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Preliminaries

Partitions

A partition λ ` n is a non increasing sequence of positive integers

λ = (λ1, . . . , λl)

such that
∑
λi = n

Example

λ = (3, 2) ` 5

λ =
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Preliminaries

Representations

A representation of Sn is a morphism

π : Sn → GL(V )

where V is finite dimensional C vector space

Irreducible representations of Sn ←→ partitions λ ` n

πλ, dimλ := dimV λ

χλ(σ) = tr(πλ(σ)), χ̂λ(σ) =
tr(πλ(σ))

dimλ
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Preliminaries

Standard Young tableaux

1 2 8 9 12
3 5 1013
4 7
6
11

dimλ := number of SYT of shape λ

λ = (3, 2)⇒ dimλ = 5

1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 2 5
3 4

1 3 5
2 4
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Preliminaries

Plancherel measure

∑
λ`n

(dimλ)2 = n!

Plancherel measure

To λ ` n we associate the weight dimλ2

n!

Probability on the set Yn of partitions of n
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Motivations

Limit shape

λ distributed with the Plancherel measure and renormalized, then

*Image from D. Romik "The Surprising Mathematics of Longest
Increasing Subsequences"*
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Motivations

ωx(θ) =

(
1+

2θ
π

)
sin θ+

2
π
cos θ

ωy (θ) =

(
1− 2θ

π

)
sin θ− 2

π
cos θ

Theorem (Kerov 1999)

n
|ρ|−m1(ρ)

2 χ̂λρ →
∏
k≥2

kmk (ρ)/2Hmk (ρ)(ξk)
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Motivations

Relations with random matrices

Rows λ1, λ2, λ3, . . . of a random
Young diagram

First, second, third, . . . biggest
eigenvalues of a Gaussian random
Hermitian matrix

Same first order asymptotics
Same joint fluctuation (Tracy-Widom law)

Similar tools: moment method, link with free probability theory
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Young seminormal representation

Signed distance

dk(T ) = length of northeast path from k to k + 1
or − length of southwest path from k to k + 1

T =
1 2 3
4 5 ⇒ d3(T ) = −3

(3, 4)
1 3 5 7
2 6
4

=
1 4 5 7
2 6
3
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Young seminormal representation

Young seminormal representation

πλ((k , k + 1))T ,T̃ =



1/dk(T ) if T = T̃√
1− 1

dk (T )2
if (k, k + 1)T = T̃

0 else
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Young seminormal representation

Example

λ = (3, 2)

πλ((2, 4, 3)) = πλ((3, 4)(2, 3)) = πλ((3, 4))πλ((2, 3))

=


−1/3

√
8/9 0 0 0√

8/9 1/3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

·


1 0 0 0 0
0 −1/2

√
3/4 0 0

0
√

3/4 1/2 0 0
0 0 0 −1/2

√
3/4

0 0 0
√

3/4 1/2



=


−1/3 −

√
2/9

√
2/3 0 0√

8/9 −1/6
√

1/12 0 0
0

√
3/4 1/2 0 0

0 0 0 −1/2
√

3/4

0 0 0 −
√

3/4 −1/2


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Partial sums

0 ≤ u ≤ 1

Partial trace

PTλ
u (σ) :=

∑
i≤u dimλ

πλ(σ)i ,i
dimλ

We would like to refine Kerov’s result

The partial trace has been studied in random matrix theory,
e.g. for orthogonal random matrices
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Partial sums

Visually

πλ(σ) =

u dimλ

u dimλ

PT
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Partial sums

Decomposition of PT

λ =

µ1 = µ2 = · · ·

Proposition (DS)

PTλ
u (σ) =

∑
i<k̄

χµi (σ)

dimλ
+ Rem

Rem =
∑

i≤ũ dimµk̄

πµk̄ (σ)i ,i
dimλ

=
dimµk̄
dimλ

PT
µk̄
ũ (σ)
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Partial sums

Proof

πλ(σ) =

πµ1 (σ)

πµ2 (σ)

πµ3 (σ)

0

0

. . .

u dimλ

u dimλ

PTλ(σ) =
∑
i<k̄

χ
µj (σ)
dimλ + Rem



Sum of matrix entries of representations of the symmetric group and its asymptotics

Partial sums

Proof

πλ(σ) =

πµ1 (σ)

πµ2 (σ)

πµ3 (σ)

0

0

. . .

u dimλ

u dimλ

PTλ(σ) =
∑
i<k̄

χ
µj (σ)
dimλ + Rem



Sum of matrix entries of representations of the symmetric group and its asymptotics

Partial sums

Asymptotics

PTλ
u (σ) =

∑
j<k̄

dimµj
dimλ

χ̂µj (σ) + Rem

Fsc(c)n
− |ρ|−m1(ρ)

2
∏
k≥2

kmk (ρ)/2Hmk (ρ)(ξk)
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Partial sums

Asymptotics

PTλ
u (σ) =

∑
j<k̄

dimµj
dimλ

χ̂µj (σ)

︸ ︷︷ ︸
+ Rem

Fsc(c)n
− |ρ|−m1(ρ)

2
∏
k≥2

kmk (ρ)/2Hmk (ρ)(ξk)



Sum of matrix entries of representations of the symmetric group and its asymptotics

Partial sums

Asymptotics

PTλ
u (σ) =

∑
j<k̄

dimµj
dimλ

χ̂µj (σ)

︸ ︷︷ ︸
+ Rem

A · n−
|ρ|−m1(ρ)

2 B
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Partial sums

Theorem (Kerov 1993)

∑
j<k̄

dimµj
dimλ

→ A (deterministic)

Theorem (Kerov 1999)

n
|ρ|−m1(ρ)

2 χ̂λ(σ)→ B (random)

Theorem (DS)

n
|ρ|−m1(ρ)

2
∑
j<k̄

dimµj
dimλ

χ̂µj (σ)→ AB

The two objects are asymptotically independent
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Jucys-Murphy elements

First, a definition

Contents

c(2) := col(2)− row(2)

0 1 2 3 4
-1 0 1 2
-2 -1
-3
-4
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Jucys-Murphy elements

Jucys-Murphy elements

Jk := (1, k) + (2, k) + . . .+ (k − 1, k) ∈ Z (C[Sn])

πλ(Jk) =

 cT1( k ) 0
cT2( k )

0 . . .


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Jucys-Murphy elements

(n
2

)
χλ(τ) =

χλ(J2 + . . .+ Jn)

=
n∑

i=2
χλ(Ji ) =

n∑
i=2

dimλ∑
k=1

cTk
( i ) = dimλ

∑
2∈λ

c(2)

(
n

2

)
χ̂λ(transposition) =

∑
2∈λ

c(2)
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Jucys-Murphy elements

Considering χλ(J2 + . . .+ Jn) we get

(
n

2

)
χ̂λ(transposition) =

∑
2∈λ

c(2)

Considering χλ
(

l∏
i=1

(Jνi2 + . . .+ Jνin )

)
we get
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Jucys-Murphy elements

Considering χλ(J2 + . . .+ Jn) we get

(
n

2

)
χ̂λ(transposition) =

∑
2∈λ

c(2)

Considering χλ
(

l∏
i=1

(Jνi2 + . . .+ Jνin )

)
we get

cρn
↓(|ρ|−m1(ρ))χ̂λρ =

l∏
i=1

(∑
2∈λ

c(2)νi

)
−
∑
ρ̃<ρ

cρ̃n
↓(|ρ̃|−m1(ρ̃))χ̂λρ̃

where ρi = νi + 1
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Jucys-Murphy elements

Considering χλ(J2 + . . .+ Jn) we get

(
n

2

)
χ̂λ(transposition) =

∑
2∈λ

c(2)

Considering χλ
(

l∏
i=1

(Jνi2 + . . .+ Jνin )

)
we get

χ̂λ(σ)n
|ρ|−m1(ρ)

2 ∼
l∏

i=1

(∑
2∈λ

c(2)νi

)
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Proof

χ̂µ(σ)n
|ρ|−m1(ρ)

2 ∼
l∏

i=1

(∑
2∈µ

c(2)νi

)
=

l∏
i=1

(∑
2∈λ

c(2)νi − c(X )νi

)

o
l∏

i=1

(∑
2∈λ

c(2)νi

)

o

χ̂λ(σ)n
|ρ|−m1(ρ)

2

µ↗ λ = X
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Proof

n
|ρ|−m1(ρ)

2
∑
j<k̄

dimµj
dimλ

χ̂µj (σ)

o

n
|ρ|−m1(ρ)

2

∑
j<k̄

dimµj
dimλ

 χ̂λ(σ)

↓

A · B
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Proof

Telescopic sum

PTλ
u (σ) =

∑
j<k̄1

dimµ
(1)
j

dimλ
χ̂µ

(1)
j (σ) +

∑
j<k̄2

dimµ
(2)
j

dimλ
χ̂
µ

(2)
j (σ) + . . .

Unfortunately, I cannot prove convergence...
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Proof

Partial sum

PSλu (σ) :=
∑

i ,j≤u dimλ

πλ(σ)i ,j
dimλ
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Proof

Visually

πλ(σ) =

u dimλ

u dimλ

PS
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Proof

Decomposition of PS

σ ∈ Sr

PSλu (σ) =
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