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1. Background and motivation
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Figure 11: (a) Example web diagram; (b) Hasse diagram corresponding to the poset generated by
the diagram in (a).

diagram in a given web does not necessarily have the same number of vertices. This is because
irreducible subgraphs from one web diagram may combine to make a higher-order irreducible piece
in a di↵erent web diagram. An example is the crossed gluon pair in figure 11(a): there is another
diagram in the set in which the two gluons are uncrossed, and thus appear as two separate vertices
in the corresponding Hasse diagram. It should be clear from these remarks that all web diagrams
can be reprepresented in terms of posets, including those with three and four-gluon vertices o↵ the
Wilson lines. All of the diagrams in a given web have Hasse diagrams whose vertices are elements
of the set of all possible irreducible subdiagrams.

The question of whether a given web diagram can be made out of partitions of another web diagram
can in principle be rephrased in terms of the Hasse diagrams of the posets of the two diagrams (we
will see examples of this later in the paper). However, note that partitions of a web diagram do
not necessarily correspond to simple colourings of the vertices of its Hasse diagram. An example is
again provided by the crossed gluon pair in figure 11(a). Partitions exist in which the two gluons
are painted di↵erent colours. Multiplying together the elements of such a partition cannot produce
a crossed gluon pair, and thus can only produce diagrams in which A is replaced by two vertices,
each representing a single gluon exchange.

For webs in which all irreducible subdiagrams are connected, there indeed exists a well-defined
correspondence between colourings of the web diagrams D 2 W , and colourings of the vertices of
the corresponding Hasse diagrams. In this paper, we will be concerned with special cases of this, in
which: (a) web diagrams consist exclusively of irreducible subdiagrams containing multiple gluon
exchanges only; (b) any two Wilson lines have at most one gluon exchange between them. For the
special cases we consider, the Hasse diagrams have a simple form, allowing a full solution of the
relevant web-mixing matrices.

As well as the above notions relating to posets, we will also need the concept of a linear extension
in what follows. A linear extension of a given poset P = (X,) is defined as a permutation of
the elements of X, such that all pairwise ordering relations remain satisfied. A simple example
is provided by the poset whose Hasse diagram is shown in figure 10. This is specified by the set
{a, b, c} and the relations a  b, a  c. There are in fact two Hasse diagrams consistent with

14

QCD - a theory for describing
quarks and gluons - the constituents
of protons, neutrons and related
particles.Particle colliders

smashing such par-
ticles together (per-
haps to discover new
particles) will be ac-
compnied by a lot
of quark and gluon
radiation.

Standard framework
for comparing QCD
to data is to calculate
scattering amplitudes
– related to interac-
tion probabilities.

Leaving aside many further com-
ments/assumptions the general goal
is to study the scattering amplitudes
expressed as S = exp(FTRC)
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2. Web diagrams

A web diagram consists of a sequence of pegs and a set of edges, each
connecting two pegs, as illustrated here:
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• In the left diagram the indices of the pegs are shown at the bottom.

• The heights of the endpoints of the edges are shown in italics at each endpoint.

• The unique edge between pegs 3 and 6 is represented by the 4-tuple (3, 6, 2, 4) since the left
endpoint of the edge (on peg 3) has height 2 and the right endpoint of the edge (on peg 6)
has height 4.

• The diagram on the right is the Feynman diagram illustration of the web diagram.
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2.1 Web diagrams
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Every web diagram is uniquely represented by listing the 4-tuples that specify
its edge set:

D = {(1, 2, 1, 1), (1, 7, 2, 2), (2, 4, 2, 3), (3, 4, 1, 1), (3, 6, 2, 4),

(4, 6, 2, 3), (4, 6, 4, 2), (5, 6, 1, 1), (5, 7, 2, 1)}

The web graph G(D) of a web dia-
gram D is the graph whose vertices
represent the pegs of D, and whose
labelled edges state the number of
edges between pegs in D.

G(D) =

1
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2.2 Web worlds

Definition 1

A web world W is a set of web diagrams such that every web diagram D of W
can be transformed into another web diagram D ′ of W by permuting the
vertices on pegs.

Equivalently, a set of web diagrams is called a web world if G(D) = G(D ′) for
all D,D ′ ∈W . Since all diagrams in a web world have the same web graph, we
can write this as G(W ).

Example 2

W = {D1 = {(1, 2, 1, 1), (1, 2, 2, 2)}, D2 = {(1, 2, 1, 2), (1, 2, 2, 1)}} is a web
world.
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2.3 The sum of two web diagrams

Suppose that we have two web diagrams D and D ′ on the same peg set. We
define the sum D ⊕ D ′ to be the web diagram that results from placing D ′ on
top of D and relabelling.

Example 3

1

1 2 3 4

11

2 ⊕ 1
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1
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11
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Here D = {(2, 3, 1, 1), (3, 4, 2, 1)}, D ′ = {(1, 4, 1, 1), (2, 3, 1, 1)}, and

D ⊕ D ′ = {(2, 3, 1, 1), (3, 4, 2, 1), (1, 4, 1, 2), (2, 3, 2, 3)}.
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2.4 Subweb diagrams

Given a web diagram D, suppose we select a collection of edges X ⊆ D.

In order for X to be a web diagram, we must relabel the 3rd and 4th parts of
the edges 4-tuples.

Let D be our Example web diagram. Choose

X = {(1, 7, 2, 2), (3, 6, 2, 4), (4, 6, 2, 3), (5, 6, 1, 1)}.

X =

1 2 3 4 5 6 7
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Then rel(X ) = {(1, 7, 1, 1), (3, 6, 1, 3), (4, 6, 1, 2), (5, 6, 1, 1)}.
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2.5 Colouring and reconstructing web diagrams

Suppose that D = {ei = (xi , yi , ai , bi ) : 1 ≤ i ≤ L} is a web diagram on n pegs,
and ` ≤ L a positive integer.

Definition 4 (Colouring and reconstruction)

A colouring c of D is a surjective function c : {1, . . . , L} → {1, . . . , `}.

Let Dc(j) = {ei ∈ D : c(i) = j} for all 1 ≤ j ≤ `, the subweb diagram of D
whose edges have colour j .

The reconstruction Recon(D, c) ∈W (D) of D according to the colouring c is
the web diagram

Recon(D, c) = rel(Dc(1))⊕ rel(Dc(2))⊕ · · · ⊕ rel(Dc(`)).
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2.5 A colouring and reconstruction example
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2.5 Colouring and reconstruction

Definition 5 (Self-reconstructing colourings)

Let D be a web diagram and let c be an `-colouring of D. The colouring c is
said to be self-reconstructing if Recon(D, c) = D.

Definition 6 (Colourings that produce D2 from D1)

Given a web world W and D1,D2 ∈W , let

F (D1,D2, `) = {`-colourings c of D1 : Recon(D1, c) = D2}

and f (D1,D2, `) = |F (D1,D2, `)|.
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2.6 Web-colouring and web-mixing matrices

The following two matrices have rows and columns that are indexed by the
diagrams in a given web world.

The web-colouring matrix M(W )(x) has (D1,D2) entry:

M
(W )
D1,D2

(x) =
∑
`≥1

x`f (D1,D2, `).

The web-mixing matrix R(W ) has (D1,D2) entry:

R
(W )
D1,D2

=
∑
`≥1

(−1)`−1

`
f (D1,D2, `),

The two are related via:

R
(W )
D1,D2

=

∫ 0

−1

M
(W )
D1,D2

(x)

x
dx .
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Let W be the web world in Example 2:
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There are three different colourings of D1:

c(e1) = 1 c(e2) = 1 ⇒ Recon(D1, c) = D1

c(e1) = 1 c(e2) = 2 ⇒ Recon(D1, c) = D2

c(e1) = 2 c(e2) = 1 ⇒ Recon(D1, c) = D2

Consequently M
(W )
D1,D1

(x) = x1 and M
(W )
D1,D2

(x) = 2x2.

Likewise there are three different colourings of D2:

c(e′1) = 1 c(e′2) = 1 ⇒ Recon(D2, c) = D2

c(e′1) = 1 c(e′2) = 2 ⇒ Recon(D2, c) = D2

c(e′1) = 2 c(e′2) = 1 ⇒ Recon(D2, c) = D2

Consequently M
(W )
D2,D1

(x) = 0 and M
(W )
D2,D2

(x) = x1 + 2x2. This gives

M(W )(x) =

(
x 2x2

0 x + 2x2

)
and R(W ) =

(
1 −1
0 0

)
.
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2.7 Web-mixing matrix example

Let W be the web world whose web graph is G(W ) = 111 1

R(W ) =

[[1],[1,2,3],[3],[2]] [[1],[1,3,2],[3],[2]] [[1],[3,1,2],[3],[2]]

[[1],[3,2,1],[3],[2]] [[1],[2,1,3],[3],[2]] [[1],[2,3,1],[3],[2]]

Figure 21: Web whose mixing matrix is given by eq. (50).

R(1,2,2,2,1) =
1

24

2
666666666666666664

6 �6 �6 6 �6 6 6 �6

�6 6 6 �6 6 �6 �6 6

�2 2 2 �2 2 �2 �2 2

2 �2 �2 2 �2 2 2 �2

�2 2 2 �2 2 �2 �2 2

2 �2 �2 2 �2 2 2 �2

2 �2 �2 2 �2 2 2 �2

�2 2 2 �2 2 �2 �2 2

3
777777777777777775

, (49)

where the diagrams are ordered as shown in figure 20.

A.2 (1, 1, 1, . . . 1, n) webs

The n = 2 case can be obtained by relabelling external lines in the (1, 2, 1) web shown in figure 1,
whose mixing matrix is given in eq. (47). The n = 3 case is shown in figure 21, and the mixing
matrix is

R(1,1,1,3) =
1

6

2
666666666664

2 �1 �1 2 �1 �1

�1 2 �1 �1 �1 2

�1 �1 2 �1 2 �1

2 �1 �1 2 �1 �1

�1 �1 2 �1 2 �1

�1 2 �1 �1 �1 2

3
777777777775

, (50)

with diagrams ordered as in the figure.

33
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2.8 Web-colouring and web-mixing properties

The basic problems we consider are as follows: Given a web world W ,

• What can we say about the matrices M(W )(x) and R(W ), their entries,
trace and rank?

• Can we determine the entries of M(W )(x) and R(W ) for special cases?

Theorem 7 (Gardi & White 2011)

Let W be a web world.

(i) The row sums of R(W ) are all zero.

(ii) R(W ) is idempotent.
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3. Self-reconstruction, diagonal entries, and order-preserving maps

Self-reconstructing colourings ⇐⇒ Diagonal entries of M(W )(x)

Note: R(W ) idempotent ⇒ trace(R(W )) =rank(R(W ))

Definition 8 (Decomposition poset)

Let W be a web world and D ∈W . Suppose that

D = E1 ⊕ E2 ⊕ · · · ⊕ Ek

where every Ei is an indecomposable web diagram.

Define the partial order P = (P,�) as follows: P = (E1, . . . ,Ek) and Ei � Ej if

(a) i < j , and

(b) there is an edge e = (x , y , a, b) in Ei and an edge e′ = (x ′, y ′, a′, b′) in Ej

such that an endpoint of e is below an endpoint of e′ on some peg.

We call P(D) the decomposition poset of D.

14 / 29
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Example 9

The decomposition poset P(D) we get from a web diagram D:

E1 E3E2

E4

E5

E6

E7
(   )P  D

E3E1E2

E6

E7

E4

E5

D

Note that D = E1 ⊕ E2 ⊕ · · · ⊕ E7 where

E1 = {(1, 2, 1, 1)} E2 = {(3, 4, 1, 1)} E3 = {(5, 6, 1, 1)}

E4 = {(2, 4, 1, 2), (4, 6, 1, 2), (4, 6, 3, 1)}

E5 = {(3, 6, 1, 1} E6 = {(5, 7, 1, 1)} E7 = {(1, 7, 1, 1)}
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Theorem 10

Let D be a web diagram with

D = E1 ⊕ . . .⊕ Ek

where the entries of the sum are all indecomposable web diagrams.

Let P = P(D) and p = |P(D)|.

If every member of the sequence (E1, . . . ,Ek) is distinct then

M
(W )
D,D(x) =

∑
π∈L(P)

x1+des(π)(1 + x)p−1−des(π)

and

R
(W )
D,D =

∑
π∈L(P)

(−1)des(π)

p
(

p−1
des(π)

) ,
where L(P) is the Jordan-Hölder set of P (the set of all linear extensions).

16 / 29



Example 11

Let D be the following web diagram:

E2

E3

E1

2 3 41

Since each of the web diagrams (E1,E2,E3) are distinct, Theorem 10 applies:

The poset P = P(D) is the poset on {E1,E2,E3} with relations E1 < E2,E3.

We find that L(P) = {E1E2E3,E1E3E2}, with des(E1E2E3) = 0 and
des(E1E3E2) = 1.

Consequently we have

M
(W (n))
D,D (x) = x(1 + x)2 + x2(1 + x) = x + 3x2 + 2x3

and R
(W )
D,D = (−1)0/3 + (−1)1/3

(
2
1

)
= 1/6.
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4. Web worlds having a star web graph with unitary edge weights

Consider web worlds W (n) whose web graph G(W ) = star graph Sn

1

1 1 1

11

1 1

Example 12

This web diagram D may be represented by Dπ where π = (5, 4, 2, 1, 6, 3).

1 2 3 4 5 6 7

1

2

3

4

1

5

61

1

1

1

1

Is it possible to describe the actions of the colourings in terms of the
permutations representing the diagrams?

Yes, the number of ways to colour one diagram to get another depends on the
number of ways one can colour the corresponding permutation and read from it
the new permutation with respect to a particular order.

If π = (2, 8, 5, 4, 1, 3, 7, 6) and σ = (8, 5, 1, 4, 3, 7, 2, 6) then we have
Minimal(π, σ) = ((8, 5, 1), (4, 3, 7), (2, 6)). This means minimal(π, σ) = 3 and
the unique colouring having fewest colours that transforms Dπ into Dσ is
c = (1, 3, 2, 2, 1, 3, 2, 1).
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number of ways one can colour the corresponding permutation and read from it
the new permutation with respect to a particular order.

If π = (2, 8, 5, 4, 1, 3, 7, 6) and σ = (8, 5, 1, 4, 3, 7, 2, 6) then we have
Minimal(π, σ) = ((8, 5, 1), (4, 3, 7), (2, 6)). This means minimal(π, σ) = 3 and
the unique colouring having fewest colours that transforms Dπ into Dσ is
c = (1, 3, 2, 2, 1, 3, 2, 1).
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Theorem 13

Suppose that Dπ,Dσ ∈W (n) with m = minimal(π, σ). Then

M
(W (n))
Dπ,Dσ

(x) = xm(1 + x)n−m and R
(W (n))
Dπ,Dσ

=
(−1)m−1

n
(
n−1
m−1

) .
Consequently,

R
(W (n))
Dπ,Dπ

= 1/n, trace
(
R(W (n))

)
= (n − 1)!

M
(W (n))
Dπ,Dπ

(x) = x(1 + x)n−1, trace
(
M(W (n))(x)

)
= n!x(1 + x)n−1.
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5. Disconnected web graphs and their connected components

Let W1 and W2 be two web worlds on disjoint peg sets S1 and S2 and having
web graphs G1 and G2, respectively.

Suppose that D1,D
′
1 ∈W1 and D2,D

′
2 ∈W2.

Let W3 = W1 + W2 be a new web world which is the disjoint union of W1 and
W2.

The diagram D3 = D1 + D2 is a web diagram in W3 and the same for D ′3.

Question 14

Suppose W3 is the disjoint union of the two web worlds W1 and W2.

How can we express MW3

D3,D
′
3
(x) in terms of MW1

D1,D
′
1
(x) and MW2

D2,D
′
2
(x) ?
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5.1 The black diamond product of power series

Given A(x) = a0 + a1x + . . .+ anx
n and B(x) = b0 + b1x + . . .+ bmx

m both in
C[[x ]] we define the black diamond product of A(x) and B(x) as

A(x)�B(x) =
∑
k≥0

xk
∑

i1,i2≥0

ai1bi2

(((
k

i1, i2

)))?
where(((

k

i1, i2

)))?
=

(
k

k − i1, k − i2, i1 + i2 − k

)
= [ui1

1 u
i2
2 ]((1 + u1)(1 + u2)− 1)k .
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5.1 The black diamond product of power series

Definition 15

Given A(1)(x), . . . ,A(m)(x) ∈ C[[x ]] where A(k)(x) =
∑

n≥0 a
(k)
n xn, we define the

black diamond product of A(1)(x), . . . ,A(m)(x) as:

A(1)(x)� . . . �A(m)(x) =
∑
k≥0

xk
∑

i1,...,im≥0

a
(1)
i1
· · · a(m)

im

(((
k

i1, . . . , im

)))?

where (((
k

i1, . . . , im

)))?
= [ui1

1 · · · u
im
m ]((1 + u1) · · · (1 + um)− 1)k .
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5.2 An answer to a more general Question 14

Theorem 16

Let W1, . . . ,Wm be web worlds on pairwise disjoint peg sets.

Suppose that Di ,D
′
i ∈Wi for all i ∈ [1,m].

Let W = W1 ∪W2 ∪ . . . ∪Wm be a new web world which is the disjoint union
of W1, . . . ,Wm.

The diagrams D = D1 ⊕ . . .⊕ Dm and D ′ = D ′1 ⊕ . . .⊕ D ′m are web diagrams
in W and

M
(W )
D,D′(x) = M

(W1)

D1,D
′
1
(x)� . . . �M

(Wm)
Dm,D′m

(x).
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5.3 Disconnected web worlds and generating combinatorial
identities

Proposition 17

Let W be a web world that is the disjoint union of at least two web worlds.
Then all entries of the web-mixing matrix R(W ) are zero, and consequently
traceR(W ) = 0.

Theorem 18

Let W be a web world whose web-colouring matrix has s different diagonal
entries (H1(x), . . . ,Hs(x)) that appear with multiplicities (h1, . . . , hs). Then for
all positive integers m, we have

∑
a1,...,as≥0
a1+...+as=m

ha1
1 · · · h

as
s

(
m

a1, . . . , as

)∫ 0

−1

H1(x)� a1 � · · · �Hs(x)� as dx

x
= 0.

The expression for the s = 2 case is:

m∑
a=0

ha
1h

m−a
2

(
m

a

)∫ 0

−1

H1(x)� a �H2(x)�m−a dx

x
= 0.
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5.4 Combinatorial identity example

Let W be the web world we considered earlier that has web-colouring matrix

M(W )(x) =

(
x 2x2

0 x + 2x2

)
.

Then H1(x) = x , H2(x) = x + 2x2, h1 = h2 = 1 and

m∑
a=0

2m−a∑
k=1

∑
i1,i2

(
m

a

)
(−1)k+1

k
i1!i2!

{
a

i1

}{
2m − 2a

i2

}(
k

k − i1, k − i2, i1 + i2 − k

)
= 0.
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6. Enumeration - number of diagrams in a web world

Let W be the web world of our running example. Then

Represent(W ) =



0 1 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 2 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Theorem 19

Let W be a web world on n pegs and A = Represent(W ). The number of
different diagrams D ∈W is

|W | =
n∏

i=1

(ai∗ + a∗i )!
/ ∏

1≤i<j≤n

aij !

where ai∗ (resp. a∗i ) is the sum of entries in column (resp. row) i of A.
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7. What can we say about the square of M(W )(x)?

Theorem 20

Let W be a web world whose diagrams each have n edges. Let D,D ′ ∈W and
suppose that M

(W )
D,D′(x) = β1x + . . .+ βnx

n. Then

(
M(W )(x)

)2

D,D′
=

n∑
i=1

βiLi (x)

where Li (x) =
∑
j,k≥1

x j+k
j∑

b=0

k∑
a=0

(−1)j+k−(b+a)

(
j

b

)(
k

a

)(
ab

i

)
.

i.e. M(W )(x)2 is the image of M(W )(x) under the operator T : C[[x ]]→ C[[x ]]
which takes the basis T : (x i )i≥0 → (Li (x))i≥0.

n Ln(x)

1 x2

2 2x3 + 2x4

3 6x4 + 12x5 + 6x6

4 x4 + 26x5 + 73x6 + 72x7 + 24x8

5 12x5 + 156x6 + 516x7 + 732x8 + 480x9 + 120x10

6 2x5 + 126x6 + 1206x7 + 4322x8 + 7680x9 + 7320x10 + 3600x11 + 720x12
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9. Repeated entries in web matrices

Given a poset P = (P,≺), its comparability graph comp(P) is the graph whose
vertices are the elements of P, with x , y ∈ P adjacent if x ≺ y or y ≺ x .

Theorem 21

Let D and D ′ be web diagrams in a web world W with

D = E1 ⊕ · · · ⊕ Ek and D ′ = E ′1 ⊕ · · · ⊕ E ′k′ ,

where each of the constituent diagrams Ei and E ′i are indecomposable.
Suppose that every member of the sequence (E1, . . . ,Ek) is distinct and every
member of the sequence (E ′1, . . . ,E

′
k′) is also distinct. Then

comp(P(D)) = comp(P(D ′)) =⇒ M
(W )
D,D(x) = M

(W )
D′,D′(x).
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Example 22

Let D = {(1, 2, 1, 1), (1, 3, 2, 1), (1, 4, 3, 1), (3, 5, 2, 3), (5, 6, 2, 1), (5, 7, 1, 1)}
and D ′ = {(1, 2, 1, 1), (1, 3, 2, 1), (1, 4, 3, 1), (2, 7, 2, 3), (6, 7, 1, 2), (5, 7, 1, 1)}.

The Hasse diagrams for P(D) and P(D ′) are illustrated in the following
diagram.

Although the Hasse diagrams are clearly different, since
comp(P(D)) = comp(P(D ′)) = G we have M

(W )
D,D(x) = M

(W )
D′,D′(x).

D D ′

1

1 2 3 4 5 6 7

1 1 1

2

1

3

2

21

3

1

1

1 2 3 4 5 6 7

1 1 1

2

1

1

3

21

3

2

P(D) P(D ′) G
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