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1. Background and motivation

Particle colliders
smashing such par-
ticles together (per-
haps to discover new
particles) will be ac-
compnied by a lot
of quark and gluon
radiation.

QCD - a theory for describing
quarks and gluons - the constituents
of protons, neutrons and related
particles.

Leaving aside many further com-
ments/assumptions the general goal
is to study the scattering amplitudes
expressed as S = exp(F ' RC)

Standard framework
for comparing QCD
to data is to calculate
scattering amplitudes
— related to interac-
tion probabilities.
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2. Web diagrams

A web diagram consists of a sequence of pegs and a set of edges, each
connecting two pegs, as illustrated here:

e In the left diagram the indices of the pegs are shown at the bottom.
e The heights of the endpoints of the edges are shown in italics at each endpoint.

e The unique edge between pegs 3 and 6 is represented by the 4-tuple (3,6, 2, 4) since the left
endpoint of the edge (on peg 3) has height 2 and the right endpoint of the edge (on peg 6)
has height 4.

e The diagram on the right is the Feynman diagram illustration of the web diagram.



2.1 Web diagrams
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Every web diagram is uniquely represented by listing the 4-tuples that specify
its edge set:

D ={(1,2,1,1),(1,7,2,2),(2,4,2,3),(3,4,1,1),(3,6,2,4),
(4,6,2,3),(4,6,4,2),(5,6,1,1),(5,7,2,1)}

The web graph G(D) of a web dia-
gram D is the graph whose vertices
represent the pegs of D, and whose
labelled edges state the number of
edges between pegs in D.




2.2 Web worlds

Definition 1

A web world W is a set of web diagrams such that every web diagram D of W
can be transformed into another web diagram D’ of W by permuting the
vertices on pegs.

Equivalently, a set of web diagrams is called a web world if G(D) = G(D’) for
all D, D’ € W. Since all diagrams in a web world have the same web graph, we
can write this as G(W).

Example 2
W = {Dy = {(1,2,1,1),(1,2,2,2)}, D> = {(1,2,1,2),(1,2,2,1)}} is a web
world.




2.3 The sum of two web diagrams

Suppose that we have two web diagrams D and D’ on the same peg set. We
define the sum D @ D’ to be the web diagram that results from placing D’ on
top of D and relabelling.

Example 3
24—43
1 2
2 1 D 1 = p——
1 1 | o—ae | jo—el
1 2 3 4 1 2 3 4 1 2 3 4

Here D = {(2,3,1,1),(3,4,2,1)}, D' = {(1,4,1,1),(2,3,1,1)}, and

D@D/ - {(2737171)7(37472,1)7(1747172)7(2737273)}‘



2.4 Subweb diagrams

Given a web diagram D, suppose we select a collection of edges X C D.

In order for X to be a web diagram, we must relabel the 3rd and 4th parts of
the edges 4-tuples.

Let D be our Example web diagram. Choose

X ={(1,7,2,2),(3,6,2,4),(4,6,2,3),(5,6,1,1)}.

Ve

Then reI(X) = {(1’ 77 17 1)7 (3’ 67 17 3)7 (47 6’ 17 2)7 (57 6’ 17 1)}



2.5 Colouring and reconstructing web diagrams

Suppose that D = {e; = (xi, yi,ai,bi) : 1 < i < L} is a web diagram on n pegs,
and ¢ < L a positive integer.

Definition 4 (Colouring and reconstruction)

A colouring ¢ of D is a surjective function ¢ : {1,...,L} — {1,...,0}.

Let Dc(j) = {ei € D : c(i) = j} for all 1 < j </, the subweb diagram of D
whose edges have colour .

The reconstruction Recon(D, ¢) € W(D) of D according to the colouring c is
the web diagram

Recon(D, ¢) = rel(Dc(1)) @ rel(Dc(2)) @ - - - @ rel(De(£)).



2.5 A colouring and reconstruction example
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2.5 Colouring and reconstruction

Definition 5 (Self-reconstructing colourings)

Let D be a web diagram and let ¢ be an /-colouring of D. The colouring c is
said to be self-reconstructing if Recon(D, c) = D.



2.5 Colouring and reconstruction

Definition 5 (Self-reconstructing colourings)

Let D be a web diagram and let ¢ be an /-colouring of D. The colouring c is
said to be self-reconstructing if Recon(D, c) = D.

Definition 6 (Colourings that produce D, from D;)
Given a web world W and D1, D, € W, let

F(D1, D>, ¢) = {{-colourings c of D; : Recon(Di,c) = D>}

and f(Dl, D2,£) = ‘F(Dl7 D2,A€)|.



2.6 Web-colouring and web-mixing matrices

The following two matrices have rows and columns that are indexed by the
diagrams in a given web world.

The web-colouring matrix ") (x) has (D1, D) entry:

MY, (x) = > x“F(Dy, Ds, 0).
0>1

The web-mixing matrix R(") has (D1, D,) entry:
) G
Roy o, = >~ F(D1, D2, 0),

>1

The two are related via:

o g (x
wyy, = [ Tty

1 X
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Let W be the web world in Example 2:




Let W be the web world in Example 2:

2 2 2 2
1 1 1 1
pop D

D1 D2
There are three different colourings of Ds:

c(er) =1 c(e)=1 = Recon(Di,c)= D
c(er) =1 c(e)=2 = Recon(Di,c)= D>
c(e1) =2 c(e)=1 = Recon(Di,c)= D>




Let W be the web world in Example 2:

2 2 2 2
1 1 1 1
pop D

D1 D2
There are three different colourings of Ds:

c(er) =1 c(e)=1 = Recon(Di,c)= D
c(er) =1 c(e)=2 = Recon(Di,c)= D>
c(e1) =2 c(e)=1 = Recon(Di,c)= D>

Consequently S)LTI(DVK)Dl (x) = x* and DJT(DV;/’)DZ(X) =2x°.



Let W be the web world in Example 2:

2 2 2 2
1 1 1 1
pop D

D1 D2
There are three different colourings of Ds:

c(er) =1 c(e)=1 = Recon(Di,c)= D
c(er) =1 c(e)=2 = Recon(Di,c)= D>
c(e1) =2 c(e)=1 = Recon(Di,c)= D>

Consequently 9JI(DVK)D1 (x) = x* and DJT(D‘Z‘()DZ(X) =2x°.
Likewise there are three different colourings of Dy:
clef)=1 c(er) =1 = Recon(Dz,c)= D,

cle1) =1 c(e3) =2 = Recon(Dz,c) =D,
c(e}) =2 c(es)=1 = Recon(D2c) =D,

Consequently QR(DC/’)DI (x) =0 and 9)1([,‘2‘()[,2 (x) = x" +2x°.



Let W be the web world in Example 2:

2 2 2 2
1 1 1 1
pop D

D1 D2
There are three different colourings of Ds:

c(er) =1 c(e)=1 = Recon(Di,c)= D
c(er) =1 c(e)=2 = Recon(Di,c)= D>
c(e1) =2 c(e)=1 = Recon(Di,c)= D>

Consequently 9JI(DVK)D1 (x) = x* and DJT(D‘Z‘()DZ(X) =2x°.
Likewise there are three different colourings of Dy:
clef)=1 c(er) =1 = Recon(Dz,c)= D,

cle1) =1 c(e3) =2 = Recon(Dz,c) =D,
c(e}) =2 c(es)=1 = Recon(D2c) =D,

Consequently SR(DC/’)DI (x) =0 and 931([,‘/2‘()[,2 (x) = x' + 2x*. This gives

X 2x2 1 -1
M (x) = (0 x+2x2) and RW = (0 0 )



2.7 Web-mixing matrix example

Let W be the web world whose web graph is G(W) =

-6 —6

6

6 —6 —6

2

—6

-2

-2

-2

-2 =2

2

2 -2 =2

-2

-2 =2

2
2

-2

-2

2 -2 =2

-2




2.8 Web-colouring and web-mixing properties

The basic problems we consider are as follows: Given a web world W,

e What can we say about the matrices M")(x) and R, their entries,
trace and rank?

e Can we determine the entries of zm<W>(x) and M) for special cases?
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2.8 Web-colouring and web-mixing properties

The basic problems we consider are as follows: Given a web world W/,

e What can we say about the matrices SIR(W)(X) and SR(W), their entries,
trace and rank?

e Can we determine the entries of S)JT(W)(X) and M) for special cases?

Theorem 7 (Gardi & White 2011)
Let W be a web world.

(i) The row sums of 3" are all zero.
(i) ") is idempotent.



3. Self-reconstruction, diagonal entries, and order-preserving maps

Self-reconstructing colourings <= Diagonal entries of MM")(x)

Note: R(") idempotent = trace(BR(")) =rank(:%"))



3. Self-reconstruction, diagonal entries, and order-preserving maps

‘ Self-reconstructing colourings <= Diagonal entries of 91(")(x)

Note: ®) idempotent = trace(R(")) =rank(%3("))

Definition 8 (Decomposition poset)

Let W be a web world and D € W. Suppose that
D=E®SES - -BE

where every E; is an indecomposable web diagram.
Define the partial order P = (P, <) as follows: P = (E, ..., E«) and E; < E; if
(a) i<, and

(b) there is an edge e = (x,y,a,b) in E; and an edge ¢’ = (x',y’,a’,b) in E;
such that an endpoint of e is below an endpoint of e’ on some peg.

We call P(D) the decomposition poset of D.



Example 9
The decomposition poset P(D) we get from a web diagram D:

P(D)
E5 E7
—
<N
Note that D = E; @ E>» & - - - & E7 where
E = {(1,2,1,1)} B = {3,411} E = {(56,1,1)}
E, = {(2,4,1,2),(4,6,1,2),(4,6,3,1)}

Es = {(3,6,1,1} E = {(5,7,1,1)} E = {(1,7,1,1)}



Theorem 10
Let D be a web diagram with

D = E®.. ©E

where the entries of the sum are all indecomposable web diagrams.
Let P = P(D) and p = |P(D)|.

If every member of the sequence (Ei, ..., Ex) is distinct then

EDT(DW,;(X): Z X1+des(7r)(1+x)pflfdes(7r)
TEL(P)
and

mg)WD) N (_1)des(7r)

reL(P) p(dgsi(}r))

where L(P) is the Jordan-Hélder set of P (the set of all linear extensions).



Example 11
Let D be the following web diagram:

Since each of the web diagrams (Ei, Ez, E3) are distinct, Theorem 10 applies:
The poset P = P(D) is the poset on {E1, Ez, E3} with relations E; < Es, Es.

We find that ,C(P) = {E1E2E37 E1E3E2}, with des(E1E2E3) =0 and
des(E1E3E2) =1.
Consequently we have

MWD () = x(1 4 x)? + x3(1 4 x) = x + 3x° + 2x°

D,D

and RV = (~1)°/3 + (—-1)/3(3) = 1/6.



4. Web worlds having a star web graph with unitary edge weights

Consider web worlds W(n) whose web graph G(W) = star graph S,

Example 12 s
This web diagram D may be represented by D, where 7 = (5,4,2,1,6,3).

NS

1 2 3 4 5 6 7

Is it possible to describe the actions of the colourings in terms of the
permutations representing the diagrams?



4. Web worlds having a star web graph with unitary edge weights

Consider web worlds W(n) whose web graph G(W) = star graph S,

Example 12 s
This web diagram D may be represented by D, where 7 = (5,4,2,1,6,3).

NS

1 2 3 4 5 6 7

Is it possible to describe the actions of the colourings in terms of the
permutations representing the diagrams?

Yes, the number of ways to colour one diagram to get another depends on the
number of ways one can colour the corresponding permutation and read from it
the new permutation with respect to a particular order.



4. Web worlds having a star web graph with unitary edge weights

Consider web worlds W(n) whose web graph G(W) = star graph S,

Example 12 s
This web diagram D may be represented by D, where 7 = (5,4,2,1,6,3).

NS

1 2 3 4 5 6 7

Is it possible to describe the actions of the colourings in terms of the
permutations representing the diagrams?

Yes, the number of ways to colour one diagram to get another depends on the
number of ways one can colour the corresponding permutation and read from it
the new permutation with respect to a particular order.

If 7=(2,8,5,4,1,3,7,6) and o = (8,5,1,4,3,7,2,6) then we have
Minimal(m, o) = ((8,5,1),(4,3,7),(2,6)). This means minimal(7,c) = 3 and
the unique colouring having fewest colours that transforms D, into D, is
c=(1,3,2,2,1,3,2,1).
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5. Disconnected web graphs and their connected components

Let Wi and Wx be two web worlds on disjoint peg sets S; and S, and having
web graphs G; and G, respectively.



5. Disconnected web graphs and their connected components

Let Wi and W2 be two web worlds on disjoint peg sets S; and Sz and having
web graphs G; and G, respectively.

Suppose that Dy, D; € Wi and D, D; € Wh.

Let W53 = Wi + W5 be a new web world which is the disjoint union of W; and
Ws.

The diagram D3 = D; + D, is a web diagram in W3 and the same for Dé.

Question 14
Suppose Wj is the disjoint union of the two web worlds Wi and W.

gﬁDé(x) in terms of MM (x) and omWe (x) ?

How can we express 91 D10 D204



5.1 The black diamond product of power series

Given A(x) = ap + aix + ...+ anx" and B(x) = by + bix + ...+ byx™ both in
C[[x]] we define the black diamond product of A(x) and B(x) as

k *
o= T o (1)
k>0 iy,ih>0 ’
where

((( ilf(iz ))) - (k ik — /l: i iy — k) = [ )1+ )1 + ) = )"



5.1 The black diamond product of power series

Definition 15
Given AW(x), ..., A™(x) € C[[x]] where AW (x) = 2on>0 al)x", we define the
black diamond product of AY(x), ..., A™(x) as:

AV . 4AM ) =" ST Al (((il, ' >>>

coogli
k>0 iqye..,im>0 9 Uip

where

(((il,..k.,im))* =[ul - U (4 ) (L4 um) — D)



5.2 An answer to a more general Question 14

Theorem 16

Let Wi, ..., W,, be web worlds on pairwise disjoint peg sets.
Suppose that D;, Dj € W; for all i € [1, m].

Let W =W UWLU...UW,, be a new web world which is the disjoint union
07"'W1,...7 Wi,

The diagrams D = D; & ... ® D, and D' = D{ & ... @ D}, are web diagrams
in W and

MO (x) = MO, ()& ... 4T, ().

Dm,Df,



5.3 Disconnected web worlds and generating combinatorial
identities

Proposition 17

Let W be a web world that is the disjoint union of at least two web worlds.

Then all entries of the web-mixing matrix R"Y) are zero, and consequently
trace R(W) = 0.



5.3 Disconnected web worlds and generating combinatorial
identities

Proposition 17

Let W be a web world that is the disjoint union of at least two web worlds.
Then all entries of the web-mixing matrix R") are zero, and consequently
trace RW) = 0.

Theorem 18

Let W be a web world whose web-colouring matrix has s different diagonal
entries (Hi(x), ..., Hs(x)) that appear with multiplicities (hi, ..., hs). Then for
all positive integers m, we have

0
o™ Sag .. oo X _
> Ak (ahm’a)/ Hi(x) 7 ¢ 4 Hi(x) 4= =0,

—1

The expression for the s = 2 case is:

m 0
a;m—a a rn—ad
thhz (Z)/ Hl(X)‘ .H2(X)‘ YX:O.
—1

a=0



5.4 Combinatorial identity example

Let W be the web world we considered earlier that has web-colouring matrix

2
Wy, (X 2x
(x) = (0 X + 2x2)'

Then Hi(x) = x, Ha(x) = x +2x%, hi = h, = 1 and

>SS (1) U g 2 o 22 k -0
pur S s i b k*l‘l,k*iQ,il*f’iQ*k ’




6. Enumeration - number of diagrams in a web world

Let W be the web world of our running example. Then

Represent(W) =

[N eNelNelNolNolNe)
OO OO O O+
O OO OO OoOo
[eNeNeNeN S -]
O OO OO OoOOo
OO NNH OO
OO OOOoOH-

Theorem 19

Let W be a web world on n pegs and A = Represent(W). The number of
different diagrams D € W is

w| = f[(a,-*+a*,-)!/ [T a

1<i<j<n

where aj. (resp. a.;) is the sum of entries in column (resp. row) i of A.



7. What can we say about the square of M(W)(x)?

Theorem 20

Let W be a web world whose diagrams each have n edges. Let D, D’ € W and
suppose that SDTE)V’VE)), (x) = Bix+ ...+ Bux". Then

(m69)" =30

itk J K j+k—(b+a J k ab
et~ 3 et v (3) () (7).

Jok>1 b=0 a=0

i.e. MW (x)? is the image of MW (x) under the operator T : C[[x]] — C[[x]]
which takes the basis T : (X’),’zo — (L,‘(X)),’zo.

| (X |

X2

2x3 4 2x*
6x* 4+ 12x° + 6x°
x* 4+ 26x5 + 73x% 4+ 72x7 + 24x8
12x% 4 156x% + 516x7 + 732x8 + 480x° + 120x10
2x% + 126x% 4 1206x” + 4322x8 + 7680x9 + 7320x10 4 3600x1 + 720x12

SOl WN S




9. Repeated entries in web matrices

Given a poset P = (P, <), its comparability graph comp(P) is the graph whose
vertices are the elements of P, with x,y € P adjacent if x < y or y < x.

Theorem 21
Let D and D' be web diagrams in a web world W with

DZEI@@EI( and D/:E{@GBEL,,

where each of the constituent diagrams E; and E/ are indecomposable.
Suppose that every member of the sequence (Ei, ..., Ex) is distinct and every
member of the sequence (Ei, ..., E//) is also distinct. Then

comp(P(D)) = comp(P(D')) = M5} (x) = M)}, (x).



Example 22

Let D = {(17 27 1’ 1)7 (1’ 37 27 1)’ (17 47 3’ 1)’ (37 57 27 3)’ (57 67 27 1)’ (5’ 77 17 1)}
and D' = {(1,2,1,1),(1,3,2,1),(1,4,3,1),(2,7,2,3),(6,7,1,2),(5,7,1,1)}.
The Hasse diagrams for P(D) and P(D’) are illustrated in the following
diagram.

Although the Hasse diagrams are clearly different, since
comp(P(D)) = comp(P(D')) = G we have Mp")(x) = MY, (x).




