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The �ip operation

Flip graph on the triangulations of the polygon:

Vertices: triangulations Edges: �ips

(n + 3)-gon ⇒ n diagonals ⇒ the �ip graph is n-regular.



De�nition
An associahedron is a polytope whose graph is the �ip graph
of triangulations of a convex polygon.

Faces ↔ dissections of the polygon



Useful con�guration (Loday's)
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Graph point of view

{diagonals of Gn+3} ←→ {strict subpaths of the path [n + 1]}
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Non-crossing diagonals

Two ways to be non-crossing in Loday's con�guration:
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Caution with the second case:
The right condition is indeed non-adjacent, disjoint is not
enough!
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Now do it on graphs

G = (V ,E ) a (connected) graph.

De�nition

A tube of G is a proper subset t ⊆ V inducing a
connected subgraph of G ;

t and t ′ are compatible if they are nested or
non-adjacent;

A tubing on G is a set of pairwise compatible tubes of G .
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Graph associahedra

Theorem (Carr-Devadoss '06)

There exists a polytope AssoG , the graph associahedron

of G , realizing the complex of tubings on G .

Faces ↔ tubings of G .



Some classical polytopes...
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...can be seen as graph associahedra
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Many di�erent associahedra

Hohlweg-Lange [HL]: O(2n)

Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))

[HL]
⋂

[CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1



Few graph associahedra

Carr-Devadoss [CD]: 1 ⊂ Postnikov [P]: 1

Volodin [Vol]: ???
Probably many, but not explicit.
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Fans

Polyhedral Cone: positive span of �nitely many vectors.

Simplicial Cone: positive span of independent vectors.

Fan = set of polyhedral cones intersecting properly.

Simplicial Fan: fan whose cones all are simplicial.

Complete Fan: fan whose cones cover the whole space.
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polytope ⇒ complete fan (normal fan).

simple polytope ⇒ complete simplicial fan.



Santos' construction for the fan

→ choose an initial triangulation T0 of the polygon.

T0
d1

d2

d3

d4

d

set udi = −ei

→ for a diagonal d /∈ T0, de�ne ud = (11d crosses di )di∈T0
.

→ for a triangulation T , de�ne C (T ) = cone(ud |d ∈ T ).

→ De�ne F = {C (T )|T triangulation}.
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Theorem (Ceballos-Santos-Ziegler 13)

F is a complete simplicial fan realizing the associahedron.
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Idea of the proof

→ The cone C (T0) is the negative orthant.
⇒ full-dimensional and simplicial

→ Local condition on �ips T ↔ T ′ = T r {d} ∪ {d ′}.

C(T )

C(T ′)

ud

ud′

< uδ >δ∈T\{d}
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Checking local conditions

→ Formulation: αud + α′ud ′ +
∑

δ∈Tr{d}

βδuδ = 0⇒ α.α′ > 0.

→ Reduction:

→ Finite number of linear dependences to check explicitly.
�
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For graphs?
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→ impossible to choose −1, 0, 1 coordinates.



The compatibility degree

→ notion of compatibility degree between two tubes (t ‖ t ′).

(t ‖ t ′) =


−1 if t = t ′,
#(neighbors of t ′ in t r t ′) if t ′ 6⊆ t,
0 otherwise.

→ Counts compatibility obstructions.

t

t′

(t ‖ t ′) = 2
(t ′ ‖ t) = 3
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The result!

→ De�ne ut = ((t ‖ t1), . . . , (t ‖ tn))
→ For a maximal tubing T , de�ne C (T ) = cone(ut |t ∈ T ).

→ De�ne FG = {C (T )|T triangulation}.

Theorem (M.,Pilaud 15)

FG is a complete simplicial fan realizing AssoG .
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