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Surprising Relations

Between Sums-Of-Squares of Characters of the Symmetric Group

Over Two-Rowed Shapes and Over Hook Shapes

By Amitai REGEV and Doron ZEILBERGER

Abstract. In a recent article, we noted (and proved) that the sum of the
squares of the characters of the symmetric group, χλ(µ), over all shapes λ

with two rows and n cells and µ = 31n−3, equals, surprisingly, to 1/2 of
that sum-of-squares taken over all hook shapes with n + 2 cells and with
µ = 321n−3. In the present note, we show that this is only the tip of a
huge iceberg! We will prove that, if µ consists of odd parts and (a possibly
empty) string of consecutive powers of 2, namely 2, 4, . . . , 2t−1 for t ≥ 1, then
the sum of χλ(µ)2 over all two-rowed shapes λ with n cells equals exactly 1

2

times the analogous sum of χλ(µ′)2 over all shapes λ of hook shape with n+2
cells, where µ′ is the partition obtained from µ by retaining all odd parts but
replacing the string 2, 4, . . . , 2t−1 by 2t.

Recall that the constant term of a Laurent polynomial in (x1, . . . , xm) is the free term,
i.e., the coefficient of x01 · · ·x

0
m. For example,

CTx1,x2
(x−3

1 x2 + x1x
−2
2 + 5) = 5.

Recall that a partition (alias shape) of an integer n, with m parts (alias rows), is a
non-increasing sequence of positive integers

λ = (λ1, . . . , λm),

where λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and λ1 + · · ·+ λm = n.

If λ = (λ1, . . . , λm) and µ = (µ1, . . . , µr) are partitions of n with m and r parts,
respectively, then it easily follows from [M, p. 114, Eq. (7.8)], that the characters,
χλ(µ), of the symmetric group, Sn, may be obtained via the constant term expression

χλ(µ) = CTx1,...,xm

∏

1≤i<j≤m(1−
xj

xi
)
∏r

j=1

(
∑m

i=1 x
µj

i

)

∏m
i=1 x

λi

i

. (Chi)

As usual, for a partition µ, |µ| denotes the sum of its parts, in other words, the integer
that is being partitioned.

In [RRZ] we considered two quantities. Let µ0 be a partition with smallest part ≥ 2.
The first quantity, that we will call henceforth A(µ0)(n), is the following sum-of-
squares over two-rowed shapes λ:

A(µ0)(n) :=

⌊n/2⌋
∑

j=0

χ(n−j,j)(µ01
n−|µ0|)2.
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(Note that in [RRZ] this quantity was denoted by ψ(2)(µ01
n−|µ0|).)

The second quantity was the sum-of-squares over hook-shapes

B(µ0)(n) :=
n
∑

j=1

χ(j,1n−j)(µ01
n−|µ0|)2.

(Note that in [RRZ] this quantity was denoted by φ(2)(µ01
n−|µ0|).)

In [RRZ] we developed algorithms for discovering (and then proving) closed-form
expressions for these quantities, for a given (specific) finite partition µ0 with smallest
part larger than one. In fact we proved that each such expression is always a multiple
of

(

2n
n

)

by a certain rational function of n that depends on µ0.

Unless µ0 is very small, these rational functions turn out to be very complicated, but,
inspired by the One-Line Encyclopedia of Integer Sequences [S], Alon Regev noted
(and then it was proved in [RRZ]) the remarkable identity

A(3)(n) =
1

2
B(3, 2)(n+ 2).

This led to the following natural question:

Are there other partitions, µ0, such that there exists a partition, µ′
0 with

|µ′
0| = |µ0|+2, such that the ratio A(µ0)(n)/B(µ′

0)(n+2) is a constant?

This led us to write a new procedure in the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/Sn.txt

that accompanies [RRZ], called SeferNisim(K,N0), which searched for such pairs
[µ0, µ

′
0]. We then used our human ability for pattern recognition to notice that all

the successful pairs (we went up to |µ0| ≤ 20) turned out to be such that µ0 either
consisted of only odd parts, and then µ′

0 was µ0 with 2 appended, or, more generally,
µ0 consisted of odd parts together with a string of consecutive powers of 2 (starting
with 2), and µ′

0 was obtained from µ0 by retaining all the odd parts but replacing
the string of powers of 2 by a single power of 2, one higher than the highest in µ0. In
symbols, we conjectured (and later proved [see below], alas, by purely human means)
the following theorem.

Theorem. Let µ0 be a partition of the form

µ0 = Sort([a1, . . . , as, 2, 2
2, . . . , 2t−1]),

where

a1 ≥ a2 ≥ · · · ≥ as ≥ 3
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are all odd and t ≥ 1. (If t = 1 then µ0 only consists of odd parts.) Define

µ′
0 = Sort([a1, . . . , as, 2

t]).

Then, for every n ≥ |µ0|, we have

A(µ0)(n) =
1

2
B(µ′

0)(n+ 2).

(For a sequence of integers S, the symbol Sort(S) denotes that sequence sorted in
non-increasing order.)

In order to prove our theorem, we need to first recall the following constant-term

expression for B(µ0)(n) from [RRZ].

Lemma 1. If µ0 = (a1, . . . , ar), we have

B(µ0)(n) = Coeffx0

[

(1 + x)2n−2−2(a1+···+ar)

xn−1
·

r
∏

i=1

(xai − (−1)ai)(1− (−1)aixai)

]

.

We need an analogous constant-term expression for A(µ0)(n). To that end, let us
first spell out Equation (Chi) for the two-rowed case, m = 2. In that case, we may
write λ = (n− j, j). With µ0 = (a1, . . . , ar), we have

χ(n−j,j)(µ01
n−|µ0|) = CTx1,x2

(1− x2

x1

)(x1 + x2)
n−a1−···−ar

∏r
i=1 (x

ai

1 + xai

2 )

xn−j
1 xj2

.

(Chi2)
This can be rewritten as

χ(n−j,j)(µ01
n−|µ0|) = CTx1,x2

(1− x2

x1

)(1 + x2

x1

)n−a1−···−ar
∏r

i=1

(

1 + (x2

x1

)aj

)

(x2

x1

)j
.

(Chi2′)
Since the constant-termand is of the form P (x2

x1

)
/

(x2

x1

)j , for some single-variable poly-
nomial P (x), the above can be equivalently expressed in the form

χ(n−j,j)(µ01
n−|µ0|) = Coeffx0

(1− x)(1 + x)n−a1−···−ar
∏r

i=1 (1 + xai)

xj
. (Chi2′′)

Note that the left-hand side is utter nonsense if j > n
2 , but the right-hand side makes

perfect sense. It is easy to see that, defining χ(n−j,j)(µ01
n−|µ0|) by the right-hand

side for j > n
2 , we get

χ(n−j,j)(µ01
n−|µ0|) = −χ(j,n−j)(µ01

n−|µ0|).
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Let us denote the numerator of the constant-termand of (Chi′′), namely

(1− x)(1 + x)n−a1−···−ar

r
∏

i=1

(1 + xai) ,

by P (x). Then Equation (Chi2′′) can be also rewritten as a generating function,

P (x) =

n
∑

j=0

χ(n−j,j)(µ01
n−|µ0|)xj .

Since for any polynomial of a single variable, P (x) =
∑n

j=0 cjx
j , we have

n
∑

j=0

c2j = Coeffx0

[

P (x)P (x−1)
]

,

we get

n
∑

j=0

χ(n−j,j)(µ01
n−|µ0|)2 = Coeffx0







(1− x)(1 + x)n−a1−···−ar

r
∏

j=1

(1 + xaj )





·



(1− x−1)(1 + x−1)n−a1−···−ar

r
∏

j=1

(

1 + x−aj
)









= −Coeffx0

[

(1− x)2(1 + x)2(n−a1−···−ar)
∏r

j=1 (1 + xaj )
2

xn+1

]

.

But since, by symmetry,

⌊n
2
⌋

∑

j=0

χ(n−j,j)(µ01
n−|µ0|)2 =

1

2

n
∑

j=0

χ(n−j,j)(µ01
n−|µ0|)2,

we have the following auxiliary result.

Lemma 2. Let µ0 = (a1, . . . , ar) be a partition with smallest part larger than one.

Then

A(µ0)(n) = −
1

2
Coeffx0

[

(1− x)2(1 + x)2(n−a1−···−ar)
∏r

j=1 (1 + xaj )
2

xn+1

]

.

We are now ready to prove the theorem. If µ0 = Sort(a1, . . . , ar, 2, . . . , 2
t−1), then

A(µ0)(n) = −
1

2
Coeffx0

[

(1− x)2(1 + x)2(n−a1−···−ar−2−22−···2t−1)

xn+1

·
t−1
∏

j=1

(

1 + x2
j
)2 r

∏

j=1

(1 + xaj )
2



 .
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But, transferring a factor of (1 + x)2 from the second factor to the product,
∏t−1

j=1

(

1 + x2
j
)2

, we have

(1 + x)2(n−a1−···−ar−2−22−···2t−1)
t−1
∏

j=1

(

1 + x2
j
)2

= (1 + x)2(n−a1−···−ar−1−2−22−···2t−1)
t−1
∏

j=0

(

1 + x2
j
)2

.

Hence,

A(µ0)(n) = −
1

2
Coeffx0

[

(1− x)2(1 + x)2(n−a1−···−ar−1−2−22−···2t−1)

xn+1

·
t−1
∏

j=0

(

1 + x2
j
)2 r

∏

j=1

(1 + xaj )
2



 .

By Euler’s good-old (1− x)
∏t−1

j=0(1 + x2
j

) = 1− x2
t

, we conclude

A(µ0)(n)

= −
1

2
Coeffx0

[

(1− x2
t

)2(1 + x)2(n−a1−···−ar−1−2−22−···2t−1)
∏r

j=1 (1 + xaj )
2

xn+1

]

.

On the other hand, since µ′
0 = Sort(a1, . . . , ar, 2

t), and all the ai’s are odd, we have

B(µ′
0)(n+ 2) = −Coeffx0





(1 + x)2n+2−2(a1+···+ar+2t)

xn+1
· (x2

t

− 1)2 ·
r
∏

j=1

(xaj + 1)2



 .

This completes the proof, since −(1 + 2 + 22 + · · ·+ 2t−1) = 1− 2t .
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