A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes

Eleni Tzanaki
joint work with Menelaos Karavelas

University of Crete

75th Sèminaire Lotharingien de Combinatoire, Bertinoro
September, 2015

European Union European Social Fund

Minkowski sum

- Given two sets P_{1} and P_{2}, their Minkowski sum is defined as

$$
P_{1}+P_{2}=\left\{p+q \mid p \in P_{1}, q \in P_{2}\right\}
$$

- If P_{1} and P_{2} are convex, then $P_{1}+P_{2}$ is also convex
- In particular, if P_{1} and P_{2} are convex polytopes, so is $P_{1}+P_{2}$.
- For the convex polytope case, $f_{k}\left(P_{1}+P_{2}\right)$ is maximized if P_{1} and P_{2} are in general position (cf. [Fukuda \& Weibel 2007]).

The general problem

- Let $P_{[r]}=P_{1}+P_{2}+\cdots+P_{r}$ be the Minkowski sum of r convex d-polytopes $P_{1}, P_{2}, \ldots, P_{r}$ in \mathbb{R}^{d} with n_{1}, \ldots, n_{r} vertices, respectively.

Question

What is the maximum number of k-faces $f_{k}\left(P_{[r]}\right)$ of $P_{[r]}$, for $0 \leq k \leq d-1$?

- In other words we seek to find a function $F_{k, d}\left(n_{1}, \ldots, n_{r}\right)$ such that, for all possible $P_{1}, P_{2}, \ldots, P_{r}$, we have

$$
f_{k}\left(P_{[r]}\right) \leq F_{k, d}\left(n_{1}, \ldots, n_{r}\right)
$$

and $F_{k, d}\left(n_{1}, \ldots, n_{r}\right)$ is as small as possible (ideally: tight).

Previous work - Early approaches

- Zonotope bounds (cf. [Gritzmann \& Sturmfels 1993]):

$$
f_{l}\left(P_{1}+P_{2}+\cdots+P_{r}\right) \leq 2\binom{n}{l} \sum_{j=0}^{d-1-l}\binom{n-l-1}{j}
$$

where n is the number of non-parallel edges of the r polytopes.

- The trivial bound (cf. [Fukuda \& Weibel 2007]): for $d \geq 2$ and $r \geq 2$:

$$
f_{k}\left(P_{1}+P_{2}+\cdots+P_{r}\right) \leq \sum_{\substack{1 \leq s_{i} \leq n_{i} \\ s_{1}+\ldots+s_{r}=k+r}} \prod_{i=1}^{r}\binom{n_{i}}{s_{i}}, \quad 0 \leq k \leq d-1
$$

- Tight for $d \geq 4, r \leq\left\lfloor\frac{d}{2}\right\rfloor$ and $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor-r$.
- Bounds on vertices:

$$
f_{0}\left(P_{1}+P_{2}+\cdots+P_{r}\right) \leq \prod_{i=1}^{r} n_{i}, \quad 2 \leq r \leq d-1
$$

- For $r \geq d$, the above bound cannot be attained (cf. [Sanyal 2009]).
- Tight upper bounds for $r \geq d$ have been shown in [Weibel 2012].

Previous work - Recent approaches

- Bounds for two polytopes in any dimension (cf. [Karavelas \& T. 2012]):

The UBTM for two d-polytopes in \mathbb{R}^{d}
Let P_{1}, P_{2} be d-polytopes, $d \geq 2$, with $n_{j} \geq d+1$ vertices, $j=1,2$. Then:
$f_{k-1}\left(P_{1}+P_{2}\right) \leq f_{k}\left(C_{d+1}\left(n_{1}+n_{2}\right)\right)-\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k+1-i} \sum_{j=1}^{2}\binom{n_{j}-d-2+i}{i}$,
where $1 \leq k \leq d$, and $C_{d}(n)$ stands for the cyclic d-polytope with n vertices. These bounds are tight.

- Result extended to three polytopes in [Karavelas, Konaxis \& T. 2013].
- Problem fully resolved in [Adiprasito \& Sanyal 2014] using techniques from Combinatorial Commutative Algebra.

Our result

Theorem [Karavelas \& T. 2015]

Let P_{1}, \ldots, P_{r} be $r d$-polytopes in \mathbb{R}^{d} with $n_{i} \geq d+1$ vertices, $1 \leq i \leq r$. Then, for $r<d$ and all $1 \leq k \leq d$, we have:

$$
\begin{aligned}
f_{k-1}\left(P_{1}+\cdots+P_{r}\right) \leq & \sum_{\emptyset \subset R \subseteq[r]}(-1)^{r-|R|} f_{k+r}\left(C_{d+r-1}\left(n_{R}\right)\right) \\
& +\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d+1+i} \sum_{\emptyset \subset R \subset[r]} \Phi_{i, d}^{(r-|R|)}\left(\boldsymbol{n}_{R}\right)
\end{aligned}
$$

$C_{\delta}(\nu)$ is the cyclic δ-polytope with ν vertices, $n_{R}=\sum_{i \in R} n_{i}, \boldsymbol{n}_{R}=\left(n_{i}: i \in R\right)$ and $\Phi_{k, d}^{(m)}\left(\boldsymbol{n}_{R}\right)$ is defined by:

$$
\begin{aligned}
\Phi_{k, d}^{(0)}\left(\boldsymbol{n}_{R}\right) & = \begin{cases}\sum_{\emptyset \subset S \subseteq R}(-1)^{|R|-|S|}\binom{n_{S}-d-|R|+k}{k}, & 0 \leq k \leq\left\lfloor\frac{d+|R|-1}{2}\right\rfloor \\
\sum_{\emptyset \subset S \subseteq R}(-1)^{|R|-|S|}\binom{n_{S}-1-k}{d-|R|-1-k}+\sum_{\emptyset \subset S \subset R} \Phi_{d+|R|-1-k, d}^{(|R|-|S|)}\left(\boldsymbol{n}_{S}\right), & k>\left\lfloor\frac{d+|R|-1}{2}\right\rfloor\end{cases} \\
\Phi_{k, d}^{(m)}\left(\boldsymbol{n}_{R}\right) & =\Phi_{k, d}^{(m-1)}\left(\boldsymbol{n}_{R}\right)-\Phi_{k-1, d}^{(m-1)}\left(\boldsymbol{n}_{R}\right), \quad m>1
\end{aligned}
$$

This bound is tight.

Our approach

- We consider the Cayley polytope of P_{1}, \ldots, P_{r} and we adapt the steps of McMullen's proof for the UBT
- simplicial polytopes
- shellings

Our approach

- We consider the Cayley polytope of P_{1}, \ldots, P_{r} and we adapt the steps of McMullen's proof for the UBT
- simplicial polytopes
- shellings
- Given a d-polytope P
- $\boldsymbol{f}(P)=\left(f_{-1}(P), f_{0}(P), \ldots, f_{d-1}(P)\right)$, where $f_{k}(P)=\#$ of k-faces of P
- $\boldsymbol{h}(P)=\left(h_{0}(P), h_{1}(P), \ldots, h_{d}(P)\right)$
where

$$
h_{k}(P):=\sum_{i=0}^{k}(-1)^{k-i}\binom{d-i}{d-k} f_{i-1}(P), \quad 0 \leq k \leq d .
$$

Our approach

- We consider the Cayley polytope of P_{1}, \ldots, P_{r} and we adapt the steps of McMullen's proof for the UBT
- simplicial polytopes
- shellings
- Given a d-polytope P
- $\boldsymbol{f}(P)=\left(f_{-1}(P), f_{0}(P), \ldots, f_{d-1}(P)\right)$, where $f_{k}(P)=\#$ of k-faces of P
- $\boldsymbol{h}(P)=\left(h_{0}(P), h_{1}(P), \ldots, h_{d}(P)\right)$
where

$$
h_{k}(P):=\sum_{i=0}^{k}(-1)^{k-i}\binom{d-i}{d-k} f_{i-1}(P), \quad 0 \leq k \leq d
$$

- To bound $f_{k}(P)$, it suffices to bound $h_{k}(P)$:

$$
f_{k-1}(P)=\sum_{i=0}^{k}\binom{d-i}{k-i} h_{i}(P), \quad 0 \leq k \leq d
$$

Our approach

- We consider the Cayley polytope of P_{1}, \ldots, P_{r} and we adapt the steps of McMullen's proof for the UBT
- simplicial polytopes
- shellings
- Given a d-polytope P
- $\boldsymbol{f}(P)=\left(f_{-1}(P), f_{0}(P), \ldots, f_{d-1}(P)\right)$, where $f_{k}(P)=\#$ of k-faces of P
- $\boldsymbol{h}(P)=\left(h_{0}(P), h_{1}(P), \ldots, h_{d}(P)\right)$
where

$$
h_{k}(P):=\sum_{i=0}^{k}(-1)^{k-i}\binom{d-i}{d-k} f_{i-1}(P), \quad 0 \leq k \leq d
$$

- To bound $f_{k}(P)$, it suffices to bound $h_{k}(P)$:

$$
f_{k-1}(P)=\sum_{i=0}^{k}\binom{d-i}{k-i} h_{i}(P), \quad 0 \leq k \leq d .
$$

- For simplicial polytopes: $h_{k}(P)$ counts the number of facets of a shelling with restriction of size k

Our approach

- We consider the Cayley polytope of P_{1}, \ldots, P_{r} and we adapt the steps of McMullen's proof for the UBT
- simplicial polytopes
- shellings
- Given a d-polytope P
- $\boldsymbol{f}(P)=\left(f_{-1}(P), f_{0}(P), \ldots, f_{d-1}(P)\right)$, where $f_{k}(P)=\#$ of k-faces of P
- $\boldsymbol{h}(P)=\left(h_{0}(P), h_{1}(P), \ldots, h_{d}(P)\right)$
where

$$
h_{k}(P):=\sum_{i=0}^{k}(-1)^{k-i}\binom{d-i}{d-k} f_{i-1}(P), \quad 0 \leq k \leq d
$$

- To bound $f_{k}(P)$, it suffices to bound $h_{k}(P)$:

$$
f_{k-1}(P)=\sum_{i=0}^{k}\binom{d-i}{k-i} h_{i}(P), \quad 0 \leq k \leq d
$$

- For simplicial polytopes: $\quad h_{k}(P)$ counts the number of vertices of the oriented dual graph of P, of in-degree k

The Cayley embedding \& the Cayley trick

- Cayley embedding: Let $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r-1}$ be the (standard) affine basis of \mathbb{R}^{r-1}. We embed each P_{i} in \mathbb{R}^{d+r-1} using the inclusion $\mu_{i}(\boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{e}_{i-1}\right)$
- Cayley polytope: $\mathcal{C}_{[r]}=\operatorname{conv}\left(P_{1}, \ldots, P_{r}\right)$
- Cayley trick: the Minkowski sum $P_{1}+\cdots+P_{r}$ is the intersection of $\mathcal{C}_{[r]}$ with the d-flat \bar{W} of \mathbb{R}^{d+r-1}

$$
\bar{W}=\left\{\frac{1}{r} \boldsymbol{e}_{0}+\frac{1}{r} \boldsymbol{e}_{1}+\cdots+\frac{1}{r} \boldsymbol{e}_{r-1}\right\} \times \mathbb{R}^{d}
$$

The Cayley embedding \& the Cayley trick

- Cayley embedding: Let $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r-1}$ be the (standard) affine basis of \mathbb{R}^{r-1}. We embed each P_{i} in \mathbb{R}^{d+r-1} using the inclusion $\mu_{i}(\boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{e}_{i-1}\right)$
- Cayley polytope: $\mathcal{C}_{[r]}=\operatorname{conv}\left(P_{1}, \ldots, P_{r}\right)$
- Cayley trick: the Minkowski sum $P_{1}+\cdots+P_{r}$ is the intersection of $\mathcal{C}_{[r]}$ with the d-flat \bar{W} of \mathbb{R}^{d+r-1}

$$
\bar{W}=\left\{\frac{1}{r} \boldsymbol{e}_{0}+\frac{1}{r} \boldsymbol{e}_{1}+\cdots+\frac{1}{r} \boldsymbol{e}_{r-1}\right\} \times \mathbb{R}^{d}
$$

The Cayley embedding \& the Cayley trick

- Cayley embedding: Let $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r-1}$ be the (standard) affine basis of \mathbb{R}^{r-1}. We embed each P_{i} in \mathbb{R}^{d+r-1} using the inclusion $\mu_{i}(\boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{e}_{i-1}\right)$
- Cayley polytope: $\mathcal{C}_{[r]}=\operatorname{conv}\left(P_{1}, \ldots, P_{r}\right)$
- Cayley trick: the Minkowski sum $P_{1}+\cdots+P_{r}$ is the intersection of $\mathcal{C}_{[r]}$ with the d-flat \bar{W} of \mathbb{R}^{d+r-1}

$$
\bar{W}=\left\{\frac{1}{r} \boldsymbol{e}_{0}+\frac{1}{r} \boldsymbol{e}_{1}+\cdots+\frac{1}{r} \boldsymbol{e}_{r-1}\right\} \times \mathbb{R}^{d}
$$

The Cayley embedding \& the Cayley trick

- Cayley embedding: Let $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r-1}$ be the (standard) affine basis of \mathbb{R}^{r-1}. We embed each P_{i} in \mathbb{R}^{d+r-1} using the inclusion $\mu_{i}(\boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{e}_{i-1}\right)$
- Cayley polytope: $\mathcal{C}_{[r]}=\operatorname{conv}\left(P_{1}, \ldots, P_{r}\right)$
- Cayley trick: the Minkowski sum $P_{1}+\cdots+P_{r}$ is the intersection of $\mathcal{C}_{[r]}$ with the d-flat \bar{W} of \mathbb{R}^{d+r-1}

$$
\bar{W}=\left\{\frac{1}{r} \boldsymbol{e}_{0}+\frac{1}{r} \boldsymbol{e}_{1}+\cdots+\frac{1}{r} \boldsymbol{e}_{r-1}\right\} \times \mathbb{R}^{d}
$$

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Simplicialization of \mathcal{C}_{R}

- WLOG assume that
- each P_{i} is a simplicial d-polytope
- all faces in $\mathcal{F}_{R}, \emptyset \subset R \subseteq[r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each $\mathcal{C}_{R}, \emptyset \subset R \subset[r]$:

- Let \mathcal{Q}_{R} be the simplicial $(d+|R|-1)$-polytope we obtain after the "simplicialization" of \mathcal{C}_{R}

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq[r]$ we have:

- $f_{k}\left(\partial \mathcal{Q}_{R}\right)=\sum_{\emptyset \subset S \subseteq R} \sum_{i=0}^{|R|-|S|} i!S_{|R|-|S|+1}^{i+1} f_{k-i}\left(\mathcal{F}_{S}\right)$
- $f_{k}\left(\partial \mathcal{Q}_{R}\right)=f_{k}\left(\mathcal{K}_{[r]}\right)+\sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1}(i+1)!S_{|R|-|S|}^{i+1} f_{k-1-i}\left(\mathcal{K}_{S}\right)$, where:

$$
S_{m}^{k}:=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{m}, \quad 0 \leq k \leq m
$$

are the Stirling numbers of the second kind.

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq[r]$ we have:

- $h_{k}\left(\partial \mathcal{Q}_{R}\right)=h_{k}\left(\mathcal{F}_{R}\right)+\sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E_{|R|-|S|}^{i} h_{k-i}\left(\mathcal{F}_{S}\right)$
- $h_{k}\left(\partial \mathcal{Q}_{R}\right)=h_{k}\left(\mathcal{K}_{R}\right)+\sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E_{|R|-|S|}^{i} h_{k-1-i}\left(\mathcal{K}_{S}\right)$
where:

$$
E_{m}^{k}=\sum_{i=0}^{k}(-1)^{i}\binom{m+1}{i}(k+1-i)^{m}, \quad m \geq k+1>0
$$

are the Eulerian numbers.

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq[r]$ we have:

- $h_{k}\left(\partial \mathcal{Q}_{R}\right)=h_{k}\left(\mathcal{F}_{R}\right)+\sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E_{|R|-|S|}^{i} h_{k-i}\left(\mathcal{F}_{S}\right)$
- $h_{k}\left(\partial \mathcal{Q}_{R}\right)=h_{k}\left(\mathcal{K}_{R}\right)+\sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E_{|R|-|S|}^{i} h_{k-1-i}\left(\mathcal{K}_{S}\right)$
where:

$$
E_{m}^{k}=\sum_{i=0}^{k}(-1)^{i}\binom{m+1}{i}(k+1-i)^{m}, \quad m \geq k+1>0
$$

are the Eulerian numbers.

Lemma (DS for the Cayley Polytope)

$$
h_{d+|R|-1-k}\left(\mathcal{F}_{R}\right)=h_{k}\left(\mathcal{K}_{R}\right), \quad \text { for all } 0 \leq k \leq d+|R|-1 \text { and } \emptyset \subset R \subseteq[r]
$$

Lemma (DS for simplicial polytopes)

$$
h_{k}(P)=h_{d-k}(P), \text { for all } 0 \leq k \leq d
$$

Link/non-link relations (use shellings)

$$
(k+1) h_{k+1}(\partial P)+(\operatorname{dim}(P)-k) h_{k}(\partial P)=\sum_{v \in \operatorname{vert}(P)} h_{k}(\partial P / v)
$$

$$
h_{k}(\partial P / v) \leq h_{k}(\partial P)
$$

Link/non-link relations (use shellings)

$$
(k+1) h_{k+1}\left(\partial \mathcal{Q}_{R}\right)+(d+|R|-1-k) h_{k}\left(\partial \mathcal{Q}_{R}\right)=\sum_{v \in \operatorname{vert}\left(\mathcal{Q}_{R}\right)} h_{k}\left(\partial \mathcal{Q}_{R} / v\right)
$$

$$
h_{k}\left(\partial \mathcal{Q}_{R} / v\right) \leq h_{k}\left(\partial \mathcal{Q}_{R}\right)
$$

Link/non-link relations (use shellings)

$$
(k+1) h_{k+1}\left(\partial \mathcal{Q}_{R}\right)+(d+|R|-1-k) h_{k}\left(\partial \mathcal{Q}_{R}\right)=\sum_{v \in \operatorname{vert}\left(\mathcal{Q}_{R}\right)} h_{k}\left(\partial \mathcal{Q}_{R} / v\right)
$$

Lemma

For any $\emptyset \subset R \subseteq[r]$ and all $0 \leq k \leq d+|R|-2$ we have:

$$
\begin{gathered}
(k+1) h_{k+1}\left(\mathcal{F}_{R}\right)+(d+|R|-1-k) h_{k}\left(\mathcal{F}_{R}\right)=\sum_{v \in V_{R}} h_{k}\left(\mathcal{F}_{R} / v\right) \\
h_{k}\left(\partial \mathcal{Q}_{R} / v\right) \leq h_{k}\left(\partial \mathcal{Q}_{R}\right)
\end{gathered}
$$

Lemma

For all $v \in \operatorname{vert}\left(P_{i}\right)$ and all $0 \leq k \leq d+|R|-2$ we have:

$$
h_{k}\left(\left(\mathcal{F}_{R} \cup \mathcal{F}_{R \backslash\{i\}}\right) / v\right) \leq h_{k}\left(\mathcal{F}_{R} \cup \mathcal{F}_{R \backslash\{i\}}\right)
$$

Link/non-link relations (use shellings)

$$
(k+1) h_{k+1}\left(\partial \mathcal{Q}_{R}\right)+(d+|R|-1-k) h_{k}\left(\partial \mathcal{Q}_{R}\right)=\sum_{v \in \operatorname{vert}\left(\mathcal{Q}_{R}\right)} h_{k}\left(\partial \mathcal{Q}_{R} / v\right)
$$

Lemma

For any $\emptyset \subset R \subseteq[r]$ and all $0 \leq k \leq d+|R|-2$ we have:

$$
\begin{gathered}
(k+1) h_{k+1}\left(\mathcal{F}_{R}\right)+(d+|R|-1-k) h_{k}\left(\mathcal{F}_{R}\right)=\sum_{v \in V_{R}} h_{k}\left(\mathcal{F}_{R} / v\right) \\
h_{k}\left(\partial \mathcal{Q}_{R} / v\right) \leq h_{k}\left(\partial \mathcal{Q}_{R}\right)
\end{gathered}
$$

Lemma

For all $v \in \operatorname{vert}\left(P_{i}\right)$ and all $0 \leq k \leq d+|R|-2$ we have:

$$
h_{k}\left(\left(\mathcal{F}_{R} \cup \mathcal{F}_{R \backslash\{i\}}\right) / v\right) \leq h_{k}\left(\mathcal{F}_{R} \cup \mathcal{F}_{R \backslash\{i\}}\right)
$$

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \leq k \leq d+|R|-1$, and all $\emptyset \subset R \subseteq[r]$, we have:

$$
h_{k+1}\left(\mathcal{F}_{R}\right) \leq \frac{n_{R}-(d+|R|-1)+k}{k+1} h_{k}\left(\mathcal{F}_{R}\right)+\sum_{i \in R} \frac{n_{i}}{k+1} g_{k}\left(\mathcal{F}_{R \backslash\{i\}}\right) .
$$

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \leq k \leq d+|R|-1$, and all $\emptyset \subset R \subseteq[r]$, we have:

$$
h_{k+1}\left(\mathcal{F}_{R}\right) \leq \frac{n_{R}-(d+|R|-1)+k}{k+1} h_{k}\left(\mathcal{F}_{R}\right)+\sum_{i \in R} \frac{n_{i}}{k+1} g_{k}\left(\mathcal{F}_{R \backslash\{i\}}\right) .
$$

Lemma (the recurrence for polytopes)
For every simplicial d-polytope P and all $0 \leq k \leq d$:

$$
h_{k+1}(P) \leq \frac{n-d+k}{k+1} h_{k}(P)
$$

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \leq k \leq d+|R|-1$, and all $\emptyset \subset R \subseteq[r]$, we have:

$$
h_{k+1}\left(\mathcal{F}_{R}\right) \leq \frac{n_{R}-(d+|R|-1)+k}{k+1} h_{k}\left(\mathcal{F}_{R}\right)+\sum_{i \in R} \frac{n_{i}}{k+1} g_{k}\left(\mathcal{F}_{R \backslash\{i\}}\right) .
$$

Lemma (the recurrence for polytopes)
For every simplicial d-polytope P and all $0 \leq k \leq d$:

$$
h_{k+1}(P) \leq \frac{n-d+k}{k+1} h_{k}(P)
$$

Induction on $k \rightsquigarrow h_{k}(P) \leq\binom{ n-d-1+k}{k}$

Upper bounds for $h_{k}(\mathcal{F})$ and $h_{k}(\mathcal{K})$

Lemma

For all $0 \leq k \leq d+|R|-1$, we have:

- $h_{k}\left(\mathcal{F}_{R}\right) \leq \Phi_{k, d}^{(0)}\left(\boldsymbol{n}_{R}\right)$,
- $h_{k}\left(\mathcal{K}_{R}\right) \leq \Psi_{k, d}\left(\boldsymbol{n}_{R}\right)$.

First equality holds if \mathcal{C}_{R} is R-neighborly.
Second equality holds if, for all $\emptyset \subset S \subseteq R, \mathcal{C}_{S}$ is S-neighborly (Minkowki-neighborly).
$\Phi_{k, d}^{(m)}\left(\boldsymbol{n}_{R}\right)$ and $\Psi_{k, d}\left(\boldsymbol{n}_{R}\right)$ are defined via the following conditions:

- $\Phi_{k, d}^{(0)}\left(\boldsymbol{n}_{R}\right)=\sum_{\emptyset \subset S \subseteq R}(-1)^{|R|-|S|}\binom{n_{S}-d-|R|+k}{k}, 0 \leq k \leq\left\lfloor\frac{d+|R|-1}{2}\right\rfloor$,
- $\Phi_{k, d}^{(m)}\left(\boldsymbol{n}_{R}\right)=\Phi_{k, d}^{(m-1)}\left(\boldsymbol{n}_{R}\right)-\Phi_{k-1, d}^{(m-1)}\left(\boldsymbol{n}_{R}\right), m>0$,
- $\Psi_{k, d}\left(\boldsymbol{n}_{R}\right)=\sum_{\emptyset \subset S \subseteq R} \Phi_{k, d}^{(|R|-|S|)}\left(\boldsymbol{n}_{S}\right)$,
- $\Phi_{k, d}^{(0)}\left(\boldsymbol{n}_{R}\right)=\Psi_{d+|R|-1-k, d}\left(\boldsymbol{n}_{R}\right)$,
where $\boldsymbol{n}_{R}=\left(n_{i}: i \in R\right)$.

Upper bounds for the Minkowski sum

Cayley trick:

$$
f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1
$$

Upper bounds for the Minkowski sum
Cayley trick:

$$
f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1
$$

$$
f_{k-1}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)
$$

Upper bounds for the Minkowski sum
Cayley trick:

$$
f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1
$$

$$
f_{k-1}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}
$$

Upper bounds for the Minkowski sum

Cayley trick:

$$
\begin{gathered}
f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1 \\
f_{k-1}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}(\bullet) \\
=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} h_{d+r-1-i}\left(\mathcal{F}_{[r]}\right)
\end{gathered}
$$

Upper bounds for the Minkowski sum

Cayley trick:

$$
\begin{aligned}
& f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1 \\
& f_{k-1}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}(\bullet) \\
&= \sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} h_{i}\left(\mathcal{K}_{[r]}\right)
\end{aligned}
$$

Upper bounds for the Minkowski sum
Cayley trick:

$$
\begin{aligned}
& f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1 \\
& \begin{aligned}
f_{k-1}\left(\mathcal{F}_{[r]}\right) & =\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}(\bullet) \\
& =\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} h_{i}\left(\mathcal{K}_{[r]}\right) \\
& \left.\leq \frac{\sum_{i=0}^{2}}{\sum_{i=0}^{2}}\binom{d+r-1-i}{k-i} \Phi_{i, d}^{(0)}\left(\boldsymbol{n}_{[r]}\right)+\sum_{i=1}^{2}\right\rfloor
\end{aligned}
\end{aligned}
$$

Upper bounds for the Minkowski sum
Cayley trick:

$$
\begin{aligned}
& f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1 \\
& \begin{aligned}
f_{k-1}\left(\mathcal{F}_{[r]}\right) & =\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}(\bullet) \\
& =\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} h_{i}\left(\mathcal{K}_{[r]}\right) \\
& \leq \sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} \Phi_{i, d}^{(0)}\left(\boldsymbol{n}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}(\underset{k-d-r+1+i}{i}) \Psi_{k, d}\left(\boldsymbol{n}_{[r]}\right) \\
& =\ldots
\end{aligned}
\end{aligned}
$$

Upper bounds for the Minkowski sum

Cayley trick:

$$
f_{k-r}\left(P_{[r]}\right)=f_{k-1}\left(\mathcal{F}_{[r]}\right), \quad r \leq k \leq d+r-1
$$

$$
\begin{aligned}
f_{k-1}\left(\mathcal{F}_{[r]}\right) & =\sum_{i=0}^{d+r-1}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)=\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}(\bullet)+\sum_{i=\left\lfloor\frac{d+r-1}{2}\right\rfloor+1}^{d+r-1}(\bullet) \\
& =\sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} h_{i}\left(\mathcal{F}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} h_{i}\left(\mathcal{K}_{[r]}\right) \\
& \leq \sum_{i=0}^{\left\lfloor\frac{d+r-1}{2}\right\rfloor}\binom{d+r-1-i}{k-i} \Phi_{i, d}^{(0)}\left(\boldsymbol{n}_{[r]}\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}\binom{i}{k-d-r+1+i} \Psi_{k, d}\left(\boldsymbol{n}_{[r]}\right) \\
& =\ldots \\
& \left.=\sum_{\emptyset \subset R \subseteq[r]}(-1)^{r-|R|} f_{k}\left(C_{d+r-1}\left(n_{R}\right)\right)+\sum_{i=0}^{\left\lfloor\frac{d+r-2}{2}\right\rfloor}{ }_{k-d-r+1+i}^{j}\right) \sum_{\emptyset \subset R \subset[r]} \Phi_{i, d}^{(r-|R|)}
\end{aligned}
$$

Tight bound construction

Theorem

There exist d-polytopes $P_{i}, 1 \leq i \leq r$, for which the upper bounds are attained.

- Define the curves $(1 \leq i \leq r)$:

$$
\gamma_{i}(t):=\left(0, \ldots, 0, t, 0, \ldots, 0, t^{2}, \ldots, t^{d-r+1}\right)
$$

Tight bound construction

Theorem

There exist d-polytopes $P_{i}, 1 \leq i \leq r$, for which the upper bounds are attained.

- Define the curves $(1 \leq i \leq r)$:

$$
\gamma_{i}(t):=\left(0, \ldots, 0, t, 0, \ldots, 0, t^{2}, \ldots, t^{d-r+1}\right)
$$

- $P_{i}:=\operatorname{conv}\left(\gamma_{i}\left(t_{i, 1}\right), \ldots, \gamma_{i}\left(t_{i, n_{i}}\right)\right)$
where $t_{i, j}:=x_{i, j} \tau^{i}$ are chosen so that
- $0<x_{i, 1}<x_{i, 2}<\cdots<x_{i, n_{i}}$ are arbitrary real numbers, and
- $\tau>0$ real parameter

Tight bound construction

Theorem

There exist d-polytopes $P_{i}, 1 \leq i \leq r$, for which the upper bounds are attained.

- Define the curves $(1 \leq i \leq r)$:

$$
\gamma_{i}(t):=\left(0, \ldots, 0, t, 0, \ldots, 0, t^{2}, \ldots, t^{d-r+1}\right)
$$

- $P_{i}:=\operatorname{conv}\left(\gamma_{i}\left(t_{i, 1}\right), \ldots, \gamma_{i}\left(t_{i, n_{i}}\right)\right)$
where $t_{i, j}:=x_{i, j} \tau^{i}$ are chosen so that
- $0<x_{i, 1}<x_{i, 2}<\cdots<x_{i, n_{i}}$ are arbitrary real numbers, and
- $\tau>0$ real parameter
- For $\tau \rightarrow 0^{+}$sufficiently small, the upper bounds are attained.

Tight bound construction

Theorem

There exist d-polytopes $P_{i}, 1 \leq i \leq r$, for which the upper bounds are attained.

- Define the curves $(1 \leq i \leq r)$:

$$
\gamma_{i}(t):=\left(0, \ldots, 0, t, 0, \ldots, 0, t^{2}, \ldots, t^{d-r+1}\right)
$$

- $P_{i}:=\operatorname{conv}\left(\gamma_{i}\left(t_{i, 1}\right), \ldots, \gamma_{i}\left(t_{i, n_{i}}\right)\right)$
where $t_{i, j}:=x_{i, j} \tau^{i}$ are chosen so that
- $0<x_{i, 1}<x_{i, 2}<\cdots<x_{i, n_{i}}$ are arbitrary real numbers, and
- $\tau>0$ real parameter
- For $\tau \rightarrow 0^{+}$sufficiently small, the upper bounds are attained.
- To make the construction full dimensional:

$$
\widetilde{\gamma}_{i}(t ; \zeta):=\left(\zeta t^{d-r+2}, \ldots, \zeta t^{d-r+i}, t, \zeta t^{d-r+i+2}, \ldots, \zeta t^{d+1}, t^{2}, t^{3}, \ldots, t^{d-r+1}\right)
$$

- For $\zeta \rightarrow 0^{+}$sufficiently small, the combinatorial structure does not change

Open problems

We are interested in devising tight upper bounds for the following three settings:

- When we are restricted to the class of simple polytopes
- When we know the numbers of facets of the polytopes, rather than their number of vertices.
- When we know the f-vector of the polytopes, rather than their number of vertices.

Open problems

We are interested in devising tight upper bounds for the following three settings:

- When we are restricted to the class of simple polytopes
- When we know the numbers of facets of the polytopes, rather than their number of vertices.
- When we know the f-vector of the polytopes, rather than their number of vertices.

Thank you for your attention!

