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Schur positivity

Definition. A symmetric function is Schur positive if it is a linear
combination with nonnegative coefficients of the Schur
functions.

Example
The product sµsν of two Schur functions by means of the
classical Littlewood–Richardson rule can be written as

sµsν =
∑
ϑ

cϑµ,ν sϑ,

where the cϑµ,ν are nonnegative integers called
Littlewood–Richardson coefficients.



Schur positivity

In recent years there has been increasing interest in
understanding the Schur-positivity of expressions of the form

sλsρ − sµsν . (1)

Problem [Bergeron, McNamara, 2004]

Given a pair of partitions (µ, ν), which operations can we apply
to this pair to yield another pair (λ, ρ) such that (1) is
Schur-positive?

Necessary condition. The support of sµsν is contained in the
one of sλsρ.
Necessary and sufficient condition. For all partitions ϑ,

cϑλ,ρ ≥ cϑµ,ν .



Fomin-Fulton-Li-Poon Conjecture

Definition. Let (µ, ν) be a pair of partitions having the same
number of parts, allowing zero parts. The ∗-operation sends
(µ, ν) into the pair (λ, ρ) defined for all k by

λk = µk − k +#{l | νl − l ≥ µk − k},
ρk = νk − k + 1 +#{j |µj − j > νk − k}.

Conjecture [Fomin, Fulton, Li, and Poon, 2003]
The expression sλsρ − sµsν is Schur positive, namely, for any
partition ϑ,

cϑλ,ρ ≥ cϑµ,ν .



The ∗-operation

The simplest case

Let µ = (a) and ν = (b), with a > b. Then,
• λ1 = a− 1 +#{l | νl − l ≥ a− 1}
• ρ1 = b +#{j |µj − j > b − 1},
• ((a), (b))∗ = ((a− 1), (b + 1)).

Fomin-Fulton-Li-Poon Conjecture is an instance of the
Jacobi-Trudi identity

sa−1sb+1 − sasb = det
(

sa−1 sa
sb sb+1

)
= sa−1,b+1.
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The ∗-operation

Some properties of the ∗-operation:
• The partitions λ and ρ are such that |λ|+ |ρ| = |µ|+ |ν|.
• It is not commutative; in general (µ, ν)∗ 6= (ν, µ)∗.
• Fixed points are characterized as the pairs (µ, ν) such that

the sequence ν1, µ1, ν2, µ2, ν3, . . . is weakly decreasing.
• After applying the ∗-operation a finite number of times it is

always reached a fixed point.
• It has an equivalent recursive definition obtained by

Bergeron, Biagioli, Rosas.

François Bergeron, Riccardo Biagioli, and Mercedes H.
Rosas. Inequalities between Littlewood-Richardson
coefficients. J. Combin. Theory Ser. A (2006).



The ∗-operation and the Conjecture

Our goal is to prove the Conjecture for the class of pairs of
partitions (µ, ν) such that sµsν is multiplicity-free.

Definition. The product sµsν is multiplicity-free, if cϑν,µ ∈ {0,1},
for all partitions ϑ.

Example
An instance of the Pieri’s rule:

s2 s3,1 = s5,1 + s4,2 + s4,1,1 + s3,3 + s3,2,1.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or

(1  )(5) 3

• µ and ν are rectangles, or

• µ is a two-line rectangle and ν a fat hook or vice-versa, or

• µ is a rectangle and ν is a near-rectangle or vice-versa.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or

• µ and ν are rectangles, or

(6  )3

• µ is a two-line rectangle and ν a fat hook or vice-versa, or

• µ is a rectangle and ν is a near-rectangle or vice-versa.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or

• µ and ν are rectangles, or

• µ is a two-line rectangle and ν a fat hook or vice-versa, or

23(5 ,3  )

• µ is a rectangle and ν is a near-rectangle or vice-versa.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or

• µ and ν are rectangles, or

• µ is a two-line rectangle and ν a fat hook or vice-versa, or
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Littlewood-Richardson coefficients

Littlewood-Richardson Rule. The Littlewood-Richardson
coefficient cϑν,µ is equal to the number of LR-fillings of shape
ϑ/ν and type µ.

LR-filling

A LR-filling of shape ϑ/ν of type µ is a semistandard tableau of
shape ϑ/ν such that the sequence of multiplicities of the
integers 1,2, . . . that appear in its cells is µ and its reverse
reading word is a lattice permutation.
The reverse reading word u is a lattice permutation if for any
prefix v of u, |v |i ≥ |v |i+1, for all i .



Littlewood-Richardson coefficients

Example

Set ϑ = (4,3,2,1), ν = (2,1) and µ = (3,2,2).
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• cϑν,µ = 2.
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Our method

• To prove that cϑρ,λ ≥ cϑν,µ for all the multiplicity-free pairs of
partitions (µ, ν), we need to provide a semi standard
tableau of shape ϑ/ρ and type λ for each partition ϑ such
that cϑν,µ = 1.

• Our aim is to define for each of the Stembridge’s cases an
algorithm that constructs a LR-filling of shape ϑ/ρ and type
λ from the LR-filling of shape ϑ/ν and type µ modifying
and moving entries of its cells.

• To calculate (λ, ρ) = (µ, ν)∗, we use the recursive
description given by Bergeron, Biagioli and Rosas.
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Recursive definition

• Start from the pair (0, ν) and calculate (0, ν)∗ = (ν, ν).
• Then, the pair (λ, ρ) = (µ, ν)∗, with µ 6= 0, is obtained

making (ν, ν) grow according to the recursive definition.

Lemma.
Let ν be any partition. Then

ν =ρ(0, ν) = (ν1, ν2 − 1, ν3 − 2, . . . , νκ − (κ− 1)),
ν ′ =λ′(0, ν) = (ν ′1 − 1, ν ′2 − 2, . . . , ν ′κ − κ),

where κ = max{i |νi ≥ i}.



Recursive definition

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

ν

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



Recursive definition

ν

ν

• The Conjecture holds for the pair (µ, ν) if and only if it
holds for (ν ′, µ′).

• cνν,ν = 1 = cνν,0 and so, the Conjecture holds for the pair
(0, ν).



N-filling

The unique LR-filling of shape ν/ν and type ν, called natural
filling (briefly N-filling).
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General solution method

1 Construct a tableau of shape ϑ/ν, where the cells of ϑ/ν
are filled with its unique LR-filling of type µ and those of
ν/ν with the N-filling.

2 Remove the cells of ρ/ν and obtain a new tableau of shape
ϑ/ρ, called initial tableau and denoted with T I .

3 Define the tableau T (0) starting from T I in a way such that
its type is λ.

4 A shape-by-shape algorithm is defined to move the entries
of T (0) so that the final tableau T F is semi standard and
has a lattice permutation as reverse reading word.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or
• µ and ν are rectangles, or
• µ is a two-line rectangle and ν a fat hook or vice-versa, or
• µ is a rectangle and ν is a near-rectangle or vice-versa.



Pieri’s rule case

• µ or ν is a one-line rectangle (n) or (1n)

(1  )(5) 3

• We prove the validity of the Conjecture for both cases
((n), ν) and ((1n), ν), where ν is any partition.

• The Conjecture holds for the pairs (µ, (1n)) and (µ, (n)),
where µ is any partition, if and only if it holds for ((n), ν)
and ((1n), ν), respectively.



Pieri’s rule case: µ = (n)

ν

• Set ν = (11,10,9,7,7,6,4,2,1).
• Let µ = (7) be a one-part partition and ϑ be such that

cϑν,µ = 1.
• The unique LR-filling of shape ϑ/ν and type µ is a

horizontal strip.
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Pieri’s rule case: µ = (n)
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Pieri’s rule case: µ = (n)
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• Construct a tableau of shape ϑ/ν, where the cells of ϑ/ν
are filled with its unique LR-filling of type µ and those of
ν/ν with the N-filling.

• The partition ρ is obtained making ν grow in each corner
up to column n = 7 and the type λ is equal to ν plus a
certain number of 1 entries, precisely n − |ρ/ν|.



Pieri’s rule case: µ = (n)
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Pieri’s rule case: µ = (n)
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• Remove cells of ρ/ν.
• The tableau T (0) is set to be equal to T I .
• Rearrange the entries of T (0) to obtain a semistandard

tableau. In this case, the algorithm consists in constructing
a sequence of hooks that insert the 1 entries of the
horizontal strip in the tableau T (0).
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Pieri’s rule case: µ = (n)
Algorithm

• Number cells of the horizontal strip left-to-right.
• Construct a sequence of hooks, where the vertex cell of

each hook is determined by the previous one or by ρ, and
reorder every hook.
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• After the rearrangement of the last hook, we obtain the
final tableau T F , which is semistandard and its reverse
reading word is a lattice permutation.
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reorder every hook.
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Pieri’s rule case: µ = (1n)

ν

• Set ν = (9,9,9,8,8,7,5,4,4,3,2,1).
• Let µ = (16) and ϑ be such that cϑν,µ = 1.
• The unique LR-filling of shape ϑ/ν and type µ is a vertical

strip.



Pieri’s rule case: µ = (1n)

µν

• Set ν = (9,9,9,8,8,7,5,4,4,3,2,1).
• Let µ = (16) and ϑ be such that cϑν,µ = 1.
• The unique LR-filling of shape ϑ/ν and type µ is a vertical

strip.



Pieri’s rule case: µ = (1n)

6

5

4

3

2

1ν

• Set ν = (9,9,9,8,8,7,5,4,4,3,2,1).
• Let µ = (16) and ϑ be such that cϑν,µ = 1.
• The unique LR-filling of shape ϑ/ν and type µ is a vertical

strip.



Pieri’s rule case: µ = (1n)

ν

1

2

3

4

5

6

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

2

7

7 8

7 8

10

11

9

9

ν

• Construct a tableau of shape ϑ/ν, where the cells of ϑ/ν
are filled with its unique LR-filling of type µ and those of
ν/ν with the N-filling.

• The partition λ is obtained making ν grow in each corner
up to row n = 6, while ρ is ν plus a final sequence of parts
equal to 1 of length n − |λ/ν|.
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• The tableau T (0) is set to be equal to T I .
• Rearrange the entries of T (0) to obtain a semistandard

tableau. Also this algorithm consists in constructing a
sequence of hooks, one per each cell of the vertical strip,
but it is different from the previous one.
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Pieri’s rule case: µ = (1n)
Algorithm

• Let c1, . . . , cn be the cells of the vertical strip numbered
bottom-to-top.

• Construct a sequence of hooks and reorder every hook
according to the entry of the corresponding cell ck .
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• After the rearrangement of the last hook, we obtain the
final tableau T F .
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Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or
• µ and ν are rectangles, or
• µ is a two-line rectangle and ν a fat hook or vice-versa, or
• µ is a rectangle and ν is a near-rectangle or vice-versa.



Rectangles case

• µ = (ac) and ν = (bd) are rectangles

3 5(3  )(6  )

• We prove the validity of the Conjecture for the pair (µ, ν)
only in case c ≤ d or c > d and a < b.

• The validity in case c > d and a ≥ b follows from the
property that the Conjecture holds for the pair (µ, ν) iff it
holds for (ν ′, µ′).



Rectangles case: c ≤ d
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• Set ν = (bd) = (48).
• Let µ = (ac) = (73) be a rectangle and ϑ be such that

cϑν,µ = 1.
• The unique LR-filling of shape ϑ/ν and type µ can be

divided into three horizontal strips.
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• Construct a tableau of shape ϑ/ν, where the cells of ϑ/ν
are filled with its unique LR-filling of type µ and those of
ν/ν with the N-filling.

• The pair (λ, ρ) = (µ, ν)∗ is obtained from (ν, ν) by means of
the recursive definition adding the cells of µ row-by-row
either to ν or ν.
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ν/ν with the N-filling.

• The pair (λ, ρ) = (µ, ν)∗ is obtained from (ν, ν) by means of
the recursive definition adding the cells of µ row-by-row
either to ν or ν.



Rectangles case: c ≤ d
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• Construct a tableau of shape ϑ/ν, where the cells of ϑ/ν
are filled with its unique LR-filling of type µ and those of
ν/ν with the N-filling.

• The pair (λ, ρ) = (µ, ν)∗ is obtained from (ν, ν) by means of
the recursive definition adding the cells of µ row-by-row
either to ν or ν.



Rectangles case: c ≤ d
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• The tableau T I has not type λ.
• The tableau T (0) is obtained modifying the entries of T I .
• Rearrange the entries of T (0) to obtain a semistandard

tableau. Basically, in this case, the algorithm consists in
repeating three times - one per each horizontal strip - the
algorithm given for a one-line rectangle.



Rectangles case: c ≤ d
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• The tableau T I has not type λ.
• The tableau T (0) is obtained modifying the entries of T I .
• Rearrange the entries of T (0) to obtain a semistandard

tableau. Basically, in this case, the algorithm consists in
repeating three times - one per each horizontal strip - the
algorithm given for a one-line rectangle.



Rectangles case: c ≤ d
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• The tableau T I has not type λ.
• The tableau T (0) is obtained modifying the entries of T I .
• Rearrange the entries of T (0) to obtain a semistandard

tableau. Basically, in this case, the algorithm consists in
repeating three times - one per each horizontal strip - the
algorithm given for a one-line rectangle.



Rectangles case: c ≤ d
Algorithm

• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

• Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i − 1.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .
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• Each time we consider a horizontal strip with i entries, we
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2

2

111

2 2 3

33

3

2

1

1

1
ρ

6

5

5

4

4

4

7654

• After the rearrangement of the last hooks, we obtain the
final tableau T F .
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• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .



Rectangles case: c ≤ d
Algorithm
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final tableau T F .



Rectangles case: c ≤ d
Algorithm

• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

• Each time we consider a horizontal strip with i entries, we
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .



Rectangles case: c ≤ d
Algorithm

• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

• Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i − 1.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .
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• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .



Rectangles case: c ≤ d
Algorithm

• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

• Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i − 1.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .



Rectangles case: c ≤ d
Algorithm

• Firstly, consider the horizontal strip with 1 entries, then the
one with 2 entries and, finally, the last one with 3 entries.

• Each time we consider a horizontal strip with i entries, we
construct and reorder vertical hooks that do not involve
cells filled with i − 1.
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• After the rearrangement of the last hooks, we obtain the
final tableau T F .



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or
• µ and ν are rectangles, or
• µ is a two-line rectangle and ν a fat hook or vice-versa, or
• µ is a rectangle and ν is a near-rectangle or vice-versa.



Stembridge’s case (iii)

• For the case µ two-line rectangle (horizontal or vertical)
and ν fat hook the underlying idea is basically similar to the
one of the Pieri’s rule case. Nevertheless, this case is
more complex and it splits in several sub-cases, which
make the algorithms for solving this case substantially
different from the previous ones.
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• For the case µ two-line rectangle (horizontal or vertical)
and ν fat hook the underlying idea is basically similar to the
one of the Pieri’s rule case. Nevertheless, this case is
more complex and it splits in several sub-cases, which
make the algorithms for solving this case substantially
different from the previous ones.



Stembridge’s characterization

Theorem [Stembridge]

The product sµsν is multiplicity-free if and only if
• µ or ν is a one-line rectangle (Pieri’s rule),or
• µ and ν are rectangles, or
• µ is a two-line rectangle and ν a fat hook or vice-versa, or
• µ is a rectangle and ν is a near-rectangle or vice-versa.



Stembridge’s case (iv) open

3  2 2(4 ,3  ) 23(4 ,1  )3(7,4  )(5 ,3)

• The last case, µ rectangle and ν near rectangle (or
vice-versa), is still open. It splits in more and more
sub-cases, as well. We know how to treat some of these
sub-cases simply applying algorithms similar to the one
provided for rectangles.


