Our contribution

The geometric approach 0000000

Tight-bound construction \circ

A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes

Eleni Tzanaki

joint work with Menelaos Karavelas

University of Crete

75th Sèminaire Lotharingien de Combinatoire, Bertinoro

September, 2015

Our contribution

The geometric approach 0000000

Tight-bound construction 0

Minkowski sum

• Given two sets P_1 and P_2 , their Minkowski sum is defined as

 $P_1 + P_2 = \{ p + q \, | \, p \in P_1, q \in P_2 \}.$

- If P_1 and P_2 are convex, then $P_1 + P_2$ is also convex
 - In particular, if P_1 and P_2 are convex polytopes, so is $P_1 + P_2$.
- For the convex polytope case, $f_k(P_1 + P_2)$ is maximized if P_1 and P_2 are in general position (cf. [Fukuda & Weibel 2007]).

Our contribution

The geometric approach 0000000

Tight-bound construction

The general problem

• Let $P_{[r]} = P_1 + P_2 + \dots + P_r$ be the Minkowski sum of r convex d-polytopes P_1, P_2, \dots, P_r in \mathbb{R}^d with n_1, \dots, n_r vertices, respectively.

Question

What is the maximum number of k-faces $f_k(P_{[r]})$ of $P_{[r]}$, for $0 \le k \le d-1$?

• In other words we seek to find a function $F_{k,d}(n_1, \ldots, n_r)$ such that, for all possible P_1, P_2, \ldots, P_r , we have

$$f_k(P_{[r]}) \le F_{k,d}(n_1,\ldots,n_r)$$

and $F_{k,d}(n_1, \ldots, n_r)$ is as small as possible (ideally: *tight*).

Our contribution

The geometric approach

Tight-bound construction 0

Previous work - Early approaches

• Zonotope bounds (cf. [Gritzmann & Sturmfels 1993]):

$$f_l(P_1 + P_2 + \dots + P_r) \le 2\binom{n}{l} \sum_{j=0}^{d-1-l} \binom{n-l-1}{j},$$

where n is the number of non-parallel edges of the r polytopes.

• The *trivial* bound (cf. [Fukuda & Weibel 2007]): for $d \ge 2$ and $r \ge 2$:

$$f_k(P_1 + P_2 + \dots + P_r) \le \sum_{\substack{1 \le s_i \le n_i \\ s_1 + \dots + s_r = k + r}} \prod_{i=1}^r \binom{n_i}{s_i}, \quad 0 \le k \le d-1.$$

• Tight for $d \ge 4$, $r \le \lfloor \frac{d}{2} \rfloor$ and $0 \le k \le \lfloor \frac{d}{2} \rfloor - r$.

Bounds on vertices:

$$f_0(P_1 + P_2 + \dots + P_r) \le \prod_{i=1}^r n_i, \qquad 2 \le r \le d-1.$$

For $r \ge d$, the above bound cannot be attained (cf. [Sanyal 2009]).

Fight upper bounds for $r \ge d$ have been shown in [Weibel 2012].

Our contribution

The geometric approach 0000000

Tight-bound construction 0

Previous work – Recent approaches

• Bounds for two polytopes in any dimension (cf. [Karavelas & T. 2012]):

The UBTM for two *d*-polytopes in \mathbb{R}^d

Let P_1 , P_2 be *d*-polytopes, $d \ge 2$, with $n_j \ge d+1$ vertices, j = 1, 2. Then:

$$f_{k-1}(P_1+P_2) \le f_k(C_{d+1}(n_1+n_2)) - \sum_{i=0}^{\lfloor \frac{d+1}{2} \rfloor} {d+1-i \choose k+1-i} \sum_{j=1}^2 {n_j - d - 2 + i \choose i},$$

where $1 \le k \le d$, and $C_d(n)$ stands for the cyclic *d*-polytope with *n* vertices. These bounds are tight.

- Result extended to three polytopes in [Karavelas, Konaxis & T. 2013].
- Problem fully resolved in [Adiprasito & Sanyal 2014] using techniques from Combinatorial Commutative Algebra.

Our contribution

The geometric approach 0000000

Tight-bound construction 0

Our result

Theorem [Karavelas & T. 2015]

Let P_1, \ldots, P_r be r d-polytopes in \mathbb{R}^d with $n_i \ge d+1$ vertices, $1 \le i \le r$. Then, for r < d and all $1 \le k \le d$, we have:

$$f_{k-1}(P_1 + \dots + P_r) \leq \sum_{\emptyset \subset R \subseteq [r]} (-1)^{r-|R|} f_{k+r} (C_{d+r-1}(n_R)) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} (\sum_{k-d+1+i}^{i}) \sum_{\emptyset \subset R \subseteq [r]} \Phi_{i,d}^{(r-|R|)}(n_R)$$

 $C_{\delta}(\nu)$ is the cyclic δ -polytope with ν vertices, $n_R = \sum_{i \in R} n_i$, $n_R = (n_i : i \in R)$ and $\Phi_{k,d}^{(m)}(n_R)$ is defined by:

$$\Phi_{k,d}^{(0)}(\boldsymbol{n}_{R}) = \begin{cases} \sum_{\substack{\emptyset \subset S \subseteq R \\ \bigcup \subseteq S \subseteq \subseteq G \\ \xi, d}} (-1)^{|R| - |S|} {n_{S} - d - |R| + k \choose k}, & 0 \le k \le \lfloor \frac{d + |R| - 1}{2} \rfloor \\ \sum_{\substack{\emptyset \subset S \subseteq G \\ \bigcup \subseteq S \subseteq G \\ k, d}} (-1)^{|R| - |S|} {n_{S} - 1 - k \choose d - |R| - 1 - k} + \sum_{\substack{\emptyset \subset S \subset R \\ \emptyset \subset S \subset R \\ \emptyset \subset S \subseteq R}} \Phi_{d+|R| - 1 - k, d}^{(|R| - |S|)}(\boldsymbol{n}_{S}), & k > \lfloor \frac{d + |R| - 1}{2} \rfloor \end{cases}$$

This bound is tight.

Intro	du	cti	on
000	0		

The geometric approach 0000000

Tight-bound construction 0

Our approach

- We consider the *Cayley polytope* of P_1, \ldots, P_r and we adapt the steps of McMullen's proof for the UBT
 - simplicial polytopes
 - shellings

ntrod	uct	ion	
0000			

Our contribution

The geometric approach

Tight-bound construction 0

Our approach

- We consider the Cayley polytope of P₁,..., P_r and we adapt the steps of McMullen's proof for the UBT
 - simplicial polytopes
 - shellings
- Given a *d*-polytope *P*
 - $f(P) = (f_{-1}(P), f_0(P), \dots, f_{d-1}(P))$, where $f_k(P) = \#$ of k-faces of P
 - $\boldsymbol{h}(P) = (h_0(P), h_1(P), \dots, h_d(P))$

where

$$h_k(P) := \sum_{i=0}^k (-1)^{k-i} {\binom{d-i}{d-k}} f_{i-1}(P), \quad 0 \le k \le d.$$

The geometric approach 0000000

Tight-bound construction 0

Our approach

- We consider the *Cayley polytope* of P₁,..., P_r and we adapt the steps of McMullen's proof for the UBT
 - simplicial polytopes
 - shellings
- Given a *d*-polytope *P*
 - $f(P) = (f_{-1}(P), f_0(P), \dots, f_{d-1}(P))$, where $f_k(P) = \#$ of k-faces of P
 - $h(P) = (h_0(P), h_1(P), \dots, h_d(P))$ where

$$h_k(P) := \sum_{i=0}^k (-1)^{k-i} {\binom{d-i}{d-k}} f_{i-1}(P), \quad 0 \le k \le d.$$

• To bound $f_k(P)$, it suffices to bound $h_k(P)$:

$$f_{k-1}(P) = \sum_{i=0}^{k} {\binom{d-i}{k-i}} h_i(P), \qquad 0 \le k \le d.$$

The geometric approach

Tight-bound construction 0

Our approach

- We consider the *Cayley polytope* of P_1, \ldots, P_r and we adapt the steps of McMullen's proof for the UBT
 - simplicial polytopes
 - shellings
- Given a *d*-polytope *P*
 - $f(P) = (f_{-1}(P), f_0(P), \dots, f_{d-1}(P))$, where $f_k(P) = \#$ of k-faces of P

•
$$h(P) = (h_0(P), h_1(P), \dots, h_d(P))$$

where

$$h_k(P) := \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}(P), \quad 0 \le k \le d.$$

• To bound $f_k(P)$, it suffices to bound $h_k(P)$:

$$f_{k-1}(P) = \sum_{i=0}^{k} {\binom{d-i}{k-i}} h_i(P), \qquad 0 \le k \le d.$$

- For simplicial polytopes: $h_k({\cal P})$ counts the number of facets of a shelling with restriction of size k

The geometric approach

Tight-bound construction 0

Our approach

- We consider the *Cayley polytope* of P_1, \ldots, P_r and we adapt the steps of McMullen's proof for the UBT
 - simplicial polytopes
 - shellings
- Given a *d*-polytope *P*
 - $f(P) = (f_{-1}(P), f_0(P), \dots, f_{d-1}(P))$, where $f_k(P) = \#$ of k-faces of P

$$\boldsymbol{h}(P) = (h_0(P), h_1(P), \dots, h_d(P))$$

where

$$h_k(P) := \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}(P), \quad 0 \le k \le d.$$

• To bound $f_k(P)$, it suffices to bound $h_k(P)$:

$$f_{k-1}(P) = \sum_{i=0}^{k} {d-i \choose k-i} h_i(P), \qquad 0 \le k \le d.$$

• For simplicial polytopes: $h_k(P)$ counts the number of vertices of the *oriented dual graph* of P, of in-degree k

Intro	du	cti	on
000	0		

Our contribution

The geometric approach

Tight-bound construction o

Our contribution

The geometric approach

Tight-bound construction 0

The Cayley embedding & the Cayley trick

- Cayley embedding: Let e₀, e₁,..., e_{r-1} be the (standard) affine basis of ℝ^{r-1}. We embed each P_i in ℝ^{d+r-1} using the inclusion μ_i(x) = (x, e_{i-1})
- Cayley polytope: $C_{[r]} = \operatorname{conv}(P_1, \ldots, P_r)$
- Cayley trick: the Minkowski sum $P_1 + \cdots + P_r$ is the intersection of $C_{[r]}$ with the *d*-flat \overline{W} of \mathbb{R}^{d+r-1}

 $\overline{W} = \{\frac{1}{r}\boldsymbol{e}_0 + \frac{1}{r}\boldsymbol{e}_1 + \dots + \frac{1}{r}\boldsymbol{e}_{r-1}\} \times \mathbb{R}^d$

$$f_k(\mathcal{F}_{[r]}) = f_{k-r+1}(P_1 + \dots + P_r)$$
, for all $0 \le k \le d$

- Substructure of $\mathcal{C}_{[r]}$: For $\emptyset \subset R \subseteq [r]$
- C_R : the Cayley polytope of $P_i, i \in R$
- *F_R*: mixed faces of *C_R*
- ▶ K_R: closure of F_R

Our contribution

The geometric approach

Tight-bound construction 0

The Cayley embedding & the Cayley trick

- Cayley embedding: Let e₀, e₁,..., e_{r-1} be the (standard) affine basis of ℝ^{r-1}. We embed each P_i in ℝ^{d+r-1} using the inclusion μ_i(x) = (x, e_{i-1})
- Cayley polytope: $C_{[r]} = \operatorname{conv}(P_1, \ldots, P_r)$
- Cayley trick: the Minkowski sum $P_1 + \cdots + P_r$ is the intersection of $C_{[r]}$ with the *d*-flat \overline{W} of \mathbb{R}^{d+r-1}

 $\overline{W} = \{\frac{1}{r}\boldsymbol{e}_0 + \frac{1}{r}\boldsymbol{e}_1 + \dots + \frac{1}{r}\boldsymbol{e}_{r-1}\} \times \mathbb{R}^d$

$$f_k(\mathcal{F}_{[r]}) = f_{k-r+1}(P_1 + \dots + P_r)$$
, for all $0 \le k \le d$

- Substructure of $\mathcal{C}_{[r]}$: For $\emptyset \subset R \subseteq [r]$
- C_R : the Cayley polytope of $P_i, i \in R$
- *F_R*: mixed faces of *C_R*
- ▶ K_R: closure of F_R

Our contribution

The geometric approach

Tight-bound construction 0

The Cayley embedding & the Cayley trick

- Cayley embedding: Let e₀, e₁,..., e_{r-1} be the (standard) affine basis of ℝ^{r-1}. We embed each P_i in ℝ^{d+r-1} using the inclusion μ_i(x) = (x, e_{i-1})
- Cayley polytope: $C_{[r]} = \operatorname{conv}(P_1, \ldots, P_r)$
- Cayley trick: the Minkowski sum $P_1 + \cdots + P_r$ is the intersection of $C_{[r]}$ with the *d*-flat \overline{W} of \mathbb{R}^{d+r-1}

 $\overline{W} = \{\frac{1}{r}\boldsymbol{e}_0 + \frac{1}{r}\boldsymbol{e}_1 + \dots + \frac{1}{r}\boldsymbol{e}_{r-1}\} \times \mathbb{R}^d$

•
$$f_k(\mathcal{F}_{[r]}) = f_{k-r+1}(P_1 + \dots + P_r)$$
, for all $0 \le k \le d$

- Substructure of $\mathcal{C}_{[r]}$: For $\emptyset \subset R \subseteq [r]$
- C_R : the Cayley polytope of $P_i, i \in R$
- *F_R*: mixed faces of *C_R*
- ▶ K_R: closure of F_R

Our contribution

The geometric approach

Tight-bound construction 0

The Cayley embedding & the Cayley trick

- Cayley embedding: Let e₀, e₁,..., e_{r-1} be the (standard) affine basis of ℝ^{r-1}. We embed each P_i in ℝ^{d+r-1} using the inclusion μ_i(x) = (x, e_{i-1})
- Cayley polytope: $C_{[r]} = \operatorname{conv}(P_1, \ldots, P_r)$
- Cayley trick: the Minkowski sum $P_1 + \cdots + P_r$ is the intersection of $C_{[r]}$ with the *d*-flat \overline{W} of \mathbb{R}^{d+r-1}

 $\overline{W} = \{\frac{1}{r}\boldsymbol{e}_0 + \frac{1}{r}\boldsymbol{e}_1 + \dots + \frac{1}{r}\boldsymbol{e}_{r-1}\} \times \mathbb{R}^d$

•
$$f_k(\mathcal{F}_{[r]}) = f_{k-r+1}(P_1 + \dots + P_r)$$
, for all $0 \le k \le d$

- Substructure of $\mathcal{C}_{[r]}$: For $\emptyset \subset R \subseteq [r]$
- C_R : the Cayley polytope of $P_i, i \in R$
- *F_R*: mixed faces of *C_R*
- ▶ K_R: closure of F_R

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of \mathcal{C}_R

- WLOG assume that
 - each P_i is a simplicial *d*-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of \mathcal{C}_R

- WLOG assume that
 - each P_i is a simplicial *d*-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of \mathcal{C}_R

- WLOG assume that
 - each P_i is a simplicial *d*-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of C_R

- WLOG assume that
 - each P_i is a simplicial d-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of C_R

- WLOG assume that
 - each P_i is a simplicial d-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach

Tight-bound construction 0

Simplicialization of C_R

- WLOG assume that
 - each P_i is a simplicial d-polytope
 - ▶ all faces in \mathcal{F}_R , $\emptyset \subset R \subseteq [r]$ are simplices
- Perform repeated stellar subdivisions to triangulate each C_R , $\emptyset \subset R \subset [r]$:

Our contribution

The geometric approach $\circ \circ \circ \circ \circ \circ$

Tight-bound construction 0

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq [r]$ we have:

•
$$f_k(\partial Q_R) = \sum_{\emptyset \subset S \subseteq R} \sum_{i=0}^{|R| - |S|} i! S_{|R| - |S| + 1}^{i+1} f_{k-i}(\mathcal{F}_S)$$

•
$$f_k(\partial \mathcal{Q}_R) = f_k(\mathcal{K}_{[r]}) + \sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R| - |S| - 1} (i+1)! S_{|R| - |S|}^{i+1} f_{k-1-i}(\mathcal{K}_S),$$

where:

$$S_m^k := \tfrac{1}{k!} \sum_{j=0}^k (-1)^{k-j} {k \choose j} j^m, \quad 0 \leq k \leq m$$

are the Stirling numbers of the second kind.

Our contribution

The geometric approach $\circ \circ \circ \circ \circ \circ$

Tight-bound construction \circ

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq [r]$ we have:

•
$$h_k(\partial Q_R) = h_k(\mathcal{F}_R) + \sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E^i_{|R|-|S|} h_{k-i}(\mathcal{F}_S)$$

• $h_k(\partial Q_R) = h_k(\mathcal{K}_R) + \sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E^i_{|R|-|S|} h_{k-1-i}(\mathcal{K}_S)$

where:

$$E_m^k = \sum_{i=0}^k (-1)^i {m+1 \choose i} (k+1-i)^m, \qquad m \ge k+1 > 0,$$

are the Eulerian numbers.

Our contribution

The geometric approach $\circ \circ \circ \circ \circ \circ$

Tight-bound construction 0

Dehn-Sommerville equations

For all $\emptyset \subset R \subseteq [r]$ we have:

•
$$h_k(\partial Q_R) = h_k(\mathcal{F}_R) + \sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E^i_{|R|-|S|} h_{k-i}(\mathcal{F}_S)$$

• $h_k(\partial Q_R) = h_k(\mathcal{K}_R) + \sum_{\emptyset \subset S \subset R} \sum_{i=0}^{|R|-|S|-1} E^i_{|R|-|S|} h_{k-1-i}(\mathcal{K}_S)$

where:

$$E_m^k = \sum_{i=0}^k (-1)^i {m+1 \choose i} (k+1-i)^m, \qquad m \ge k+1 > 0,$$

are the Eulerian numbers.

Lemma (DS for the Cayley Polytope) $h_{d+|R|-1-k}(\mathcal{F}_R) = h_k(\mathcal{K}_R), \text{ for all } 0 \leq k \leq d+|R|-1 \text{ and } \emptyset \subset R \subseteq [r]$

Lemma (DS for simplicial polytopes)

$$h_k(P) = h_{d-k}(P)$$
, for all $0 \le k \le d$

Our contribution

The geometric approach $\circ\circ\circ\circ\circ\circ\circ$

Tight-bound construction \circ

Link/non-link relations (use shellings)

$$(k+1)h_{k+1}(\partial P) + (\dim(P) - k)h_k(\partial P) = \sum_{v \in \operatorname{vert}(P)} h_k(\partial P/v)$$

 $h_k(\partial P/v) \le h_k(\partial P)$

Our contribution

The geometric approach $\circ\circ\circ\circ\circ\circ\circ$

Tight-bound construction \circ

Link/non-link relations (use shellings)

$$(k+1)h_{k+1}(\partial \mathcal{Q}_R) + (d+|R|-1-k)h_k(\partial \mathcal{Q}_R) = \sum_{v \in \operatorname{vert}(\mathcal{Q}_R)} h_k(\partial \mathcal{Q}_R/v)$$

 $h_k(\partial \mathcal{Q}_R/v) \le h_k(\partial \mathcal{Q}_R)$

Our contribution

Tight-bound construction

Link/non-link relations (use shellings)

$$(k+1)h_{k+1}(\partial \mathcal{Q}_R) + (d+|R|-1-k)h_k(\partial \mathcal{Q}_R) = \sum_{v \in \operatorname{vert}(\mathcal{Q}_R)} h_k(\partial \mathcal{Q}_R/v)$$

Lemma

For any $\emptyset \subset R \subseteq [r]$ and all $0 \leq k \leq d + |R| - 2$ we have:

$$(k+1)h_{k+1}(\mathcal{F}_R) + (d+|R|-1-k)h_k(\mathcal{F}_R) = \sum_{v \in V_R} h_k(\mathcal{F}_R/v)$$

 $h_k(\partial Q_R/v) \le h_k(\partial Q_R)$

Lemma

For all $v \in vert(P_i)$ and all $0 \le k \le d + |R| - 2$ we have:

 $h_k((\mathcal{F}_R \cup \mathcal{F}_{R \setminus \{i\}})/v) \le h_k(\mathcal{F}_R \cup \mathcal{F}_{R \setminus \{i\}})$

Our contribution

Tight-bound construction

Link/non-link relations (use shellings)

$$(k+1)h_{k+1}(\partial \mathcal{Q}_R) + (d+|R|-1-k)h_k(\partial \mathcal{Q}_R) = \sum_{v \in \operatorname{vert}(\mathcal{Q}_R)} h_k(\partial \mathcal{Q}_R/v)$$

Lemma

For any $\emptyset \subset R \subseteq [r]$ and all $0 \leq k \leq d + |R| - 2$ we have:

$$(k+1)h_{k+1}(\mathcal{F}_R) + (d+|R|-1-k)h_k(\mathcal{F}_R) = \sum_{v \in V_R} h_k(\mathcal{F}_R/v)$$

 $h_k(\partial Q_R/v) \le h_k(\partial Q_R)$

Lemma

For all $v \in vert(P_i)$ and all $0 \le k \le d + |R| - 2$ we have:

 $h_k((\mathcal{F}_R \cup \mathcal{F}_{R \setminus \{i\}})/v) \le h_k(\mathcal{F}_R \cup \mathcal{F}_{R \setminus \{i\}})$

Our contribution

The geometric approach

Tight-bound construction \circ

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \le k \le d + |R| - 1$, and all $\emptyset \subset R \subseteq [r]$, we have:

$$h_{k+1}(\mathcal{F}_R) \le \frac{n_R - (d+|R|-1) + k}{k+1} h_k(\mathcal{F}_R) + \sum_{i \in R} \frac{n_i}{k+1} g_k(\mathcal{F}_{R \setminus \{i\}}).$$

Our contribution

The geometric approach $\circ \circ \circ \circ \circ \circ \circ \circ$

Tight-bound construction 0

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \le k \le d + |R| - 1$, and all $\emptyset \subset R \subseteq [r]$, we have:

$$h_{k+1}(\mathcal{F}_R) \leq \frac{n_R - (d+|R|-1) + k}{k+1} h_k(\mathcal{F}_R) + \sum_{i \in R} \frac{n_i}{k+1} g_k(\mathcal{F}_{R \setminus \{i\}}).$$

Lemma (the recurrence for polytopes)

For every simplicial d-polytope P and all $0 \le k \le d$:

$$h_{k+1}(P) \le \frac{n-d+k}{k+1}h_k(P)$$

Our contribution

The geometric approach $\circ \circ \circ \circ \circ \circ \circ \circ$

Tight-bound construction

The recurrence relation for $h(\mathcal{F})$

Lemma

For all $0 \le k \le d + |R| - 1$, and all $\emptyset \subset R \subseteq [r]$, we have:

$$h_{k+1}(\mathcal{F}_R) \leq \frac{n_R - (d+|R|-1) + k}{k+1} h_k(\mathcal{F}_R) + \sum_{i \in R} \frac{n_i}{k+1} g_k(\mathcal{F}_{R \setminus \{i\}}).$$

Lemma (the recurrence for polytopes)

For every simplicial d-polytope P and all $0 \le k \le d$:

$$h_{k+1}(P) \le \frac{n-d+k}{k+1}h_k(P)$$

Induction on $k \rightsquigarrow h_k(P) \leq \binom{n-d-1+k}{k}$

Our contribution

The geometric approach

Tight-bound construction

Upper bounds for $h_k(\mathcal{F})$ and $h_k(\mathcal{K})$

Lemma

For all $0 \le k \le d + |R| - 1$, we have:

- $h_k(\mathcal{F}_R) \leq \Phi_{k,d}^{(0)}(\boldsymbol{n}_R)$,
- $h_k(\mathcal{K}_R) \leq \Psi_{k,d}(\boldsymbol{n}_R).$

First equality holds if C_R is *R*-neighborly. Second equality holds if, for all $\emptyset \subset S \subseteq R$, C_S is *S*-neighborly (*Minkowki-neighborly*).

 $\Phi_{k,d}^{(m)}(\pmb{n}_R)$ and $\Psi_{k,d}(\pmb{n}_R)$ are defined via the following conditions:

•
$$\Phi_{k,d}^{(0)}(\boldsymbol{n}_R) = \sum_{\emptyset \subset S \subseteq R} (-1)^{|R| - |S|} {\binom{n_S - d - |R| + k}{k}}, \ 0 \le k \le \lfloor \frac{d + |R| - 1}{2} \rfloor,$$

• $\Phi_{k,d}^{(m)}(\boldsymbol{n}_R) = \Phi_{k,d}^{(m-1)}(\boldsymbol{n}_R) - \Phi_{k-1,d}^{(m-1)}(\boldsymbol{n}_R), \ m > 0,$
• $\Psi_{k,d}(\boldsymbol{n}_R) = \sum_{\emptyset \subset S \subseteq R} \Phi_{k,d}^{(|R| - |S|)}(\boldsymbol{n}_S),$
• $\Phi_{k,d}^{(0)}(\boldsymbol{n}_R) = \Psi_{d+|R| - 1 - k, d}(\boldsymbol{n}_R),$

where $n_R = (n_i : i \in R)$.

Our contribution

The geometric approach

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

Our contribution

The geometric approach

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]})$$

Our contribution

The geometric approach ○○○○○●

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet)$$

Our contribution

The geometric approach

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet)$$
$$= \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} h_{d+r-1-i}(\mathcal{F}_{[r]})$$

Our contribution

The geometric approach ○○○○○●

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet)$$
$$= \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} \frac{h_i(\mathcal{K}_{[r]})}{h_i(\mathcal{K}_{[r]})}$$

Our contribution

The geometric approach

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet)$$
$$= \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} h_i(\mathcal{K}_{[r]})$$
$$\leq \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} \Phi_{i,d}^{(0)}(\boldsymbol{n}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} \Psi_{k,d}(\boldsymbol{n}_{[r]})$$

Our contribution

The geometric approach

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$f_{k-1}(\mathcal{F}_{[r]}) = \sum_{i=0}^{d+r-1} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet)$$
$$= \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} h_i(\mathcal{K}_{[r]})$$
$$\leq \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} {\binom{d+r-1-i}{k-i}} \Phi_{i,d}^{(0)}(\boldsymbol{n}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {\binom{i}{k-d-r+1+i}} \Psi_{k,d}(\boldsymbol{n}_{[r]})$$
$$= \dots$$

f

Our contribution

The geometric approach $\circ\circ\circ\circ\circ\circ\bullet$

Tight-bound construction \circ

Upper bounds for the Minkowski sum

$$f_{k-r}(P_{[r]}) = f_{k-1}(\mathcal{F}_{[r]}), \qquad r \le k \le d+r-1$$

$$\begin{split} \mu_{k-1}(\mathcal{F}_{[r]}) &= \sum_{i=0}^{d+r-1} \binom{d+r-1-i}{k-i} h_i(\mathcal{F}_{[r]}) = \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} (\bullet) + \sum_{i=\lfloor \frac{d+r-1}{2} \rfloor+1}^{d+r-1} (\bullet) \\ &= \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} \binom{d+r-1-i}{k-i} h_i(\mathcal{F}_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} \binom{i}{k-d-r+1+i} h_i(\mathcal{K}_{[r]}) \\ &\leq \sum_{i=0}^{\lfloor \frac{d+r-1}{2} \rfloor} \binom{d+r-1-i}{k-i} \Phi_{i,d}^{(0)}(n_{[r]}) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} \binom{i}{k-d-r+1+i} \Psi_{k,d}(n_{[r]}) \\ &= \dots \end{split}$$

$$= \sum_{\emptyset \subset R \subseteq [r]} (-1)^{r-|R|} f_k \left(C_{d+r-1}(n_R) \right) + \sum_{i=0}^{\lfloor \frac{d+r-2}{2} \rfloor} {j \choose k-d-r+1+i} \sum_{\emptyset \subset R \subset [r]} \Phi_{i,d}^{(r-|R|)}$$

Our contribution

The geometric approach

Tight-bound construction

Tight bound construction

Theorem

There exist *d*-polytopes P_i , $1 \le i \le r$, for which the upper bounds are attained.

- Define the curves ($1 \le i \le r$): $\overbrace{\gamma_i(t) := (0, \dots, 0, t, 0, \dots, 0, t^2, \dots, t^{d-r+1})}^{q}$

Our contribution

The geometric approach

Tight-bound construction

Tight bound construction

Theorem

There exist d-polytopes P_i , $1 \le i \le r$, for which the upper bounds are attained.

- Define the curves $(1 \le i \le r)$: $\overbrace{\gamma_i(t) := (0, \dots, 0, t, 0, \dots, 0, t^2, \dots, t^{d-r+1}),}^{i-th \ \text{coordinate}}$
- $P_i := \operatorname{conv}(\gamma_i(t_{i,1}), \ldots, \gamma_i(t_{i,n_i}))$

where $t_{i,j} := x_{i,j} \tau^i$ are chosen so that

 $\blacktriangleright \ 0 < x_{i,1} < x_{i,2} < \cdots < x_{i,n_i}$ are arbitrary real numbers, and $\blacktriangleright \ \tau > 0$ real parameter

Our contribution

The geometric approach

Tight-bound construction

Tight bound construction

Theorem

There exist d-polytopes P_i , $1 \le i \le r$, for which the upper bounds are attained.

- Define the curves $(1 \le i \le r)$: $\gamma_i(t) := (0, \dots, 0, t, 0, \dots, 0, t^2, \dots, t^{d-r+1}),$
- $P_i := \operatorname{conv}(\gamma_i(t_{i,1}), \ldots, \gamma_i(t_{i,n_i}))$

where $t_{i,j} := x_{i,j} au^i$ are chosen so that

- $\blacktriangleright \ 0 < x_{i,1} < x_{i,2} < \cdots < x_{i,n_i}$ are arbitrary real numbers, and $\blacktriangleright \ \tau > 0$ real parameter
- For $\tau \to 0^+$ sufficiently small, the upper bounds are attained.

Our contribution

The geometric approach

Tight-bound construction

Tight bound construction

Theorem

There exist d-polytopes P_i , $1 \le i \le r$, for which the upper bounds are attained.

- Define the curves $(1 \le i \le r)$: $\gamma_i(t) := (0, \dots, 0, t, 0, \dots, 0, t^2, \dots, t^{d-r+1}),$
- $P_i := \operatorname{conv}(\gamma_i(t_{i,1}), \ldots, \gamma_i(t_{i,n_i}))$

where $t_{i,j} := x_{i,j} au^i$ are chosen so that

- $\blacktriangleright \ 0 < x_{i,1} < x_{i,2} < \cdots < x_{i,n_i}$ are arbitrary real numbers, and $\blacktriangleright \ \tau > 0$ real parameter
- For $\tau \to 0^+$ sufficiently small, the upper bounds are attained.
- To make the construction full dimensional:

$$\widetilde{\gamma}_i(t;\boldsymbol{\zeta}) := (\boldsymbol{\zeta}t^{d-r+2},\ldots,\boldsymbol{\zeta}t^{d-r+i},t,\boldsymbol{\zeta}t^{d-r+i+2},\ldots,\boldsymbol{\zeta}t^{d+1},t^2,t^3,\ldots,t^{d-r+1})$$

▶ For $\zeta \to 0^+$ sufficiently small, the combinatorial structure does not change

Our contribution

The geometric approach 0000000

Tight-bound construction 0

Open problems

We are interested in devising tight upper bounds for the following three settings:

- When we are restricted to the class of simple polytopes
- When we know the numbers of facets of the polytopes, rather than their number of vertices.
- When we know the *f*-vector of the polytopes, rather than their number of vertices.

Our contribution

The geometric approach 0000000

Tight-bound construction \circ

Open problems

We are interested in devising tight upper bounds for the following three settings:

- When we are restricted to the class of simple polytopes
- When we know the numbers of facets of the polytopes, rather than their number of vertices.
- When we know the *f*-vector of the polytopes, rather than their number of vertices.

Thank you for your attention!