Compatibility fans realizing graph associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

September 7th, 2015

ション ふゆ アメリア メリア しょうくしゃ

Flip graph on the triangulations of the polygon:

(n+3)-gon $\Rightarrow n$ diagonals \Rightarrow the flip graph is *n*-regular.

(日) (四) (日) (日)

Definition

An *associahedron* is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces \leftrightarrow dissections of the polygon

イロト イポト イヨト イ

Э

Useful configuration (Loday's)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

 $\{\text{diagonals of } G_{n+3}\} \longleftrightarrow \{\text{strict subpaths of the path } [n+1]\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

non-adjacent subpaths

イロト イポト イヨト イ

3.1

nested subpaths

Caution with the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!

$$G = (V, E)$$
 a (connected) graph.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Definition

$$G = (V, E)$$
 a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

G = (V, E) a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 t and t' are compatible if they are nested or non-adjacent; G = (V, E) a (connected) graph.

Definition

- A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A *tubing* on G is a set of pairwise compatible tubes of G.

ション ふゆ く 山 マ チャット しょうくしゃ

(日) (同) (日) (日)

э

Graph associahedra

Theorem (Carr-Devadoss '06)

There exists a polytope $Asso_G$, the graph associahedron of G, realizing the complex of tubings on G.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Some classical polytopes...

The associahedron

The cyclohedron

The permutahedron

ж

・ロト ・四ト ・モト ・モト

.can be seen as graph associahedra

The associahedron

The cyclohedron The permutahedron

Hohlweg-Lange [HL]: $O(2^n)$

Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))

[HL] \bigcap [CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Carr-Devadoss [CD]: $1 \subset Postnikov$ [P]: 1

Volodin [Vol]: ??? Probably many, but not explicit.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Hohlweg-Lange [HL]: $O(2^n)$

Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))

[HL] \bigcap [CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Simplicial Cone: positive span of independent vectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Simplicial Cone: positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Simplicial Cone: positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

Simplicial Fan: fan whose cones all are simplicial. Complete Fan: fan whose cones cover the whole space.

polytope \Rightarrow complete fan (*normal fan*).

simple polytope \Rightarrow complete simplicial fan.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Santos' construction for the fan

 \rightarrow choose an initial triangulation \mathcal{T}_0 of the polygon.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Santos' construction for the fan

 \rightarrow choose an initial triangulation T_0 of the polygon.

Theorem (Ceballos-Santos-Ziegler 13)

 ${\cal F}$ is a complete simplicial fan realizing the associahedron.

(日)、

Theorem (Ceballos-Santos-Ziegler 13)

 \mathcal{F} is a complete simplicial fan realizing the associahedron.

・ロト ・聞ト ・ヨト ・ヨト

Idea of the proof

\rightarrow The cone $C(T_0)$ is the negative orthant. \Rightarrow full-dimensional and simplicial

Idea of the proof

→ The cone $C(T_0)$ is the negative orthant. ⇒ full-dimensional and simplicial → Local condition on flips $T \leftrightarrow T' = T \setminus \{d\} \cup \{d'\}$.

Checking local conditions

$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \setminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

Checking local conditions

$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \smallsetminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

 \rightarrow Reduction:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Checking local conditions

$$\rightarrow \text{ Formulation: } \alpha u_d + \alpha' u_{d'} + \sum_{\delta \in \mathcal{T} \smallsetminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$$

 \rightarrow Reduction:

 \rightarrow Finite number of linear dependences to check explicitly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

For graphs?

\rightarrow impossible to choose -1, 0, 1 coordinates.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

The compatibility degree

ightarrow notion of compatibility degree between two tubes ($t\parallel t'$).

The compatibility degree

ightarrow notion of compatibility degree between two tubes ($t\parallel t'$).

$$(t \parallel t') = \begin{cases} -1 \text{ if } t = t', \\ \#(\text{neighbors of } t' \text{ in } t \smallsetminus t') \text{ if } t' \not\subseteq t, \\ 0 \text{ otherwise.} \end{cases}$$

 \rightarrow Counts compatibility obstructions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The result!

- \rightarrow Define $u_t = ((t \parallel t_1), \dots, (t \parallel t_n))$
- \rightarrow For a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \rightarrow Define $\mathcal{F}_{G} = \{C(T) | T \text{ triangulation} \}.$

The result!

$$ightarrow$$
 Define $u_t = ((t \parallel t_1), \dots, (t \parallel t_n))$

 \rightarrow For a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.

ション ふゆ く 山 マ チャット しょうくしゃ

 \rightarrow Define $\mathcal{F}_{G} = \{C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15)

 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.

The result!

- \rightarrow Define $u_t = ((t \parallel t_1), \dots, (t \parallel t_n))$
- \rightarrow For a maximal tubing T, define $C(T) = cone(u_t | t \in T)$.
- \rightarrow Define $\mathcal{F}_{G} = \{C(T) | T \text{ triangulation} \}.$

Theorem (M., Pilaud 15)

 \mathcal{F}_{G} is a complete simplicial fan realizing $Asso_{G}$.

ション ふゆ く 山 マ チャット しょうくしゃ

THANK YOU FOR YOUR PATIENT LISTENING!

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@