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The Riemann-Roch theorem

The classical Riemann-Roch theorem is one of the cornerstones of
modern algebraic geometry.

It is a certain statement about the dimensions of linear spaces of
locally rational functions on Riemann surfaces with prescribed lower
bounds for zeros and poles.

Baker and Norin presented a combinatorial version of this statement
for graphs using the language of chip-firing.

Their formula has been applied to solve problems in algebraic
geometry and number theory.

Spencer Backman (Georgia Tech) RR Theory for Graph Orientations September 8, 2015 2 / 21



Chip-firing

chip-firing

A chip configuration is a collection of poker chips sitting at the
vertices. In keeping with algebraic geometry we may call chip
configurations divisors.

A vertex fires by sending a chip to each of its neighbors.
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Figure : An example of a chip-firing move
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The graph Laplacian and chip-firing

The graph Laplacian is Q = D − A where D is a diagonal matrix with
Di ,i = deg(vi ) and A is the adjacency matrix.

Chip-firing can be described using the Laplacian.

If we represent a chip configuration by a vextor ~x , then firing vi gives
the new vector ~x − Qei .
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History

Chip-firing was independently introduced in several different communities.

Poset Theory: ’72 Mosesian

Discrete Probability: ’75 Engel

Statistical Physics: ’87 Bak-Tang-Weisenfeld

Coxeter Theory: ’87 Mozes

Arithmetic Geometry: ’70 Raynaud and ’90 Lorenzini

Graph Theory: ’91 Björner-Lovász-Shor
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A natural question

Baker and Norin:
Given a chip configuration D, when can we bring every vertex out of debt
by chip-firing?

Algorithmic solution:

1 : Fix a vertex q, and bring every other vertex out of debt.
2 : Send as many chips back to q as possible by firing sets of vertices

simultaneously without sending any vertex back into debt.

The game is winnable if and only if q is out of debt when the process
terminates.

Cool fact: The resulting configurations, called q-reduced divisors or
G -parking functions are in bijection with spanning trees.

Spencer Backman (Georgia Tech) RR Theory for Graph Orientations September 8, 2015 7 / 21



A nautral refinement

Baker and Norin:

What is the minimum number of chips we need to remove so that we no
longer have a winning strategy?

One less than this quantity is r(D), the rank of a chip-configuration.

Observation: clearly, r(D) ≤ # of chips in D.

Spencer Backman (Georgia Tech) RR Theory for Graph Orientations September 8, 2015 8 / 21



More definitions

g = |E | − |V |+ 1 is the genus of a graph.

K =
∑

v∈V (G)(deg(v)− 2)(v) is the canonical divisor.

deg(D) =
∑

v∈V (G) D(v) is the degree of D.

The Riemann-Roch theorem for graphs [Baker and Norine 07]

r(D)− r(K − D) = deg(D)− g + 1

.
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Chip-firing is closely related to graph orientations, particularly acyclic
orientations.

History

Mosesian observed that if you have an acyclic orientation of a graph,
you can reverse the edges at a sink to obtain a new acylcic orientation.

Björner, Lovász, and Shor noted that the indegree sequences of the
two acyclic orientations are related by firing the sink in question.

Mikhalkin-Zharkov and Cori-Le Borgne recognized that divisors
associated to acyclic full orientations play a distinguished role in RR
theory.

Gioan generalized this setup to arbitrarily full orientations using cut
(cocycle) reversals and dual cycle reversals.
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Goal

Describe chip-firing and the Riemann-Roch formula completely in the
language of graph orientations.

Immediate obstruction

Given an orientation, we associate a chip configuration DO given by
the indegree -1 of each vertex in O.

Problem: All chip configurations associated to full orientations have
g − 1 chips and we care about other numbers of chips.

Solution: Partial graph orientations.
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The generalized cycle-cocycle reversal system

A partial orientation O of a graph G is an orientation of some edges
of G .

We say that two partial orientations O and O′ are equivalent in the
generalized cycle-cocycle reversal system , written O ∼ O′ if they are
related by a sequence of cut reversals, cycle reversals, and edge pivots.
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(a)	  

(b)	  

(c)	  

Figure : A partial orientation with (a) an edge pivot, (b) a cocycle reversal, and
(c) a cycle reversal.
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Theorem [B.]

O1 ∼ O2 if and only if DO1 ∼ DO2 .

To prove this theorem, we introduce a nonlocal extension of edge pivots.

Jacob’s ladder cascade

Given a directed path terminating at a vertex incident to an unoriented
edge, we can perform a sequence of edge pivots to unorient the initial edge
of the path.
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Figure : A Jacob’s ladder cascade
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Theorem [B.]

Given a partial orientation O, either

1 O ∼ O′ where O′ is sourceless. (r(DO) ≥ 0)

2 O ∼ O′ where O′ is acyclic (r(DO) = −1)

We call the algorithm which produces the desired orientation the unfurling
algorithm because it unravels directed cycles.

We recover a famous algorithm of Dhar as a shadow of the unfurling
algorithm by looking at the associated indegree sequences.
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Figure : The unfurling algorithm
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Reduction to the study of partial orientations

Theorem [B.]

Let D be a divisor with deg(D) ≤ g − 1, then D ∼ DO for some partial
orientation O if and only if r(D +~1) ≥ 0.

This is strong enough to reduce the study of ranks of divisors to the study
of partial orientations.
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Ranks of partial orientations

Theorem [B.]

r(DO) = the number of directed paths which need to be reversed in the
generalized cycle-cocycle reversal system to produce an acyclic partial
orientation minus one.

These results are applied to give a new proof of the Riemann-Roch
theorem.
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Baker and Norin’s Key Lemma

Key Lemma

Given a chip configuration D with r(D) = −1 then there exists some
ν ≥ D with deg(ν) = g − 1 and r(ν) = −1.
In the language of orientations this says:

1 Every acyclic partial orientation can be extended to a full acyclic
orientation.

2 Every acyclic full orientation is equivalent via source reversals to an
acyclic full orientation with a unique source.

Remark: Part 1) of this statement can be applied to prove that the
number of acyclic partial orientations is 2gT (3, 1/2) where T (x , y) is the
Tutte polynomial.
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Grazie!

Indiscrete remark: I’m back on the job market.
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