On a Schur positivity conjecture in multiplicity-free cases

R. Biagioli, V. Guerrini, S. Rinaldi

University of Lyon, University of Siena
SLC 75, Bertinoro

Schur positivity

Definition. A symmetric function is Schur positive if it is a linear combination with nonnegative coefficients of the Schur functions.

Example

The product $s_{\mu} s_{\nu}$ of two Schur functions by means of the classical Littlewood-Richardson rule can be written as

$$
s_{\mu} s_{\nu}=\sum_{\vartheta} c_{\mu, \nu}^{\vartheta} s_{\vartheta}
$$

where the $c_{\mu, \nu}^{\vartheta}$ are nonnegative integers called Littlewood-Richardson coefficients.

Schur positivity

In recent years there has been increasing interest in understanding the Schur-positivity of expressions of the form

$$
\begin{equation*}
s_{\lambda} s_{\rho}-s_{\mu} s_{\nu} \tag{1}
\end{equation*}
$$

Problem [Bergeron, McNamara, 2004]

Given a pair of partitions (μ, ν), which operations can we apply to this pair to yield another pair (λ, ρ) such that (1) is Schur-positive?

Necessary condition. The support of $s_{\mu} s_{\nu}$ is contained in the one of $s_{\lambda} s_{\rho}$.
Necessary and sufficient condition. For all partitions ϑ,

$$
c_{\lambda, \rho}^{\vartheta} \geq c_{\mu, \nu}^{\vartheta} .
$$

Fomin-Fulton-Li-Poon Conjecture

Definition. Let (μ, ν) be a pair of partitions having the same number of parts, allowing zero parts. The $*$-operation sends (μ, ν) into the pair (λ, ρ) defined for all k by

$$
\begin{aligned}
& \lambda_{k}=\mu_{k}-k+\#\left\{I \mid \nu_{l}-I \geq \mu_{k}-k\right\} \\
& \rho_{k}=\nu_{k}-k+1+\#\left\{j \mid \mu_{j}-j>\nu_{k}-k\right\} .
\end{aligned}
$$

Conjecture [Fomin, Fulton, Li, and Poon, 2003]

The expression $s_{\lambda} s_{\rho}-s_{\mu} s_{\nu}$ is Schur positive, namely, for any partition ϑ,

$$
c_{\lambda, \rho}^{\vartheta} \geq c_{\mu, \nu}^{\vartheta} .
$$

The *-operation

The simplest case

Let $\mu=(a)$ and $\nu=(b)$, with $a>b$. Then,

- $\lambda_{1}=a-1+\#\left\{I \mid \nu_{I}-I \geq a-1\right\}$
- $\rho_{1}=b+\#\left\{j \mid \mu_{j}-j>b-1\right\}$,
- $((a),(b))^{*}=((a-1),(b+1))$.

The $*$-operation

The simplest case

$$
\begin{aligned}
& \text { Let } \mu=(a) \text { and } \nu=(b) \text {, with } a>b \text {. Then, } \\
& \text { - } \lambda_{1}=a-1+\#\left\{| | \nu_{l}-I \geq a-1\right\} \\
& \text { - } \rho_{1}=b+\#\left\{j \mid \mu_{j}-j>b-1\right\}, \\
& \text { - }((a),(b))^{*}=((a-1),(b+1)) \text {. }
\end{aligned}
$$

Fomin-Fulton-Li-Poon Conjecture is an instance of the Jacobi-Trudi identity

$$
s_{a-1} s_{b+1}-s_{a} s_{b}=\operatorname{det}\left(\begin{array}{cc}
s_{a-1} & s_{a} \\
s_{b} & s_{b+1}
\end{array}\right)=s_{a-1, b+1}
$$

The *-operation

Some properties of the $*$-operation:

- The partitions λ and ρ are such that $|\lambda|+|\rho|=|\mu|+|\nu|$.
- It is not commutative; in general $(\mu, \nu)^{*} \neq(\nu, \mu)^{*}$.
- Fixed points are characterized as the pairs (μ, ν) such that the sequence $\nu_{1}, \mu_{1}, \nu_{2}, \mu_{2}, \nu_{3}, \ldots$ is weakly decreasing.
- After applying the $*$-operation a finite number of times it is always reached a fixed point.
- It has an equivalent recursive definition obtained by Bergeron, Biagioli, Rosas.

François Bergeron, Riccardo Biagioli, and Mercedes H. Rosas. Inequalities between Littlewood-Richardson coefficients. J. Combin. Theory Ser. A (2006).

The *-operation and the Conjecture

Our goal is to prove the Conjecture for the class of pairs of partitions (μ, ν) such that $s_{\mu} s_{\nu}$ is multiplicity-free.
Definition. The product $s_{\mu} s_{\nu}$ is multiplicity-free, if $c_{\nu, \mu}^{\vartheta} \in\{0,1\}$, for all partitions ϑ.

Example

An instance of the Pieri's rule:

$$
s_{2} s_{3,1}=s_{5,1}+s_{4,2}+s_{4,1,1}+s_{3,3}+s_{3,2,1}
$$

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or

$\left(5^{3}, 3^{2}\right)$

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or
- μ is a rectangle and ν is a near-rectangle or vice-versa.

Littlewood-Richardson coefficients

Littlewood-Richardson Rule. The Littlewood-Richardson coefficient $c_{\nu, \mu}^{\vartheta}$ is equal to the number of LR-fillings of shape ϑ / ν and type μ.

LR-filling

A $L R$-filling of shape ϑ / ν of type μ is a semistandard tableau of shape ϑ / ν such that the sequence of multiplicities of the integers $1,2, \ldots$ that appear in its cells is μ and its reverse reading word is a lattice permutation.
The reverse reading word u is a lattice permutation if for any prefix v of $u,|v|_{i} \geq|v|_{i+1}$, for all i.

Littlewood-Richardson coefficients

Example

Set $\vartheta=(4,3,2,1), \nu=(2,1)$ and $\mu=(3,2,2)$.

3			2			
2	3		1	3	3	
	1	2		2	23	
		1			1	1
1121323			1132312			
YES			NO			

Littlewood-Richardson coefficients

Example

Set $\vartheta=(4,3,2,1), \nu=(2,1)$ and $\mu=(3,2,2)$.

3			2		
2	3		1	3	
	1	2		2	3
		1			111
1121323			1132312		
YES			NO		

Littlewood-Richardson coefficients

Example

Set $\vartheta=(4,3,2,1), \nu=(2,1)$ and $\mu=(3,2,2)$.

3							
2	3						
	1	2					
		1			$	$	1
:---							

1121323

3			
1	3		
	2	2	
		1	1

1122313
YES
YES

Littlewood-Richardson coefficients

Example

Set $\vartheta=(4,3,2,1), \nu=(2,1)$ and $\mu=(3,2,2)$.

3						
2	3					
	1	2				
		1		$	$	1
:---						

1121323
YES

3			
1	3		
	2	2	
		1	
	1		

1122313
YES

- $c_{\nu, \mu}^{\vartheta}=2$.

Our method

- To prove that $c_{\rho, \lambda}^{\vartheta} \geq c_{\nu, \mu}^{\vartheta}$ for all the multiplicity-free pairs of partitions (μ, ν), we need to provide a semi standard tableau of shape ϑ / ρ and type λ for each partition ϑ such that $c_{\nu, \mu}^{\vartheta}=1$.

Our method

- To prove that $c_{\rho, \lambda}^{\vartheta} \geq c_{\nu, \mu}^{\vartheta}$ for all the multiplicity-free pairs of partitions (μ, ν), we need to provide a semi standard tableau of shape ϑ / ρ and type λ for each partition ϑ such that $c_{\nu, \mu}^{\vartheta}=1$.
- Our aim is to define for each of the Stembridge's cases an algorithm that constructs a LR-filling of shape ϑ / ρ and type λ from the LR-filling of shape ϑ / ν and type μ modifying and moving entries of its cells.

Our method

- To prove that $c_{\rho, \lambda}^{\vartheta} \geq c_{\nu, \mu}^{\vartheta}$ for all the multiplicity-free pairs of partitions (μ, ν), we need to provide a semi standard tableau of shape ϑ / ρ and type λ for each partition ϑ such that $c_{\nu, \mu}^{\vartheta}=1$.
- Our aim is to define for each of the Stembridge's cases an algorithm that constructs a LR-filling of shape ϑ / ρ and type λ from the LR-filling of shape ϑ / ν and type μ modifying and moving entries of its cells.
- To calculate $(\lambda, \rho)=(\mu, \nu)^{*}$, we use the recursive description given by Bergeron, Biagioli and Rosas.

Recursive definition

- Start from the pair $(0, \nu)$ and calculate $(0, \nu)^{*}=(\bar{\nu}, \underline{\nu})$.
- Then, the pair $(\lambda, \rho)=(\mu, \nu)^{*}$, with $\mu \neq 0$, is obtained making ($\bar{\nu}, \underline{\nu}$) grow according to the recursive definition.

Lemma.

Let ν be any partition. Then

$$
\begin{aligned}
\underline{\nu} & =\rho(0, \nu)=\left(\nu_{1}, \nu_{2}-1, \nu_{3}-2, \ldots, \nu_{\kappa}-(\kappa-1)\right) \\
\bar{\nu}^{\prime} & =\lambda^{\prime}(0, \nu)=\left(\nu_{1}^{\prime}-1, \nu_{2}^{\prime}-2, \ldots, \nu_{\kappa}^{\prime}-\kappa\right)
\end{aligned}
$$

where $\kappa=\max \left\{i \mid \nu_{i} \geq i\right\}$.

Recursive definition

- The Conjecture holds for the pair (μ, ν) if and only if it holds for $\left(\nu^{\prime}, \mu^{\prime}\right)$.

Recursive definition

- The Conjecture holds for the pair (μ, ν) if and only if it holds for $\left(\nu^{\prime}, \mu^{\prime}\right)$.
- $c_{\nu, \bar{\nu}}^{\nu}=1=c_{\nu, 0}^{\nu}$ and so, the Conjecture holds for the pair $(0, \nu)$.

N-filling

The unique LR-filling of shape $\nu / \underline{\nu}$ and type $\bar{\nu}$, called natural filling (briefly N -filling).

General solution method

(1) Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
(2) Remove the cells of $\rho / \underline{\nu}$ and obtain a new tableau of shape ϑ / ρ, called initial tableau and denoted with T^{\prime}.
(3) Define the tableau $T^{(0)}$ starting from T^{\prime} in a way such that its type is λ.
(4) A shape-by-shape algorithm is defined to move the entries of $T^{(0)}$ so that the final tableau T^{F} is semi standard and has a lattice permutation as reverse reading word.

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or
- μ is a rectangle and ν is a near-rectangle or vice-versa.

Pieri's rule case

- μ or ν is a one-line rectangle (n) or $\left(1^{n}\right)$

- We prove the validity of the Conjecture for both cases $((n), \nu)$ and $\left(\left(1^{n}\right), \nu\right)$, where ν is any partition.
- The Conjecture holds for the pairs $\left(\mu,\left(1^{n}\right)\right)$ and $(\mu,(n))$, where μ is any partition, if and only if it holds for $((n), \nu)$ and $\left(\left(1^{n}\right), \nu\right)$, respectively.

Pieri's rule case: $\mu=(n)$

- Set $\nu=(11,10,9,7,7,6,4,2,1)$.

Pieri's rule case: $\mu=(n)$

- Set $\nu=(11,10,9,7,7,6,4,2,1)$.
- Let $\mu=(7)$ be a one-part partition and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.

Pieri's rule case: $\mu=(n)$

- Set $\nu=(11,10,9,7,7,6,4,2,1)$.
- Let $\mu=(7)$ be a one-part partition and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.
- The unique LR-filling of shape ϑ / ν and type μ is a horizontal strip.

Pieri's rule case: $\mu=(n)$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.

Pieri's rule case: $\mu=(n)$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The partition ρ is obtained making $\underline{\nu}$ grow in each corner up to column $n=7$ and the type λ is equal to $\bar{\nu}$ plus a certain number of 1 entries, precisely $n-|\rho / \underline{\nu}|$.

Pieri's rule case: $\mu=(n)$

- Remove cells of $\rho / \underline{\nu}$.

Pieri's rule case: $\mu=(n)$

- Remove cells of $\rho / \underline{\nu}$.
- The tableau $T^{(0)}$ is set to be equal to T^{\prime}.

Pieri's rule case: $\mu=(n)$

- Remove cells of $\rho / \underline{\nu}$.
- The tableau $T^{(0)}$ is set to be equal to T^{\prime}.
- Rearrange the entries of $T^{(0)}$ to obtain a semistandard tableau. In this case, the algorithm consists in constructing a sequence of hooks that insert the 1 entries of the horizontal strip in the tableau $T^{(0)}$.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

Pieri's rule case: $\mu=(n)$

Algorithm

- Number cells of the horizontal strip left-to-right.
- Construct a sequence of hooks, where the vertex cell of each hook is determined by the previous one or by ρ, and reorder every hook.

- After the rearrangement of the last hook, we obtain the final tableau T^{F}, which is semistandard and its reverse reading word is a lattice permutation.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- Set $\nu=(9,9,9,8,8,7,5,4,4,3,2,1)$.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- Set $\nu=(9,9,9,8,8,7,5,4,4,3,2,1)$.
- Let $\mu=\left(1^{6}\right)$ and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- Set $\nu=(9,9,9,8,8,7,5,4,4,3,2,1)$.
- Let $\mu=\left(1^{6}\right)$ and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.
- The unique LR-filling of shape ϑ / ν and type μ is a vertical strip.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N-filling.
- The partition λ is obtained making $\bar{\nu}$ grow in each corner up to row $n=6$, while ρ is $\underline{\nu}$ plus a final sequence of parts equal to 1 of length $n-|\lambda / \bar{\nu}|$.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- The tableau $T^{(0)}$ is set to be equal to T^{\prime}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

- The tableau $T^{(0)}$ is set to be equal to T^{\prime}.
- Rearrange the entries of $T^{(0)}$ to obtain a semistandard tableau. Also this algorithm consists in constructing a sequence of hooks, one per each cell of the vertical strip, but it is different from the previous one.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

Pieri's rule case: $\mu=\left(1^{n}\right)$

Algorithm

- Let c_{1}, \ldots, c_{n} be the cells of the vertical strip numbered bottom-to-top.
- Construct a sequence of hooks and reorder every hook according to the entry of the corresponding cell c_{k}.

- After the rearrangement of the last hook, we obtain the final tableau T^{F}.

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or
- μ is a rectangle and ν is a near-rectangle or vice-versa.

Rectangles case

- $\mu=\left(a^{c}\right)$ and $\nu=\left(b^{d}\right)$ are rectangles

(63)

(35)
- We prove the validity of the Conjecture for the pair (μ, ν) only in case $c \leq d$ or $c>d$ and $a<b$.
- The validity in case $c>d$ and $a \geq b$ follows from the property that the Conjecture holds for the pair (μ, ν) iff it holds for $\left(\nu^{\prime}, \mu^{\prime}\right)$.

Rectangles case: $c \leq d$

- Set $\nu=\left(b^{d}\right)=\left(4^{8}\right)$.
- Let $\mu=\left(a^{c}\right)=\left(7^{3}\right)$ be a rectangle and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.

Rectangles case: $c \leq d$

- Set $\nu=\left(b^{d}\right)=\left(4^{8}\right)$.
- Let $\mu=\left(a^{c}\right)=\left(7^{3}\right)$ be a rectangle and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.
- The unique LR-filling of shape ϑ / ν and type μ can be divided into three horizontal strips.

Rectangles case: $c \leq d$

- Set $\nu=\left(b^{d}\right)=\left(4^{8}\right)$.
- Let $\mu=\left(a^{c}\right)=\left(7^{3}\right)$ be a rectangle and ϑ be such that $c_{\nu, \mu}^{\vartheta}=1$.
- The unique LR-filling of shape ϑ / ν and type μ can be divided into three horizontal strips.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- Construct a tableau of shape $\vartheta / \underline{\nu}$, where the cells of ϑ / ν are filled with its unique LR-filling of type μ and those of $\nu / \underline{\nu}$ with the N -filling.
- The pair $(\lambda, \rho)=(\mu, \nu)^{*}$ is obtained from $(\bar{\nu}, \underline{\nu})$ by means of the recursive definition adding the cells of μ row-by-row either to $\underline{\nu}$ or $\bar{\nu}$.

Rectangles case: $c \leq d$

- The tableau T^{\prime} has not type λ.

Rectangles case: $c \leq d$

- The tableau T^{\prime} has not type λ.
- The tableau $T^{(0)}$ is obtained modifying the entries of T^{\prime}.

Rectangles case: $c \leq d$

- The tableau T^{\prime} has not type λ.
- The tableau $T^{(0)}$ is obtained modifying the entries of T^{\prime}.
- Rearrange the entries of $T^{(0)}$ to obtain a semistandard tableau. Basically, in this case, the algorithm consists in repeating three times - one per each horizontal strip - the algorithm given for a one-line rectangle.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

Rectangles case: $c \leq d$

Algorithm

- Firstly, consider the horizontal strip with 1 entries, then the one with 2 entries and, finally, the last one with 3 entries.
- Each time we consider a horizontal strip with i entries, we construct and reorder vertical hooks that do not involve cells filled with $i-1$.

- After the rearrangement of the last hooks, we obtain the final tableau T^{F}.

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or
- μ is a rectangle and ν is a near-rectangle or vice-versa.

Stembridge's case (iii)

- For the case μ two-line rectangle (horizontal or vertical) and ν fat hook the underlying idea is basically similar to the one of the Pieri's rule case. Nevertheless, this case is more complex and it splits in several sub-cases, which make the algorithms for solving this case substantially different from the previous ones.

Stembridge's case (iii)

- For the case μ two-line rectangle (horizontal or vertical) and ν fat hook the underlying idea is basically similar to the one of the Pieri's rule case. Nevertheless, this case is more complex and it splits in several sub-cases, which make the algorithms for solving this case substantially different from the previous ones.

Stembridge's characterization

Theorem [Stembridge]

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if

- μ or ν is a one-line rectangle (Pieri's rule),or
- μ and ν are rectangles, or
- μ is a two-line rectangle and ν a fat hook or vice-versa, or
- μ is a rectangle and ν is a near-rectangle or vice-versa.

Stembridge's case (iv) open

- The last case, μ rectangle and ν near rectangle (or vice-versa), is still open. It splits in more and more sub-cases, as well. We know how to treat some of these sub-cases simply applying algorithms similar to the one provided for rectangles.

