Sum of matrix entries of representations of the symmetric group and its asymptotics

Dario De Stavola

7 September 2015

Advisor: Valentin Féray
Affiliation: University of Zürich

Partitions

A partition $\lambda \vdash n$ is a non increasing sequence of positive integers

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)
$$

such that $\sum \lambda_{i}=n$

Example

$$
\begin{aligned}
& \lambda=(3,2) \vdash 5 \\
& \lambda=\square \square
\end{aligned}
$$

Representations

A representation of S_{n} is a morphism

$$
\pi: S_{n} \rightarrow G L(V)
$$

where V is finite dimensional \mathbb{C} vector space

Representations

A representation of S_{n} is a morphism

$$
\pi: S_{n} \rightarrow G L(V)
$$

where V is finite dimensional \mathbb{C} vector space

Irreducible representations of $S_{n} \longleftrightarrow$ partitions $\lambda \vdash n$

Representations

A representation of S_{n} is a morphism

$$
\pi: S_{n} \rightarrow G L(V)
$$

where V is finite dimensional \mathbb{C} vector space

Irreducible representations of $S_{n} \longleftrightarrow$ partitions $\lambda \vdash n$

$$
\pi^{\lambda}, \quad \operatorname{dim} \lambda:=\operatorname{dim} V^{\lambda}
$$

Representations

A representation of S_{n} is a morphism

$$
\pi: S_{n} \rightarrow G L(V)
$$

where V is finite dimensional \mathbb{C} vector space

Irreducible representations of $S_{n} \longleftrightarrow$ partitions $\lambda \vdash n$

$$
\begin{gathered}
\pi^{\lambda}, \quad \operatorname{dim} \lambda:=\operatorname{dim} V^{\lambda} \\
\chi^{\lambda}(\sigma)=\operatorname{tr}\left(\pi^{\lambda}(\sigma)\right), \quad \hat{\chi}^{\lambda}(\sigma)=\frac{\operatorname{tr}\left(\pi^{\lambda}(\sigma)\right)}{\operatorname{dim} \lambda}
\end{gathered}
$$

-Preliminaries

Standard Young tableaux

1	2	89	12
3	5	1013	
4	7		
6			
11			

Standard Young tableaux

1	2	8	12
3	5	101	
4	7		
6			
11			

$\operatorname{dim} \lambda:=$ number of SYT of shape λ

-Preliminaries

Standard Young tableaux

1	2	8	912
3	5	101	13
4	7		
6			
11			

$\operatorname{dim} \lambda:=$ number of SYT of shape λ

Plancherel measure

$\sum_{\lambda \vdash n}(\operatorname{dim} \lambda)^{2}=n!$

Plancherel measure

$$
\sum_{\lambda \vdash n}(\operatorname{dim} \lambda)^{2}=n!
$$

Plancherel measure

To $\lambda \vdash n$ we associate the weight $\frac{\operatorname{dim} \lambda^{2}}{n!}$

Plancherel measure

$$
\sum_{\lambda \vdash n}(\operatorname{dim} \lambda)^{2}=n!
$$

Plancherel measure

To $\lambda \vdash n$ we associate the weight $\frac{\operatorname{dim} \lambda^{2}}{n!}$
Probability on the set \mathbb{Y}_{n} of partitions of n

Limit shape

λ distributed with the Plancherel measure and renormalized, then

(a)

(b)
Image from D. Romik "The Surprising Mathematics of Longest Increasing Subsequences"

$$
\begin{aligned}
& \omega_{x}(\theta)=\left(1+\frac{2 \theta}{\pi}\right) \sin \theta+\frac{2}{\pi} \cos \theta \\
& \omega_{y}(\theta)=\left(1-\frac{2 \theta}{\pi}\right) \sin \theta-\frac{2}{\pi} \cos \theta
\end{aligned}
$$

Theorem (Kerov 1999)

$$
n^{\frac{|\rho|-m_{1}(\rho)}{2}} \hat{\chi}_{\rho}^{\lambda} \rightarrow \prod_{k \geq 2} k^{m_{k}(\rho) / 2} \mathcal{H}_{m_{k}(\rho)}\left(\xi_{k}\right)
$$

Relations with random matrices

Rows $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ of a random Young diagram

First, second, third, ... biggest eigenvalues of a Gaussian random Hermitian matrix

Relations with random matrices

Rows $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ of a random Young diagram

First, second, third, ... biggest eigenvalues of a Gaussian random Hermitian matrix

Same first order asymptotics

Relations with random matrices

Rows $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ of a random Young diagram

First, second, third, ... biggest eigenvalues of a Gaussian random Hermitian matrix

Same first order asymptotics Same joint fluctuation (Tracy-Widom law)

Relations with random matrices

Rows $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ of a random Young diagram

First, second, third, ... biggest eigenvalues of a Gaussian random Hermitian matrix

Same first order asymptotics Same joint fluctuation (Tracy-Widom law)

Similar tools: moment method, link with free probability theory

Signed distance

$$
\begin{aligned}
& d_{k}(T)=\quad \text { length of northeast path from } k \text { to } k+1 \\
& \text { or - length of southwest path from } k \text { to } k+1
\end{aligned}
$$

Signed distance

$$
\begin{aligned}
d_{k}(T)= & \text { length of northeast path from } k \text { to } k+1 \\
& \text { or }- \text { length of southwest path from } k \text { to } k+1
\end{aligned}
$$

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 3 \\
\hline 4 & 5 & \\
\hline
\end{array} \Rightarrow d_{3}(T)=-3
$$

- Young seminormal representation

Signed distance

$$
\begin{aligned}
d_{k}(T)= & \text { length of northeast path from } k \text { to } k+1 \\
& \text { or }- \text { length of southwest path from } k \text { to } k+1
\end{aligned}
$$

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 3 \\
\hline 4 & 5 & \\
\hline
\end{array} \Rightarrow d_{3}(T)=-3
$$

$(3,4)$| 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- |
| 2 | 6 | | |
| 4 | | | 1 4 5 7
 2 6
 3 |
| | | | |
| | | | |

Young seminormal representation

Young seminormal representation

$$
\pi^{\lambda}((k, k+1))_{T, \tilde{T}}=\left\{\begin{array}{cr}
1 / d_{k}(T) & \text { if } T=\tilde{T} \\
\sqrt{1-\frac{1}{d_{k}(T)^{2}}} & \text { if }(k, k+1) T=\tilde{T} \\
0 & \text { else }
\end{array}\right.
$$

Example

$$
\begin{gathered}
\lambda=(3,2) \\
=\left[\begin{array}{ccccc}
-1 / 3 & \sqrt{8 / 9} & 0 & 0 & 0 \\
\sqrt{8 / 9} & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -1 / 2 & \sqrt{3 / 4} & 0 & 0 \\
0 & \sqrt{3 / 4} & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 & \sqrt{3 / 4} \\
0 & 0 & 0 & \sqrt{3 / 4} & 1 / 2
\end{array}\right] \\
=\left[\begin{array}{ccccc}
-1 / 3 & -\sqrt{2 / 9} & \sqrt{2 / 3} & 0 & 0 \\
\sqrt{8 / 9} & -1 / 6 & \sqrt{1 / 12} & 0 & 0 \\
0 & \sqrt{3 / 4} & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 & \sqrt{3 / 4} \\
0 & 0 & 0 & -\sqrt{3 / 4} & -1 / 2
\end{array}\right]
\end{gathered}
$$

$$
0 \leq u \leq 1
$$

Partial trace

$$
P T_{u}^{\lambda}(\sigma):=\sum_{i \leq u \operatorname{dim} \lambda} \frac{\pi^{\lambda}(\sigma)_{i, i}}{\operatorname{dim} \lambda}
$$

■ We would like to refine Kerov's result

$$
0 \leq u \leq 1
$$

Partial trace

$$
P T_{u}^{\lambda}(\sigma):=\sum_{i \leq u \operatorname{dim} \lambda} \frac{\pi^{\lambda}(\sigma)_{i, i}}{\operatorname{dim} \lambda}
$$

- We would like to refine Kerov's result
- The partial trace has been studied in random matrix theory, e.g. for orthogonal random matrices

Visually

$u \operatorname{dim} \lambda$

Decomposition of PT

Decomposition of PT

Decomposition of PT

-••

Decomposition of PT

Proposition (DS)

$$
P T_{u}^{\lambda}(\sigma)=\sum_{i<\bar{k}} \frac{\chi^{\mu_{i}}(\sigma)}{\operatorname{dim} \lambda}+\operatorname{Rem}
$$

Decomposition of PT

Proposition (DS)

$$
\begin{gathered}
P T_{u}^{\lambda}(\sigma)=\sum_{i<\bar{k}} \frac{\chi^{\mu_{i}}(\sigma)}{\operatorname{dim} \lambda}+\operatorname{Rem} \\
\operatorname{Rem}=\sum_{i \leq \tilde{u} \operatorname{dim} \mu_{\bar{k}}} \frac{\pi^{\mu_{\bar{k}}}(\sigma)_{i, i}}{\operatorname{dim} \lambda}=\frac{\operatorname{dim} \mu_{\bar{k}}}{\operatorname{dim} \lambda} P T_{\tilde{u}}^{\mu_{\bar{k}}}(\sigma)
\end{gathered}
$$

Proof

Proof

$$
\begin{aligned}
& P T^{\lambda}(\sigma)=\sum_{i<\bar{k}} \frac{\chi^{\mu_{j}}(\sigma)}{\operatorname{dim} \lambda}+\operatorname{Rem} \\
& u \operatorname{dim} \lambda
\end{aligned}
$$

Asymptotics

$$
P T_{u}^{\lambda}(\sigma)=\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma)+\operatorname{Rem}
$$

Asymptotics

$$
\begin{aligned}
& P T_{u}^{\lambda}(\sigma)=\underbrace{\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma)}+\operatorname{Rem} \\
& F_{s c}(c) n^{-\frac{|\rho|-m_{1}(\rho)}{2}} \prod_{k \geq 2} k^{m_{k}(\rho) / 2} \mathcal{H}_{m_{k}(\rho)}\left(\xi_{k}\right)
\end{aligned}
$$

Asymptotics

$$
\begin{aligned}
P T_{u}^{\lambda}(\sigma)= & \underbrace{\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma)}+\operatorname{Rem} \\
& A \cdot n^{-\frac{|\rho|-m_{1}(\rho)}{2}} B
\end{aligned}
$$

Theorem (Kerov 1993)
Theorem (Kerov 1999)
$\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \rightarrow A$ (deterministic)

Theorem (Kerov 1993)
Theorem (Kerov 1999)
$n^{\frac{|\rho|-m_{1}(\rho)}{2}} \hat{\chi}^{\lambda}(\sigma) \rightarrow B$ (random)

Theorem (DS)

$$
n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma) \rightarrow A B
$$

Theorem (Kerov 1993)
Theorem (Kerov 1999)
$n^{\frac{|\rho|-m_{1}(\rho)}{2}} \hat{\chi}^{\lambda}(\sigma) \rightarrow B$ (random)

Theorem (DS)

$$
n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma) \rightarrow A B
$$

The two objects are asymptotically independent

First, a definition

Contents

$$
c(\square):=\operatorname{col}(\square)-\operatorname{row}(\square)
$$

First, a definition

Contents

$$
c(\square):=\operatorname{col}(\square)-\operatorname{row}(\square)
$$

0	1	2	3	4
-1	0	1	2	
-2	-1			
-3				
-4				

Jucys-Murphy elements

$$
J_{k}:=(1, k)+(2, k)+\ldots+(k-1, k) \in Z\left(\mathbb{C}\left[S_{n}\right]\right)
$$

Jucys-Murphy elements

$$
J_{k}:=(1, k)+(2, k)+\ldots+(k-1, k) \in Z\left(\mathbb{C}\left[S_{n}\right]\right)
$$

$$
\pi^{\lambda}\left(J_{k}\right)=\left[\begin{array}{ccc}
c_{T_{1}}(\mathbb{}(\mathbb{}) & & 0 \\
0 & c_{T_{2}}(\mathbb{}(\mathbb{}) & \\
0 & & \ddots
\end{array}\right]
$$

$$
\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)
$$

$$
\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)=\sum_{i=2}^{n} \chi^{\lambda}\left(J_{i}\right)
$$

$$
\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)=\sum_{i=2}^{n} \chi^{\lambda}\left(J_{i}\right)=\sum_{i=2}^{n} \sum_{k=1}^{\operatorname{dim} \lambda} c_{T_{k}}(\square i)
$$

$$
\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)=\sum_{i=2}^{n} \chi^{\lambda}\left(J_{i}\right)=\sum_{i=2}^{n} \sum_{k=1}^{\operatorname{dim} \lambda} c_{T_{k}}(i)=\operatorname{dim} \lambda \sum_{\square \in \lambda} c(\square)
$$

$$
\binom{n}{2} \chi^{\lambda}(\tau)=\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)=\sum_{i=2}^{n} \chi^{\lambda}\left(J_{i}\right)=\sum_{i=2}^{n} \sum_{k=1}^{\operatorname{dim} \lambda} c_{T_{k}}(\boxed{i})=\operatorname{dim} \lambda \sum_{\square \in \lambda} c(\square)
$$

$$
\binom{n}{2} \chi^{\lambda}(\tau)=\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)=\sum_{i=2}^{n} \chi^{\lambda}\left(J_{i}\right)=\sum_{i=2}^{n} \sum_{k=1}^{\operatorname{dim} \lambda} c_{T_{k}}(i)=\operatorname{dim} \lambda \sum_{\square \in \lambda} c(\square)
$$

$$
\binom{n}{2} \hat{\chi}^{\lambda}(\text { transposition })=\sum_{\square \in \lambda} c(\square)
$$

Considering $\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)$ we get

$$
\binom{n}{2} \hat{\chi}^{\lambda}(\text { transposition })=\sum_{\square \in \lambda} c(\square)
$$

Considering $\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)$ we get

$$
\binom{n}{2} \hat{\chi}^{\lambda}(\text { transposition })=\sum_{\square \in \lambda} c(\square)
$$

Considering $\chi^{\lambda}\left(\prod_{i=1}^{l}\left(J_{2}^{\nu_{i}}+\ldots+J_{n}^{\nu_{i}}\right)\right)$ we get

Considering $\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)$ we get

$$
\binom{n}{2} \hat{\chi}^{\lambda}(\text { transposition })=\sum_{\square \in \lambda} c(\square)
$$

Considering $\chi^{\lambda}\left(\prod_{i=1}^{1}\left(J_{2}^{\nu_{i}}+\ldots+J_{n}^{\nu_{i}}\right)\right)$ we get

$$
\begin{aligned}
c_{\rho} n^{\downarrow\left(|\rho|-m_{1}(\rho)\right)} \hat{\chi}_{\rho}^{\lambda}= & \prod_{i=1}^{\prime}\left(\sum_{\square \in \lambda} c(\square)^{\nu_{i}}\right)-\sum_{\tilde{\rho}<\rho} c_{\tilde{\rho}} n^{\downarrow\left(|\tilde{\rho}|-m_{1}(\tilde{\rho})\right)} \hat{\chi}_{\tilde{\rho}}^{\lambda} \\
& \text { where } \rho_{i}=\nu_{i}+1
\end{aligned}
$$

Considering $\chi^{\lambda}\left(J_{2}+\ldots+J_{n}\right)$ we get

$$
\binom{n}{2} \hat{\chi}^{\lambda}(\text { transposition })=\sum_{\square \in \lambda} c(\square)
$$

Considering $\chi^{\lambda}\left(\prod_{i=1}^{\prime}\left(J_{2}^{\nu_{i}}+\ldots+J_{n}^{\nu_{i}}\right)\right)$ we get

$$
\hat{\chi}^{\lambda}(\sigma) n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sim \prod_{i=1}^{l}\left(\sum_{\square \in \lambda} c(\square)^{\nu_{i}}\right)
$$

$$
\hat{\chi}^{\mu}(\sigma) n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sim
$$

$$
\prod_{i=1}^{1}\left(\sum_{\left(\sum_{\epsilon \in}(\mathrm{D})^{\mu}\right)}\right)
$$

$\prod_{i=1}^{1}\left(\sum_{\left(\operatorname{cec}_{1}\right)}(\mathrm{D})^{\mu}\right)$
 II

$$
\begin{gathered}
\prod_{i=1}^{1}\left(\sum_{\square \in \mu} c(\square)^{\nu_{i}}\right) \\
\prod_{i=1}^{\prime}\left(\sum_{\square \in \lambda} c(\square)^{\nu_{i}}-c(\mathbb{X})^{v_{i}}\right) \\
2 \\
\prod_{i=1}^{\prime}\left(\sum_{\square \in \lambda} c(\square)^{\nu_{i}}\right)
\end{gathered}
$$

$$
\begin{gathered}
n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma) \\
2 \\
n^{\frac{|\rho|-m_{1}(\rho)}{2}}\left(\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda}\right) \hat{\chi}^{\lambda}(\sigma)
\end{gathered}
$$

$$
\begin{gathered}
n^{\frac{|\rho|-m_{1}(\rho)}{2}} \sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}}(\sigma) \\
\imath \\
n^{\frac{|\rho|-m_{1}(\rho)}{2}}\left(\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda}\right) \hat{\chi}^{\lambda}(\sigma)
\end{gathered}
$$

$$
A \cdot B
$$

Telescopic sum

$$
P T_{u}^{\lambda}(\sigma)=\sum_{j<\overline{k_{1}}} \frac{\operatorname{dim} \mu_{j}^{(1)}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}^{(1)}}(\sigma)+\sum_{j<k_{2}} \frac{\operatorname{dim} \mu_{j}^{(2)}}{\operatorname{dim} \lambda} \hat{\chi}^{\mu_{j}^{(2)}}(\sigma)+\ldots
$$

Unfortunately, I cannot prove convergence...

Partial sum

$$
P S_{u}^{\lambda}(\sigma):=\sum_{i, j \leq u \operatorname{dim} \lambda} \frac{\pi^{\lambda}(\sigma)_{i, j}}{\operatorname{dim} \lambda}
$$

Visually

$u \operatorname{dim} \lambda$

Decomposition of PS

$$
\sigma \in S_{r}
$$

$$
P S_{u}^{\lambda}(\sigma)=\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} P S_{1}^{\mu_{j}}(\sigma)+\operatorname{Rem}
$$

Decomposition of PS

$$
\sigma \in S_{r}
$$

$$
P S_{u}^{\lambda}(\sigma)=\underbrace{\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} P S_{1}^{\mu_{j}}(\sigma)}+\operatorname{Rem}
$$

Decomposition of PS

$$
\sigma \in S_{r}
$$

$$
P S_{u}^{\lambda}(\sigma)=\underbrace{\sum_{j<\bar{k}} \frac{\operatorname{dim} \mu_{j}}{\operatorname{dim} \lambda} P S_{1}^{\mu_{j}}(\sigma)}+\operatorname{Rem}
$$

And we have convergence $P S_{u}^{\lambda}(\sigma) \rightarrow u \mathbb{E}_{P L}^{r}\left[P S_{i}(\sigma)\right]$

$\mathcal{T H} A N K$ YOU

