On a Schur positivity conjecture in
multiplicity-free cases

R. Biagioli, V. Guerrini, S. Rinaldi

University of Lyon, University of Siena

SLC 75, Bertinoro



Schur positivity

Definition. A symmetric function is Schur positive if it is a linear
combination with nonnegative coefficients of the Schur
functions.

Example

The product s,,s, of two Schur functions by means of the
classical Littlewood—Richardson rule can be written as

9
SuSy = > _C, S,
9

where the c}f’,, are nonnegative integers called
Littlewood—Richardson coefficients.



Schur positivity

In recent years there has been increasing interest in
understanding the Schur-positivity of expressions of the form

S\S, — SuSy. (1)

Problem [Bergeron, McNamara, 2004]

Given a pair of partitions (u, v), which operations can we apply
to this pair to yield another pair (A, p) such that (1) is
Schur-positive?

Necessary condition. The support of s,,s, is contained in the

one of s,S,.
Necessary and sufficient condition. For all partitions ¥,
9 9
Crp > Cuv-



Fomin-Fulton-Li-Poon Conjecture

Definition. Let (1, v) be a pair of partitions having the same
number of parts, allowing zero parts. The x-operation sends
(1, v) into the pair (), p) defined for all k by

M= ke — K+ #{ vy = 1 = pye = K3,
pk=vk —k+1+#{j|wj—j> vk — K}

Conjecture [Fomin, Fulton, Li, and Poon, 2003]

The expression s,s, — s,,5,, is Schur positive, namely, for any
partition ,
0 0
Crp = Cuv-



The x-operation

The simplest case

Let © = (@) and v = (b), with a > b. Then,
e M=a—-1+#{l|ly—-1>a—-1}
° pr=b+7#{jlpy—j>b-1},
* ((a), (b)) = ((a—1),(b+1)).



The x-operation

The simplest case

Let © = (@) and v = (b), with a > b. Then,
e M=a—-1+#{l|ly—-1>a—-1}
° pr=b+7#{jlpy—j>b-1},
* ((a), (b)) = ((a—1),(b+1)).

Fomin-Fulton-Li-Poon Conjecture is an instance of the
Jacobi-Trudi identity

Sa—1  Sa

= Sa—1,b+1-
Sp Sb+1 )

Sa—1Sp+1 — SaSp = det (



The x-operation

Some properties of the x-operation:
e The partitions A and p are such that |\| + |p| = |u| + |v|-
e Itis not commutative; in general (u, v)* # (v, p)*.

« Fixed points are characterized as the pairs (u, v) such that
the sequence vy, pi1, v, o, 13, . . . is weakly decreasing.

 After applying the x-operation a finite number of times it is
always reached a fixed point.

e It has an equivalent recursive definition obtained by
Bergeron, Biagioli, Rosas.

Frangois Bergeron, Riccardo Biagioli, and Mercedes H.
Rosas. Inequalities between Littlewood-Richardson
coefficients. J. Combin. Theory Ser. A (2006).



The x-operation and the Conjecture

Our goal is to prove the Conjecture for the class of pairs of
partitions (y, v) such that s,,s, is multiplicity-free.

Definition. The product s,;s, is multiplicity-free, if 03 u €10,1},
for all partitions 4.

Example

An instance of the Pieri’s rule:

S2831 =551 +S42+ 8411+ 833+ S3271-



Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or
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Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or

e 1 and v are rectangles, or

e 1 is a two-line rectangle and v a fat hook or vice-versa, or
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Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or

e 1 and v are rectangles, or
e 1 is a two-line rectangle and v a fat hook or vice-versa, or

e 1 is a rectangle and v is a near-rectangle or vice-versa.
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Littlewood-Richardson coefficients

Littlewood-Richardson Rule. The Littlewood-Richardson
coefficient c’j}u is equal to the number of LR-fillings of shape
¥/v and type p.

LR-filling

A LR-filling of shape 9 /v of type p is a semistandard tableau of
shape /v such that the sequence of multiplicities of the
integers 1,2, ... that appear in its cells is x and its reverse
reading word is a lattice permutation.

The reverse reading word u is a lattice permutation if for any
prefix v of u, |v|; > |v|i;q, for all /.




Littlewood-Richardson coefficients

Setd = (4,3,2,1), v = (2,1) and p = (3,2, 2).
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I 2
1)1 1)1
1121323 1132312
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Littlewood-Richardson coefficients

Setd = (4,3,2,1), v = (2,1) and p = (3,2, 2).

3] 3]
2|3 1]3
I 2
1)1 1)1
1121323 1122313
YES YES

ecy, =2



Our method

* To prove that ¢/ , > ¢}, for all the multiplicity-free pairs of
partitions (u, v), we need to provide a semi standard
tableau of shape v/p and type X for each partition 9 such
that ¢, = 1.
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algorithm that constructs a LR-filling of shape /p and type
A from the LR-filling of shape /v and type x modifying
and moving entries of its cells.



Our method

* To prove that ¢/ , > ¢}, for all the multiplicity-free pairs of
partitions (u, v), we need to provide a semi standard
tableau of shape v/p and type X for each partition 9 such
that ¢, = 1.

e Our aim is to define for each of the Stembridge’s cases an
algorithm that constructs a LR-filling of shape /p and type
A from the LR-filling of shape /v and type x modifying
and moving entries of its cells.

e To calculate (), p) = (u,v)*, we use the recursive
description given by Bergeron, Biagioli and Rosas.



Recursive definition

« Start from the pair (0, ») and calculate (0,v)* = (7, v).

e Then, the pair (X, p) = (i, v)*, with 1 # 0, is obtained
making (7, v) grow according to the recursive definition.

Lemma.

Let v be any partition. Then

VH—(I{_‘I))?

v=p0,v) = (vi,ro —1,13-2,...,
= :)\,(O,V):(Vq —1,]/&—2,...,1/;—%),

where k = max{i|v; > i}.
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Recursive definition
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Recursive definition
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[TT]

e The Conjecture holds for the pair (u, v) if and only if it

holds for (v, 11/).



Recursive definition

<l

[TT]

e The Conjecture holds for the pair (u, v) if and only if it
holds for (v, 11/).

e ¢,; =1= ¢, and so, the Conjecture holds for the pair
(0,v).



N-filling

The unique LR-filling of shape v /v and type 7, called natural
filling (briefly N-filling).
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General solution method

@ Construct a tableau of shape 9/v, where the cells of ¥ /v
are filled with its unique LR-filling of type x and those of
v /v with the N-filling.

® Remove the cells of p/v and obtain a new tableau of shape
¥/ p, called initial tableau and denoted with T'.

©® Define the tableau T(©) starting from T in a way such that
its type is .
@ A shape-by-shape algorithm is defined to move the entries

of T() so that the final tableau TF is semi standard and
has a lattice permutation as reverse reading word.



Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or
e 1 andv are rectangles, or
e 1 is a two-line rectangle and v a fat hook or vice-versa, or
e 1 is a rectangle and v is a near-rectangle or vice-versa.



Pieri’s rule case

e uorvis aone-line rectangle (n) or (17)

[TTTT] E
&) (13)
o We prove the validity of the Conjecture for both cases
((n),v) and ((1™),v), where v is any partition.

e The Conjecture holds for the pairs (x, (1")) and (i, (n)),
where p is any partition, if and only if it holds for ((n), v)
and ((1"),v), respectively.



Pieri’s rule case: u = (n)

e Setv=(11,10,9,7,7,6,4,2,1).



Pieri’s rule case: = (n)

v i

e Setv=(11,10,9,7,7,6,4,2,1).

e Let u = (7) be a one-part partition and ¥ be such that
¢, =1.
v,



Pieri’s rule case: u = (n)

e Setrv=(11,10,9,7,7,6,4,2,1).

e Let 4 = (7) be a one-part partition and 9 be such that
cy,=1.

e The unique LR-filling of shape J/v and type p is a
horizontal strip.



Pieri’s rule case: u = (n)
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type 1 and those of
v /v with the N-filling.



Pieri’s rule case: u = (n)

e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type x and those of
v /v with the N-filling.

e The partition p is obtained making v grow in each corner
up to column n = 7 and the type X is equal to 7 plus a
certain number of 1 entries, precisely n— |p/v/|.



Pieri’s rule case: = (n)

e Remove cells of p/v.



Pieri’s rule case: = (n)

e Remove cells of p/v.
e The tableau T is set to be equal to T'.



Pieri’s rule case: u = (n)

e Remove cells of p/v.

e The tableau T is set to be equal to T'.

« Rearrange the entries of T(% to obtain a semistandard
tableau. In this case, the algorithm consists in constructing
a sequence of hooks that insert the 1 entries of the
horizontal strip in the tableau T().



Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.




Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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e Number cells of the horizontal strip left-to-right.
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each hook is determined by the previous one or by p, and
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Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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Pieri’s rule case: = (n)
Algorithm

e Number cells of the horizontal strip left-to-right.

e Construct a sequence of hooks, where the vertex cell of
each hook is determined by the previous one or by p, and
reorder every hook.
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~
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3

o [11]7]

1

o After the rearrangement of the last hook, we obtain the
final tableau TF, which is semistandard and its reverse
reading word is a lattice permutation.



Pieri’s rule case: p = (1)

o Setv=(9,9,9,8,8,7,5,4,4,3,2,1).



Pieri’s rule case: p = (1)

e Setr=1(9,9,9,8,8,7,5,4,4,3,2,1).
e Let = (1%) and ¥ be such that ¢/, = 1.



Pieri’s rule case: p = (1)

o Setv =(9,9,9,8,8,7,5,4,4,3,2,1).
e Let = (1°) and ¥ be such that ¢/, = 1.

e The unique LR-filling of shape /v and type p is a vertical
strip.



Pieri’s rule case: u = (1")

71
9110
171819
51617(8
4|516|7
213[4]5]6
112]3|4]5
112|314
1123 -
v 1[2 v
- 1

 Construct a tableau of shape /v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.



Pieri’s rule case: p = (1)
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The partition X is obtained making v grow in each corner
up to row n = 6, while p is v plus a final sequence of parts
equal to 1 of length n — |\ /7|.



Pieri’s rule case: u = (1")
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e The tableau T is set to be equal to T'.



Pieri’s rule case: p = (1)
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e The tableau T is set to be equal to T'.

« Rearrange the entries of T(% to obtain a semistandard
tableau. Also this algorithm consists in constructing a
sequence of hooks, one per each cell of the vertical strip,
but it is different from the previous one.



Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Algorithm
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered

bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cybe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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Pieri’s rule case: p = (1)
Algorithm

e Letcy,...,cnbe the cells of the vertical strip numbered
bottom-to-top.

e Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell c.
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o After the rearrangement of the last hook, we obtain the
final tableau T*.



Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or
e 1 and v are rectangles, or
e 1 is a two-line rectangle and v a fat hook or vice-versa, or
e 1 is a rectangle and v is a near-rectangle or vice-versa.



Rectangles case

o u = (a% and v = (b?) are rectangles

(6% (3%

e We prove the validity of the Conjecture for the pair (u, )
onlyincasec<dorc>danda<b.

e The validity in case ¢ > d and a > b follows from the
property that the Conjecture holds for the pair (u, v) iff it
holds for (v/, 1).



Rectangles case: ¢ < d

o Setv = (b9) = (4%).
o Let u = (&%) = (73) be a rectangle and ¥ be such that
¢y, =1.
Vi,



Rectangles case: ¢ < d
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o Setv = (b%) = (4%).

o Let u = (&%) = (7°) be a rectangle and ¥ be such that
cy, =1.

e The unique LR-filling of shape ¢ /v and type 1 can be
divided into three horizontal strips.



Rectangles case: ¢ < d

o Setv = (b%) = (4%).

o Let u = (&%) = (7°) be a rectangle and ¥ be such that
cy, =1.

e The unique LR-filling of shape ¢ /v and type 1 can be
divided into three horizontal strips.



Rectangles case: ¢ < d
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type 1 and those of
v /v with the N-filling.



Rectangles case:
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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either to v or 7.
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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e Construct a tableau of shape J/v, where the cells of /v
are filled with its unique LR-filling of type i and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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o Construct a tableau of shape /v, where the cells of ¥ /v
are filled with its unique LR-filling of type x and those of
v /v with the N-filling.

e The pair (X, p) = (i, v)* is obtained from (7, v) by means of
the recursive definition adding the cells of x row-by-row
either to v or 7.
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e The tableau T(© is obtained modifying the entries of T'.
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« The tableau T/ has not type .

e The tableau T(© is obtained modifying the entries of T'.

« Rearrange the entries of T(% to obtain a semistandard
tableau. Basically, in this case, the algorithm consists in

repeating three times - one per each horizontal strip - the
algorithm given for a one-line rectangle.




Rectangles case: ¢ < d
Algorithm

o Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

e Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i — 1.
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Rectangles case: ¢ < d
Algorithm

o Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

e Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i — 1.
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o After the rearrangement of the last hooks, we obtain the
final tableau T*.



Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or
e 1 andv are rectangles, or
e 1 is a two-line rectangle and v a fat hook or vice-versa, or
e 1 is a rectangle and v is a near-rectangle or vice-versa.



Stembridge’s case (iii)

e For the case p two-line rectangle (horizontal or vertical)
and v fat hook the underlying idea is basically similar to the
one of the Pieri’s rule case. Nevertheless, this case is
more complex and it splits in several sub-cases, which
make the algorithms for solving this case substantially
different from the previous ones.
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Stembridge’s characterization

Theorem [Stembridge]

The product s,,s, is multiplicity-free if and only if
e 1 Orv is a one-line rectangle (Pieri’s rule),or
e 1 andv are rectangles, or
e 1 is a two-line rectangle and v a fat hook or vice-versa, or
e 1 is a rectangle and v is a near-rectangle or vice-versa.



Stembridge’s case (iv) open

(533) (7.43) 4312) (4232)

e The last case, u rectangle and v near rectangle (or
vice-versa), is still open. It splits in more and more
sub-cases, as well. We know how to treat some of these
sub-cases simply applying algorithms similar to the one
provided for rectangles.



