Compatibility fans realizing graph associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

September $7^{\text {th }}, 2015$

The flip operation

Flip graph on the triangulations of the polygon:

Vertices: triangulations
Edges: flips

$(n+3)$-gon $\Rightarrow n$ diagonals \Rightarrow the flip graph is n-regular.

Definition

An associahedron is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces \leftrightarrow dissections of the polygon

Useful configuration (Loday's)

$$
G_{n+3}=\underbrace{n+2}_{2} n \underbrace{n}_{n+1} n
$$

Graph point of view

$\left\{\right.$ diagonals of $\left.G_{n+3}\right\} \longleftrightarrow\{$ strict subpaths of the path $[n+1]\}$

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

80
nested subpaths

non-adjacent subpaths

Caution with the second case:

The right condition is indeed non-adjacent, disjoint is not enough!

Now do it on graphs

$G=(V, E)$ a (connected) graph.
Definition

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;
- A tubing on G is a set of pairwise compatible tubes of G.

A tube
(generalizes a diagonal)

A maximal tubing
(generalizes a triangulation)

Graph associahedra

Theorem (Carr-Devadoss '06)

There exists a polytope Asso $_{G}$, the graph associahedron of G, realizing the complex of tubings on G.

Faces \leftrightarrow tubings of G.

Some classical polytopes...

The associahedron

The cyclohedron

The permutahedron
...can be seen as graph associahedra

The associahedron

The cyclohedron

The permutahedron

Many different associahedra

Hohlweg-Lange [HL]: $O\left(2^{n}\right)$
Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))
$[H L] \bigcap[C S Z]=$ Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1

Few graph associahedra

Carr-Devadoss [CD]: $1 \subset$ Postnikov [P]: 1
Volodin [Vol]: ???
Probably many, but not explicit.

Many different associahedra

Hohlweg-Lange [HL]: $O\left(2^{n}\right)$
Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))
$[H L] \bigcap[C S Z]=$ Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1

Fans

Polyhedral Cone: positive span of finitely many vectors.

Fans

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

Fans

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

Fan $=$ set of polyhedral cones intersecting properly.

Fans

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

Fan $=$ set of polyhedral cones intersecting properly.

Simplicial Fan: fan whose cones all are simplicial.
Complete Fan: fan whose cones cover the whole space.
polytope \Rightarrow complete fan (normal fan).
simple polytope \Rightarrow complete simplicial fan.

Santos' construction for the fan

\rightarrow choose an initial triangulation T_{0} of the polygon.

Santos' construction for the fan

\rightarrow choose an initial triangulation T_{0} of the polygon.

$$
\text { set } u_{d_{i}}=-e_{i}
$$

\rightarrow for a diagonal $d \notin T_{0}$, define $u_{d}=\left(\mathbb{1}_{d \text { crosses } d_{i}}\right)_{d_{i} \in T_{0}}$.
\rightarrow for a triangulation T, define $C(T)=\operatorname{cone}\left(u_{d} \mid d \in T\right)$.
\rightarrow Define $\mathcal{F}=\{C(T) \mid T$ triangulation $\}$

Theorem (Ceballos-Santos-Ziegler 13)

\mathcal{F} is a complete simplicial fan realizing the associahedron.

Theorem (Ceballos-Santos-Ziegler 13)

\mathcal{F} is a complete simplicial fan realizing the associahedron.

$T_{0}=\langle\downarrow$

$T_{0}=\langle$

Idea of the proof

\rightarrow The cone $C\left(T_{0}\right)$ is the negative orthant.
\Rightarrow full-dimensional and simplicial

Idea of the proof

\rightarrow The cone $C\left(T_{0}\right)$ is the negative orthant.
\Rightarrow full-dimensional and simplicial
\rightarrow Local condition on flips $T \leftrightarrow T^{\prime}=T \backslash\{d\} \cup\left\{d^{\prime}\right\}$.

Checking local conditions

\rightarrow Formulation: $\alpha u_{d}+\alpha^{\prime} u_{d^{\prime}}+$

$$
\sum_{\delta \in T \backslash\{d\}} \beta_{\delta} u_{\delta}=0 \Rightarrow \alpha \cdot \alpha^{\prime}>0
$$

Checking local conditions

\rightarrow Formulation: $\alpha u_{d}+\alpha^{\prime} u_{d^{\prime}}+\sum_{\delta \in T \backslash\{d\}} \beta_{\delta} u_{\delta}=0 \Rightarrow \alpha . \alpha^{\prime}>0$.
\rightarrow Reduction:

Checking local conditions

\rightarrow Formulation: $\alpha u_{d}+\alpha^{\prime} u_{d^{\prime}}+\sum_{\delta \in T \backslash\{d\}} \beta_{\delta} u_{\delta}=0 \Rightarrow \alpha . \alpha^{\prime}>0$.
\rightarrow Reduction:

\rightarrow Finite number of linear dependences to check explicitly.

For graphs?

$$
T_{0}
$$

\rightarrow impossible to choose $-1,0,1$ coordinates.

The compatibility degree

\rightarrow notion of compatibility degree between two tubes $\left(t \| t^{\prime}\right)$.

The compatibility degree

\rightarrow notion of compatibility degree between two tubes $\left(t \| t^{\prime}\right)$.

$$
\left(t \| t^{\prime}\right)=\left\{\begin{array}{l}
-1 \text { if } t=t^{\prime}, \\
\#\left(\text { neighbors of } t^{\prime} \text { in } t \backslash t^{\prime}\right) \text { if } t^{\prime} \nsubseteq t, \\
0 \text { otherwise. }
\end{array}\right.
$$

\rightarrow Counts compatibility obstructions.

$$
\begin{aligned}
\left(t \| t^{\prime}\right) & =2 \\
\left(t^{\prime} \| t\right) & =3
\end{aligned}
$$

The result!

\rightarrow Define $u_{t}=\left(\left(t \| t_{1}\right), \ldots,\left(t \| t_{n}\right)\right)$
\rightarrow For a maximal tubing T, define $C(T)=\operatorname{cone}\left(u_{t} \mid t \in T\right)$.
\rightarrow Define $\mathcal{F}_{G}=\{C(T) \mid T$ triangulation $\}$.

The result!

\rightarrow Define $u_{t}=\left(\left(t \| t_{1}\right), \ldots,\left(t \| t_{n}\right)\right)$
\rightarrow For a maximal tubing T, define $C(T)=\operatorname{cone}\left(u_{t} \mid t \in T\right)$.
\rightarrow Define $\mathcal{F}_{G}=\{C(T) \mid T$ triangulation $\}$

Theorem (M.,Pilaud 15)

\mathcal{F}_{G} is a complete simplicial fan realizing Asso $_{G}$.

The result!

\rightarrow Define $u_{t}=\left(\left(t \| t_{1}\right), \ldots,\left(t \| t_{n}\right)\right)$
\rightarrow For a maximal tubing T, define $C(T)=\operatorname{cone}\left(u_{t} \mid t \in T\right)$.
\rightarrow Define $\mathcal{F}_{G}=\{C(T) \mid T$ triangulation $\}$.

Theorem (M.,Pilaud 15)

\mathcal{F}_{G} is a complete simplicial fan realizing Asso $_{G}$.

THANK YOU FOR YOUR PATIENT
 LISTENING!

