent endofunction f of size n,

o) ={ |t e 10 1< ) \1 <isnt@A0) G
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e The Hopf algebra of involutive endofunctions is isomorphic to
CIIQSym(1,1,0,...,0,...) < IIQSym.

Namely, it is a Hopf subalgebra of GQSym, and the natural isomorphism from
SQSym to CIIQSym(0!, 1!, 2!, .. .) sends it to the subalgebra CIIQSym(1,1,0,...,
0,...).

e In the same way, the endofunctions such that f3 = Id generate a Hopf subalgebra of
SQSym — EQSym isomorphic to the Hopf algebra CIIQSym(1,0,2,0,...,0,...).

e More generally, the endofunctions such that f? = Id generate a Hopf subalgebra
of 5QSym — EQSym isomorphic to CIIQSym(7(p)), where 7(p); = (i—1)lif ¢ | p
and 7(p); = 0 otherwise.

3.3. Specializations. The aim of this section is to show how the specialization ¢, — 9
factorizes through IIQSym and CIIQSym. '
Firstly, we notice that the algebra Sym is isomorphic to the subalgebra of IIQSym
generated by the family (Vg .33 )nen; the explicit isomorphism a sends ¢, to Uiy}
,,,,, . 18 >y War, where m IF A

means that 7 = {m,..., 7} is a set partition such that #m; = A1, ..., #m = A, and
N o= /\12—)\>\k = [[, mi(\)!, where m;()\) denotes the multiplicity of ¢ in A. Indeed, ¢, is

.......... ey and Uea gy Wgagy = A o Uae

Now, the linear map 5, : IIQSym — CIIQSym(a) sending ¥, to the element Z U
=

for all 7 is an algebra homomorphism and the subalgebra H@g?m = [.(IIQSym) is
isomorphic to [IQSym if and only if a € (N'\ {0})N.
Let 7, : CIIQSym(a) — C be the linear map sending Wy to ﬁ We have

Va(\lll_h\ljnz) = Z 7a<‘I]H)- (315)
=11} UIT,, IT) NIT5 =0
std(IT})=I1y , std (IT})=IT»

We remark that, for each IT occurring on the right-hand side of (3.15), we have ~,(II) =

—(\H1|i\H2|)!‘ The number of terms in the sum being ( ‘Hll‘ﬁjnz’ ), one obtains
1 IIT; | + |IL,| 1
(U ¥n) = G = e = () (Pn). (316
7 ( I HQ) (|H1| + |H2|)'< |H1| |H1" |H2|' 7 ( Hl)’y ( H2> ( )

In other words, 7, is an algebra homomorphism. Furthermore, the restriction 4, of v, to

—_—

IIQSym is an algebra homomorphism that sends 8,(¥ (1, n}3) to %. It follows that, if
f € Sym, then we have

FX®) = Fa(Ba((1)))- (3.17)

The following theorem summarizes this section.
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Theorem 23. The diagram

CIQSym(a) <—’H6§y/m o ITQSym

~ ]

C = Sym[X@] <—— Sym

15 commutative.

4. WORD BELL POLYNOMIALS

4.1. Bell polynomials in [IQSym. Since Sym is isomorphic to the subalgebra of IIQSym
generated by the elements Wiy 1y, we can compute

An(Tepy Yeens - Y myys - )-

From (3.4), we have

An(1‘ \If{{l}}, 2! \I’{{LQ}}, c. ,m! \If{{l ..... m}y}s - .- ) =n! S{{l ..... n}} = n! Z \Dﬂ.. (4.1)

7lkn

Notice that, from the previous section, the image of the Bell polynomial
An(Yiyy Y- Y myys )

.....

In the same way, we have

Bn,k(l! \I’{{l}}, 2! @{{1’2}}, . ,m! \I’{{l ..... m}}y .- - ) =n! Z \I’ﬂ.. (4.2)
mlkn
#r=k

If (F,), is a homogeneous family of elements of [IQSym, such that |F,| = n, we define

1
An<F1, FQ, oo ) == —'An<].' Fl, 2! FQ, e ,TTL! Fm, v ) (43)

n!

and

1
Bn,k‘(Fh FQ, .. ) = —lek(l' Fl, 2! FQ, cee ,m! Fm, N ) (44)

n!

By considering the map (3, o a as a specialization of Sym, we see that the following
identities hold in CIIQSym(a):

An( D Tuway YL Yaazay- >, Y m},i}}w--) =) ¥y

1<i<aq 1<i<asz 1<i<am

and

Bmk( > Yy L Yaaaan >, Yoo m},z‘}}»---) = > Un

1<i<ay 1<i<asy 1<i<am
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Example 24. In BIIQSym ~ CIIQSym(1!,2!,...), we have

B (‘P{[ll}a‘lf{u,z]} + Uiy ) ‘I’{[cr]}?---> = > Uy

0€EGm, fI):n
#I1=k
where the sum on the right is over the set partitions of {1,...,n} into k lists. By consid-

ering the homomorphism sending V5, . .} to %, we see that Theorem 23 allows us to
recover B, ;(1!,21,3!,...) = L,, , the number of set partitions of {1,...,n} into k lists.

Example 25. In [IQSym ) ~ CIIQSym(by, by, . . . ), we have

B (‘1’{{{1}}}7 Ve + Ve Y Y- ) = > Um
ikm II partition of wlkn
#11=k
where the sum on the right is over the set partitions of {1,...,n} of level 2 into k blocks.

By considering the homomorphism sending Wy, to % for 7 IF n, we see that Theorem 23

allows us to recover B, (b1, b2, b3,...) = Sg,)c, the number of set partitions into k sets of
a partition of {1,...,n}.

Example 26. In GSym™ ~ CIIQSym(0!, 1!,2!...), we have

Bug | Y Y21, Yz + Y2, - 2: Vi, ... | = 2: v,
o€, oe6,
o is a cycle o has k cycles

where the sum on the right is over the permutations of size n having k cycles. By
considering the homomorphism sending V¥, to % for 0 € 6,,, we see that Theorem 23
allows us to recover B, ;(0!,11,2!,...) = s, %, the number of permutations of &,, having
exactly k cycles.

Example 27. In the Hopf algebra of idempotent endofunctions, we have

Bn,k (‘ijl,17 \I/f2,1 + \I/f2,27 \I/f3,1 + \I/f&? + \I/f373, cee Z?:l \IIfn,w .. )
- Z qu?
|fl=n,#(f({1,-..,n}))=k

where for ¢ > j > 1, f; ; is the constant endofunction of size ¢ and of image {j}. Here, the
sum on the right is over idempotent endofunctions f of size n such that the cardinality
of the image of f is k. By considering the homomorphism sending ¥ to # for |f| = n,
we see that Theorem 23 allows us to recover that B, x(1,2,3,...) is the number of these
idempotent endofunctions. This number equals the idempotent number (7)k"~* [17, 31].

4.2. Bell polynomials in WSym. Bell polynomials can alternatively be defined re-
cursively by using the derivative that sends letter a; to a;y; for all 7. This definition
is particularly interesting since noncommutative analogs (Munthe-Kaas polynomials) are
defined in the same way (see [10] and Section 5). In this section we describe a word analog
of this formula.



18 A. ABOUD, J.-P. BULTEL, A. CHOURIA, J.-G. LUQUE, AND O. MALLET

We define the operator 0 acting linearly on the right of WSym by
k

i=1
In fact, the operator 0 acts on ®, almost as the multiplication of My, on M,. More
precisely, we have the following relation.

Proposition 28. We have:
O0=¢ lopogp—p,
where ¢ is the linear operator satisfying Mr¢ = @, and p is the multiplication by P 1y

Example 29. For instance, we have

C(11,3,12410 = Pr1apean (07 1o — 1)
= M3y, 241110 — P13} {2.4).45))
= (Myguasyzayy + Migsyeasy + Mipsy2ansn)? — Quusy2an sy
= Prpss)2ay) T Prsnzasy T Pusy a5y — Prus {24,061
= Prssy2ay T Pps) {2450
Following Remark 4, we define the elements 2, of WSym recursively as
Ao =1, Anyy = Ay (Dyayy + ). (4.5)
So we have
A, = L(Pypyy +0)". (4.6)

Easily, one shows that 2, provides an analog of complete Bell polynomials in WSym.

Proposition 30.

A, = Z@W.

7lkn

Noticing that the multiplication by @}, adds one block to each partition, we give the
following analog for partial Bell polynomials.

Proposition 31. If we set
Br = [tk]l(tfb{{l}} +0)", (4.7)

then we have B, j, = Z D

mlkn

#r=k
Example 32. We have

L(t@yy +0)" = '@y qonianian + P (Prpananian + Pruaniznun
+ P zania T Praneney + Quuneansy + Quuenean)
+ (P an e + Prpzani T Q2aanen T Quenean + Pz
+ Prangesy T Pruyq2san) + 10 sy (a2
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Hence,

Bz = Prpiaapizn + Lr2ania T Przanen + Liuanean
T Pepanzan + Qb T Qs

4.3. Bell polynomials in C(A). Both WSym and TIQSym admit word polynomial
realizations in a subspace WSym(A) of the free associative algebra C(A) over an infinite
alphabet A. When endowed with the concatenation product, WSym(A) is isomorphic
to WSym, and, when endowed with the shuffle product, it is isomorphic to ITQSym.
Alternatively to the definitions of partial Bell polynomials in IIQSym (4.4) and in WSym,
we set, for a sequence of polynomials (F;);ey in C(A),

Wk
1 .
> Bukl(Fro Foy o )" = o <Z Ft) (4.8)

and
A(Fiyoo o Fryo ) = Bug(Fr, .o Foy ). (4.9)

This definition generalizes (4.4) and (4.7) in the following sense.

Proposition 33. We have
Bn,k(\D{{l}}(A), ceey \If{{l 77777 m}}(A), .. ) = Bn,k(\I’{{l}}(A), ceey \If{{l ..... m}}(A), .. )
and
Bri(Periy(A), .o, @ mp (A), ) = B u(A).
Proof. The two identities follow from

UL AWTLA) = Y (A O

r=mUrh, T Nrh=0
std(n])=m1, std(mh)=m2

Equality (4.8) allows us to show more general properties. For instance, let A" and A"
be two disjoint subalphabets of A, and set

Sﬁ/(A”) = S{{l}}(A/)LUS{{l _____ n—l}}(A”)-
Observing that

D Bur(SE(A"), ... Sh(A"),. )t

= gy e (AW Sppr,mp (AN = 5500y, gy (A) Way (RA),

n>0
we obtain a word analog of the formula allowing one to write a Bell polynomial as a
symmetric function (see Eq. (A.8) in Appendix A).

Proposition 34. We have
Bmk(SlA/ (A//), ce ,Sﬁl (AH), )= S{{l} {k}}(A/) UJS{{l 77777 n_k}}(kA”).

77777
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For simplicity, let us write B (A”) := B,k (SE (A”), ..., S&(A"),...).
Let k = k‘l + /{32. From

and
Sti,.m—kyy (RA") = Z Sty (A WS, iy (k2 A”),

we deduce an analog of the binomiality of the partial Bell polynomials (see Eq. (A.9) in
Appendix A).

Corollary 35. Let k = ki + ko be three nonnegative integers. Then we have

(1 Bt = Yo, () wsd (4 (@10
=0
Example 36. Consider a family of functions (f;), such that f; : N — C(A) and
fo=Tand fo(a+B)= > fila)Wf;(B (4.11)
n=i+j

From (4.8), we obtain

Bn,k(fo(a),...,fm1(@,...)%:% S (@)W Wi (a).

T i tig=n—k

Hence, iterating (4.11), we deduce

Bukfola). -+ (@), ) = 1 Foalka).

Set fu(k) = k!B, (A”) and fo(k) = 1. By (4.10), the family (f,)nen satisfies (4.11).
Hence we obtain an analog of the composition formula (see Eq. (A.13) in Appendix A):
kl' Bn kl( kQ' Bﬁ": 1,ko (A//>7 ce ) = (kle)‘ BA}LLkl,klkz (A”)'

Suppose now that A” = Al + AJ. By

Proposition 34 allows us to write a word analog of the convolution formula for Bell poly-
nomials (see formula (A.10) in Appendix A).

Corollary 37. We have

St(hodiyy (A WBE L (A") = > B (AT WBL, ,(A)). (4.12)
=0
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Let ky and ks be two positive integers. We have

qu:l
D Bu (Bl ey (A”), - By (A, )" (Z By tm—1.ks A”)tm)
n

m>1

.....

This implies the following identity.
Proposition 38. We have

Bnyk’l (Bﬁgl,kz (AN)7 ttt 7BII§2/+m—1,k2 (AN>7 ttt ) = B‘S/—k1+k1k2,k1k2 (A,/)' (413)

4.4. Specialization again. In [5], we have shown that one can construct a double algebra
which is homomorphic to (WSym(A), ., Ww). This is a general construction which is an
attempt to properly define the concept of a virtual alphabet for WSym. In our context,
the construction is simpler and can be described as follows.

Let F'= (Fr(A)), be a basis of WSym(A). We say that F is shuffle-compatible if

Firy oy (A) = Wiy (Feezmpy (A, Frasmay (A))

Fr (A WF,,(A) = > Fy and Fy (A).Fry(A) = Fr um, (A).

m=mjUrh,m]Nrh=0
std(n])=m1,std(mh)=m2

Example 39. The bases (S:(A))r, (Px(A))r, and (V,(A)), are shuffle-compatible but
not the basis (M, (A)),.

Straightforwardly, we have the following fact.

Claim 40. Let (F,(A)), be a shuffle-compatible basis of WSym(A). Let B be another
alphabet and let P = (Py)k>o be a family of noncommutative polynomials of C(B) such
that deg P, = k. Then the space spanned by the polynomials

P
F{7r1 ..... Trk}[A(F )] = uJ[71'1 ..... k) (P#Wla s ap#rrk)

is stable under concatenation and shuffle product in C(B). So it is a double algebra which

is homomorphic to (WSym(A),., w). We denote this double algebra by WSym[A%P)]
and the image of an element f € WSym(A) under the homomorphism WSym(A) —

WSym[A%P)} sending Fix, =y to Fir, . Wk}[A ] by f[ ]
With these notations, we have

Bui(Pry.., Py ) =B, [A0)).

.....

Example 41. We define a specialization by setting

S [S] = D o) - Bop,

ceG,
o1=1

where the letters b; belong to an alphabet B. Let 0 € &,, be a permutation and o = cj0- - -0
¢y, its decomposition into disjoint cycles. Each cycle ¢ is denoted by a sequence of integers
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1

... ,ng)) such that n{” = min{n{”, ... ,ny)) Let ¢ € &, be the permutation which

is the standardization of the sequence ngi) e ng) The cycle support of ¢ is the partition
1 1 k k
Support(o) = {{ng )a s 7né(i))}7 SRR {Tlg )7 s 7né(k),)}}'
We define w[c?] = b P and w[o] = Wiy m (w[eW], .., w[e®]), where 7; =

{ngi), . ,né&} for 1 <i<k.

For instance, if o = 312654 = (132)(46)(5), we have w[(132)] = bybsbe, w[(46)] = b;1Dbs,
?,U[(5)] = bl, and U)[O'] = blbgbgblblbg.

So, we have

Bn,k<q){{1}}[6], cey q){{l?._.’m}}[G], .. ) = %n,k[G] = Z (I)W[G] = Z w[a].
#7‘:2]? #supi)%rgt?a) =k

For instance,
By 2(b1, b1bg, bibabs + bibsgbs, bibabsby + bibsbaby + bibobsbg + bibsbsbsy
+ bybybyby + bibybsbs, .. . )
= Py 2341 (6] + P2y, 1843 (6] + Pigsy 1,241 (6] + Pigay (1,251 (6]
+ Piq1,2),1341 6] + Pri13),02,40 6] + Pri1ay 42,3 6]
= 2b1b1bybs + 2bybybsby + bibobybs + bibsbob; + bibobsb; + bybsboby
+ bibabiby + 2b1bbabs.
Notice that the sum of the coefficients of the words occurring in the expansion of B, ;[&]

is equal to the Stirling number s,, ;. Hence, this specialization gives another word analog
of formula (2.14).

5. MUNTHE-KAAS POLYNOMIALS

5.1. Munthe-Kaas polynomials from WSym. In order to generalize the Runge—
Kutta method to integration on manifolds, Munthe-Kaas [33] introduced a noncommu-
tative version of Bell polynomials. We recall here the construction in a slightly different
variant adapted to our notation, the operators acting on the right of the algebra. Con-
sider an alphabet D = {d;,ds,...}. The algebra C(D) is equipped with the derivative
defined by d;0 = d;;1. The noncommutative Munthe-Kaas Bell polynomials are defined
by setting ¢ = 1 in MB,(t) = 1.(td; + 9)". The partial noncommutative Bell polynomial
MB, . is the coefficient of ¥ in MB,(¢).

Example 42. We have
MB, (t) = dit,

o MBy(t) = d2t% + dyt,
o MB3(t) = d3t® + (2dody + dyda)t? + dst,
o MB,(t) = dit* + (3dad? + 2dydad; + d3dy)t® + (3dsdy + 3d3 + dyd3)t? + dyt.
We consider the map x which sends a set partition 7 = {m,..., 7}, where min(m;) <
min(m;41) for 0 < i < k, to the integer composition [#(m),...,#(m)]. The linear map

= sending @, to dy(mp) - dy(r)x is an algebra homomorphism. Hence, we deduce the
following proposition.
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Proposition 43. We have
E (B k) = MB,, . (5.1)

Example 44. We have
E(Ba2) = E(Pupea + Prsnin + Prpianen) = dide + 2dady = MBy .
We recover a result due to Ebrahimi-Fard et al. [10].

Theorem 45. If j,+- - -+ji = n, the coeﬂiczent of dj, - - - dj, mMB, is equal to the number
of partitions of {1,2,...,n} into blocks w1, ..., 7 such that #(my) = gy for 1 <L <k and

min(m) < -+ < min(ﬂk).

5.2. Dendriform structure and quasideterminant formula. The algebra IIQSym
is equipped with a Zinbiel structure. The notion of Zinbiel algebra is due to Loday [21].
This is an algebra equipped with two nonassociative products < and > satisfying

o (u=<v)<w=u=<v<w) +u=<(v=uw),

o (urv)<w=u> (v<w),

e u>(v-w)=(u<v)=w+(u=wv)=w,

e U<V=1V>>U.

The Zinbiel structure on [1QSym is deﬁned for any 7 IF n and ' Ik m by &, < b =

Z Qo un) (respectively @, = & = Z @W[I]Uﬂzm) where Z respectively Z means
that the sum is over the partitions JUJ = {1, ..., n+m} ( INJ = 0) such that #(I) =
#(J) =m,and 1 € I (respectively 1 € J), and W[I] is obtained from 7 by replacing ¢ by z'g
for all £if I = {iy,...,1,} and 4; < --- < i,,. Refer to [26, 27, 13] for other combinatorial
Hopf algebras with a dendriform structure.

We notice that

—
2k
D Bar(®pyy, Prpaayy - )" = (Z LITe i}}ti) | o2

— — —
<k _ k-1 <0 _1

where u < u and u

Definition 46. Let A,, = (a;j)1<i<j<n be an upper triangular matrix whose entries are in
a Zinbiel algebra. We define the polynomial

P(A,;t) = tiP(Akl) < ag, and P(A4g) = 1. (5.3)

k=1
Example 47. We have
P<A47 t) - tP<A3) = Q44 + tP(A2> < as4 + tP<A1) < a9y + tP(A[)) < a4
= t4((a11 < (122) < CL33) < Qg4 + t3((l11 < &23) =< Qyq
+ (a2 < az3) < auq + 2 (a1 < ag) < azq + t2a1n < azy + at; < agy + tay.
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By induction, we find

P(Am t) = ta, + Z tk(' o (aljl = (aj1+1,j2) = (aj2+17j3) <= ajkflJFij) ~ a’jk+1,n)'

1<51<g2
<-<Jk
(5.4)
Setting M, := (P, j—i+1}})1<i<j<n, We get the following proposition.
Proposition 48. We have
Bn,k(q){{l}}7 @{{172}}, ce ) = [tk]P(Mn; t). (55)

Example 49. We have

P(Ag, t) = t3(a11 =< (122) < asz + tz(all < a93 + a2 < a33) + taqs.
Hence
P(Ms;t) = £*(®1yy < @rayy) < Py + (P < Pz + Prpay < Py
+tP¢1,231

= 2Oy 2308 + (P2 T Prraniey + Prusy) 1P 2sy)
= t'B33 + t* By + B3 .

Formula (5.4) is reminiscent of a well-known result on quasideterminants.

Proposition 50 (GELFAND ET AL. [14]). We have

apx; Q2 Qi3 -0 |Qip

—1 axp ax -+ az

0 —1 asg - asn = ap + Z A1, Q541,50 Cjp+1n- (56)
s 1<g1<go<--<jgp<n

0O -+ 0 -1 ap,

Furthermore, formula (5.5) is an analog of the following result of Ebrahimi-Fard et al.

Theorem 51 (EBRAHIMI-FARD ET AL. [10]). We have

(")di (")da (")ds - (Z:an

MB,(1)=| —1  ()d ("2 o (075)dn
0 -1 (”53)d1 (Zig)dn-g

0 0 -1 (g)dl

The connection between all these results remains to be investigated.
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APPENDIX A. BELL POLYNOMIALS AND COPRODUCTS IN Sym

In fact, most of the identities on Bell polynomials can be obtained by manipulating
generating functions and they are closely related to some other identities occurring in the
literature. Typically, the relation between the complete Bell polynomials A, (ay,as,...)
and the variables aq, as, ... is very closely related to the Newton Formula which links the
generating function of complete symmetric functions h, (Cauchy series) to that of the
power sums p,. The symmetric functions form a commutative algebra Sym freely gen-
erated by the complete functions h,, or the power sum functions p,,. Hence, specializing
the variable a, to some numbers is equivalent to specializing the power sum functions
Pn. More soundly, the algebra Sym can be endowed with coproducts conferring to it the
structure of a Hopf algebra. For instance, the coproduct for which the power sums are
primitive turns Sym into a self-dual Hopf algebra. The coproduct can be translated in
terms of generating functions by a product of two Cauchy series. This kind of manipu-
lations appears also in the context of Bell polynomials, for instance when computing the
complete Bell polynomials of the sum of two sequences of variables a; + by, as + bo, . ...
Another coproduct turns Sym into a non-cocommutative Hopf algebra called the Faa di
Bruno algebra which is related to Lagrange inversion. Finally, the coproduct such that the
power sums are group-like can be related also to a few other formulas on Bell polynomi-
als. The aim of this section is to investigate these connections and in particular to restate
some known results in terms of symmetric functions and virtual alphabets. We also give
a few new results that are difficult to prove without the help of symmetric functions.

A.1. Bell polynomials as symmetric functions. First, let us recall some operations
on alphabets. Given two alphabets X and Y, we define (see, e.g., [20]) the alphabet X+ Y
by:

Pa(X+Y) = pp(X) + pa(Y) (A.1)
and the alphabet aX (respectively XY), for a € C by:
pn(aX) = ap,(X) (respectively p,(XY) = p,(X)p,(Y)). (A.2)
In terms of Cauchy functions, these transforms imply
(X +Y) = 04(X)oe(Y) (A.3)
and
(XY) = 37 LA )P V). (A4)
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In fact 0,(XY) encodes the kernel of the scalar product defined by (p*,c,) = 0y, with

A .
cx = &, Notice that ¢, = 2= and
Z)\ n

Sym = Cley, ca, . ... (A.5)
From (2.7) and (2.19), we obtain the following identity.
Proposition 52. We have h, = %An(ll c1,20 ¢y ).

Conversely, Equality (A.5) implies that the homomorphism ¢, sending ¢; to 5 for all i
is well defined for any sequence of numbers a = (a;)ien {0}, and ¢q(hy) = LA, (a1, as,...).

n!

Let us also define b (X) = [0¥]h,(aX). From (2.19) and (A.2), we have

k
W= ¥ -y (Ter)

A=[A1,.. ] i>1

and thus everything works as if we use a special (virtual) alphabet X(® satisfying
cn(X@) = nla,. More precisely, the following identity holds true.

Proposition 53. We have

1
Ga(hV) = hP(XW) = = Bu(ar, .. ap,...). (A.6)
n:

n

Example 54. Let 1 be the virtual alphabet defined by ¢, (1) = £ for all n € N. In this
case, the Newton Formula yields h,(1) = 1. Hence A, (0, 11,2!,... (m —1)!,...) = n!
and

1 «
B (01,1020 0 (m —1)),...) = n! [a¥][t"] (1—t> = Snk,

the Stirling number of the first kind.

Example 55. A more complicated example is treated in [4, 19], where a; = 7*~!. In this
case, the specialization gives

o1 (aX@) = exp{—aW (1)},
where W (t) = 3°°  (—n)" 'L is the Lambert W function satisfying W (¢) exp{W ()} =t

(sce, e [6)). Tonce, "

«
However, the expansion of the series ( ) is known to be

W(t) “ = 1 n—1 n
(T) =1+ ; —ala+n) (=), (A7)
Hence, we obtain B, ;(1,2,32,...,m™,...) = (}_})n""*. Note that the expansion of

W (t) and (A.7) are usually obtained by the use of Lagrange inversion.
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Example 56. With these notations, we have B, ;(a; +0by,...) = h (X(“ +X®) and
classical properties of Bell polynomials can be deduced from symmetrlc functions through
this formalism. For instance, the equalities c,(X@ + X®)) = ¢,(X@) 4 ¢,(X®) and
hu, (X(a) +X0) = Zi+j:n hi(X(a))hj (X®)) give

Anlar+b,..)= Y (?)Ai(al,ag, A (by, by, )

i+j=n

and

Bn,k(al—l—bl,... Z Z ( > ir (ll,ag,...)Bjjs(bl,bgw..).

r+s=ki+j=n

Example 57. Another example is given by

A,\ —i+t a17a27--->
An(lalbl,Qang, .. mam my e ) — =n! det ( J
; (A —i+7)!
o (el ),
(N —i+9)!

where we used the convention A_, = 0 for n > 0. This formula is a consequence of
the Jacobi-Trudi formula and is derived from the Cauchy kernel (A.4), observing that
cn(X@XO) = ne, (X@) e, (X®)) and

ha(XOXO) = 37 5, (X5, (X Zdet( o )) det (h(b W(xb)),

AFn AFn

where s) = det (h( @) Zﬂ) is a Schur function (see, e.g., [22]).

A.2. Other interpretations. First we focus on Identity (2.9), and we interpret it as the
Cauchy function Ut(kX(“)), where X(@ is the virtual alphabet such that hi,l(X(“)) = 2.
This means that we consider the homomorphism @, : Sym — C sending h; to (';*11),
We suppose that a; = 1, otherwise we use (2.15) and (2.16). With these notations, the
following relation holds true.

Proposition 58. We have
Bni(ay,as,...) = —hy_p(kX@). (A.8)

Example 59. If a; = i, we have ;(X®) = %, and so 0, (kX@) = exp(kt). Hence, we
recover the classical result

Bun(1,2,...m,...) = (") k.
k
From £, (X +Y) =3, ., hi(X)h;(Y), we deduce two classical identities, namely

ky + ko
k1

n

n
)Bn,lier (Cll, as, . .. ) = Z (Z>Bz’k1 (al, as, . .. )ani,kg (al, as, . .. ) (Ag)

1=0



WORD BELL POLYNOMIALS 29

n 1 & /m+1
B, by,...,—— , D1y -
(k‘) k.k (al 1 mrl - ( i )a +1 )

n—k
n
= E (i)Bi’k(al,ag,...)Bi’k(bl,bg,...). (AlO)
i=k

Tndeed, formula (A.9) is obtained by setting X = kX and Y = k,X(®. Formula (A.10)
is called the convolution formula for Bell polynomials (see, e.g., [24]), and is obtained by
setting X = X@ and Y = X® in the left-hand side and X = kX@ and Y = kX® in the
right-hand side.

Example 60. The partial Bell polynomials are known to be involved in interesting iden-
tities for binomial functions. Let us first recall that a binomial sequence is a family of
functions (f,)nen satisfying fo(z) = 1 and

" /n

a0 =3 () fartato) (A1)

k=0
for all a,b € C and n € N. Setting h,(A) := f"n(!“) and h,(B) := f"T(!b), with these notations
we have f,(ka) = n!h,(kA). Hence,

n!

: n
Bn’k(l, . ,zf,-,l(a), e ) = Ehn,k(k.&) = (/{;) fn,k(k:a) (A12)
Notice that from (A.9), we see that

fulk) = (Z)_lBW(aha% ...), ifn>0,
" 1, it —0

is binomial, and we obtain

n [i—1
</€1/€2) Bn,k1(1,...,l( L ) Bi_1,k2(a1,a2,...),...)

n—rk\ !
— ( k1k21> Bn_kl,kle(CLhaQ, - ) (Al?))

Several related identities are compiled in [24].
Example 61. Extracting the coefficient of "~*~! on the left-hand side and the right-hand
side of the equality Lo ((k + 1)X) = (k + 1) (£04(X)) 04(kX), we obtain

n—Fk

(1 = k) (k4 DX) = (k+ 1) S i (K)h(X),

=1

and we recover the identity (see, e.g., [8])

n—k
1 n n+1| .
Bmk(al, ag, .. ) = ( ) |:(k’ + 1) - H——1:| (Z + 1)(11‘Bn_i,k(a17 ag, . .. ) (A14)
i=1
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Example 62. Let (a,),>0 and (b,)n>0 be two sequences of numbers such that a; = b; =1

and
A, —itjtl bni—itjt1
d, = n! det | —————— | det | —————
e ((Aiﬂﬂ)!) ((A +J+1)>

with the convention a_,, = b_, = 0 if n > 0. The Cauchy kernel and the orthogonality of
Schur functions give

By, —itith g (@1, a2, .. )
B’n,Jg(dl,dQ,. .. k-llk2 < i j .1, 1 .
')\;k; (N —i+7+k)!

x det <B>\i—i+j+k.17k1 (.bl, b, ... )) |
(/\i_l+j+k;1)!

for ki1ky = k. Indeed, it suffices to use the fact that
hin = sa (kX)) (kX®).

AFn

The sum X + Y and the product XY of alphabets are two examples of coproducts
endowing Sym with the structure of a Hopf algebra. The sum of alphabets encodes the
coproduct A for which the power sums are of Lie type (i.e., A(p,) =p, @ 1+ 1R p, ~
(X +Y) = po(X) + p,(Y) by identifying f ® g with f(X)g(Y)), whilst the product
of alphabets encodes the coproduct A’ for which the power sums are group-like (i.e.,
A'(pn) = pn @ pn ~ pu(XY) = pp(X)p,(Y)).

The algebra of symmetric functions can be endowed with another coproduct that con-
fers the structure of a Hopf algebra: this is the Faa di Bruno algebra [9, 18]. This algebra
is rather important since it is related to the Lagrange-Biirmann formula. The Bell poly-
nomials also appear in this context. As a consequence, one can define a new operation
on alphabets corresponding to the composition of Cauchy generating functions. Let X
and Y be two alphabets and set f(t) = to,(X) and g(t) = toy(Y). The composition X oY
is defined by 04(X oY) = 1(f o g)(t). The relationship with Bell polynomials can be
established by observing that we have

%fog: 3 (Z( i T 1(X)Bn+1,k(1,2h1<\y>,3!hQ(Y),...)) .

n>0 k=1 n 1)
Equivalently,
“~ (k+1)!
ho(XoY) = Z En n 1;|hk(X)Bn+1;k+1(1, 21hq(Y), 3 ho(Y),...).
k=0 '

The antipode of the Faa di Bruno algebra is also described in terms of alphabets as the
operation which associates to an alphabet X the alphabet X{~) satisfying o,(XoX{~1) = 1.
More explicitly, we have

n!
2n+ 1! (n+
where the e, (X)’s are the elementary symmetric functions defined by > e, (X)t" = #(X).

ha (X)) =

[ Baneia(l, =2 (), 3lea(X), ), (A.15)
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Example 63. Let w(t) = toy(X). The Lagrange inversion consists in finding an alphabet
X’ such that ¢(t) = 0,(X'). According to (A.15), it suffices to set X' = —X(1.
Let F(t) = 04(Y). When stated in terms of alphabets, the Lagrange-Biirmann formula

reads
dnfl tn

e (V) (X )

u

Flwt)=1+Y
n>1
In other words, we have h,_(—nX!{™D) = %Bmk(l, 2! h1(X), 3! h3(X),...). So we re-

cover a result due to Sadek Bouroubi and Moncef Abbas [4]:
(n—1)!
(k—1)!

u=on!’

Bur(1,hi(2X), ..., (m — D hy_y(mX),...) = B (nX).
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