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LACUNARY GENERATING FUNCTIONS FOR THE LAGUERRE

POLYNOMIALS

D. BABUSCI, G. DATTOLI, K. GÓRSKA, AND K. A. PENSON

Abstract. Symbolic methods of umbral nature play an important and increasing role in the

theory of special functions and in related fields like combinatorics. We discuss an application

of these methods to the theory of lacunary generating functions for the Laguerre polynomials

for which we give a number of new closed form expressions. We present furthermore the

different possibilities offered by the method we have developed, with particular emphasis on

their link to a new family of special functions and with previous formulations, associated with

the theory of quasi monomials.

1. Introduction

1.1. Motivation. This work deals with derivation of a number of summation formulas in-

volving ordinary and generalized Laguerre polynomials of degree n, denoted by Ln(x) and

L
(α)
n (x), respectively. More specifically, we are interested in ordinary, exponential and more

general generating functions for polynomials L2n(x), L3n(x), L2n+l(x), L3n+l(x) etc., and for

their generalized counterparts. In this paper they will be called lacunary generating functions.

The Laguerre polynomials appear quite naturally in the theory of the following differential

operator

D(α)
x =

d

dx
x

d

dx
+ α

d

dx
, (1.1)

where x is the indeterminate and α is a real parameter [7, 12, 13, 22]. The specific context is

a less-known [21] formulation of theory of polynomials Pn(x, λ) (of degree n in x) which is

based on the action of the exponential of a certain differential operator Ô(x, d
dx

) on monomials

xn through

exp
[

λ Ô(x, d
dx

)
]

xn
= Pn(x, λ), (n = 0, 1, . . .). (1.2)

Eq. (1.2) is the defining relation of a family of two-variable polynomials and Pn(x, λ) appears

to be related to umbral calculus [29, 20]. For the two-variable Hermite polynomials H
(2)
n (x, λ)

the following relation holds [7, 13]:

exp
[

λ d2

dx2

]

xn
= H(2)

n (x, λ), (1.3)

where the polynomials H
(2)
n (x, λ) are related to the conventional Hermite polynomials Hn(x)

through

H(2)
n (x, λ) = (−i

√
λ)n Hn( i x

2
√
λ
), Hn(x) = 2n H(2)

n (x,−1/4). (1.4)

Relation (1.2) for the operator Ô(x, d
dx

) = D
(α)
x reads (see, e.g., [22])

exp
[

λD(α)
x

]

xn
= n! L(α)

n (λ, x) = n! λn L(α)
n (−x/λ), (1.5)
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which justifies the name ‘Laguerre derivative’ for D
(α)
x

1. Eq. (1.5) was obtained using the

fact, easily shown by induction,
[

D(α)
x

]k
xn
=

n!

(n − k)!
(1 + α − n − k)k xn−k, (1.6)

with (a)n = Γ(a + n)/Γ(a) being the Pochhammer symbol. It generalizes Eq. (22) of [22] to

α , 0. As an immediate consequence of Eq. (1.6) the following relation obtains:

exp
[

λD(α)
x

]

e−x
=

1

(1 + λ)1+α
exp

( −x

1 + λ

)

, (1.7)

which is equivalent to one of the standard generating functions for the Laguerre polynomials.

In general, the differential operator Ô(x, d
dx

) can be seen as part of the evolution equation

for a function f (x, t), given by a partial differential equation of the following type:

∂

∂t
f (x, t) = κ Ô(x, ∂

∂x
) f (x, t), x > 0, (1.8)

where κ is a coupling constant (assuming here κ = 1), which for the operator Ô(x, d
dx

) ≡ −D
(α)
x

becomes the Cauchy problem with the initial condition f (x) [9]:

∂

∂t
fα(x, t) = −

(

∂

∂x
x
∂

∂x
+ α
∂

∂x

)

fα(x, t), (1.9)

fα(x, 0) = f (x). (1.10)

The formal solution of Eqs. (1.8) and (1.10) is obtained via

fα(x, t) = exp
[

−t D(α)
x

]

f (x).

Therefore Eq. (1.7) for λ ≡ t describes the exact time evolution under the Laguerre derivative

D
(α)
x from the initial condition f (x) = e−x. Whereas Eq. (1.7) could have been obtained via

conventional and well-known formula for
∑∞

n=0 xnL
(α)
n (x), this is not anymore the case for

initial conditions differing from the exponential.

We illustrate this situation by choosing, e.g., f (x) = x−α/2 Iα/2(β x), with α, β > 0, respec-

tively f (x) = I0(β x), where Iα/2(z) is the modified Bessel function of the first kind,

Iα/2(β x) =

∞
∑

n=0

(β x/2)2n+α/2

n!Γ(1 + α/2 + n)
.

We obtain

exp
[

−t D(α)
x

]

x−α/2Iα/2(β x) =
(β/2)α/2

Γ(1 + α/2)

∞
∑

n=0

(1/2)n

(1 + α/2)n

(β t)2nL
(α)

2n
(x/t), (1.11)

exp
[

−t D(α)
x

]

I0(β x) =

∞
∑

n=0

(1/2)n

n!
(β t)2n L

(α)

2n
(x/t). (1.12)

Any further evaluation of Eqs. (1.11) and (1.12) turned out to be impossible. In addition, an

extensive search in the literature for the appropriate formula gave no results.

We have considered it therefore as our objective to establish the summation formulas of

type Eqs. (1.11) and (1.12), and more general ones, which involved lacunary Laguerre series.

1Strictly speaking, Laguerre polynomials are one-variable polynomials and are defined as Ln(x) = Ln(1,−x).

It is also easily checked that Ln(x, y) = xnLn(− y

x
). We will use two-variable forms for future convenience. In

final results we shall again mostly use the one-variable form.
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(Some lacunary exponential generating functions for other polynomials are known: compare

[27] for H2n(x), [15] for H3n(x), and various lacunary generating functions for Legendre and

Chebyshev polynomials [17]).

Note that the differential equations of type (1.8) were already considered in a combinatorial

context as a tool to derive generating functions for combinatorial graphs associated with

Ô(x, d
dx

), see [22].

1.2. Description of the method. It has been shown that symbolic methods of umbral nature

provide powerful tools to deal with the properties of special polynomials and functions [3, 4,

5, 8]. These techniques greatly simplify the problems underlying such studies and allow to

reduce the derivation of the relevant properties to straightforward algebraic manipulations.

Similarly to classical references on the umbral calculus [29, 20], we start our considerations

with the shift operator cz defined here by

cαz : f (z) 7→ f (z + α), (1.13)

satisfying cαz c
β
z = c

α+β
z . When cαz acts on [Γ(1 + z)]−1, the result evaluated at z = 0 gives

[Γ(1 + α)]−1. In this context the ordinary Laguerre polynomials L
(0)
n (x) ≡ Ln(x) can be

obtained with the help of cαz as

Ln(x) = (1 − xcz)
n 1

Γ(1 + z)

∣

∣

∣

∣

z=0
(1.14)

=

n
∑

k=0

(

n

k

)

(−x)k ck
z

1

Γ(1 + z)

∣

∣

∣

∣

z=0

=

n
∑

k=0

(

n

k

)

(−x)k 1

Γ(1 + k + z)

∣

∣

∣

∣

z=0

=

n
∑

k=0

(

n

k

)

(−x)k

k!
.

In the same vein, the two-variable generalized Laguerre polynomials

L(α)
n (x, y) =

1

n!

n
∑

k=0

(

n

k

)

(1 + α + k)n−k xn−k yk

=
Γ(1 + α + n)

n!
Λ

(α)
n (x, y) (1.15)

are obtained via

Λ
(α)
n (x, y) =

n
∑

k=0

(

n

k

)

xn−k yk

Γ(1 + α + k)
(1.16)

=

n
∑

k=0

(

n

k

)

xn−k yk ck
z

1

Γ(1 + z)

∣

∣

∣

∣

z=α

= (x + y cz)
n 1

Γ(1 + z)

∣

∣

∣

∣

z=α
(1.17)

= cαz (x + y cz)
n 1

Γ(1 + z)

∣

∣

∣

∣

z=0
. (1.18)
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Note that with our definition of L
(α)
n (x) given in Eqs. (1.15) with (1.17) or (1.18) we can

do about the same as with the definition à la Rota (see p. 198 in [20])2, namely L
(α)
n (x) =

x−α ( d
dx
− I)nxn+α.

Using the method exposed in Eqs. (1.14) and (1.15), the Laguerre polynomials L2n(x, y)

and L3n(x, y) can be expressed via Λ
(α)
n (x, y) as follows:

L2n(x, y) = (x + y cz)
2n 1

Γ(1 + z)

∣

∣

∣

∣

z=0
=

n
∑

r=0

(

n

r

)

xn−r yr
Λ

(r)
n (x, y), (1.19)

and

L3n(x, y) = (x + y cz)
3n 1

Γ(1 + z)

∣

∣

∣

∣

z=0
=

n
∑

k=0

n
∑

r=0

(

n

r

) (

n

k

)

x2n−r−k yr+k
Λ

(r+k)
n (x, y).

A further family of polynomials, introduced by the same means as before, is provided by

what we will call, for reasons which will become clear in the following, the two-parameter

family of Laguerre–Wright polynomials, namely

Λ
(α,β)
n (x, y) = (x + y cβz )n 1

Γ(1 + z)

∣

∣

∣

∣

z=α
=

n
∑

r=0

(

n

r

)

xn−r yr

Γ(1 + α + β r)
. (1.20)

From Eq. (1.17) Λ
(α,1)
n (x, y) = Λ

(α)
n (x, y) follows.

2. Standard generating functions of Laguerre polynomials

The first family of examples will concern standard generating functions of polynomials

Λ
(α)(x) and Λ(α,β)(x). In this way we illustrate the usefulness of our approach. We will

consider in the following two types of generating functions, namely the exponential and the

ordinary ones. In the first case, Eq. (1.20) leads to the following form

∞
∑

n=0

tn

n!
Λ

(α,β)
n (x, y) =

∞
∑

n=0

1

n!
[t (x + y cβz )]n 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= ext exp
[

t y cβz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= ext W (β,α+1)(t y), (2.1)

where the Bessel–Wright function W (β,α)(x) [2, 6, 23] reads

W (β,α)(x) = exp
[

x cβz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=α−1

=

∞
∑

r=0

xr

r!
cβ r

z

1

Γ(1 + z)

∣

∣

∣

∣

z=α−1

=

∞
∑

r=0

xr

r!Γ(α + β r)
.

2We did not attempt to demonstrate rigorously the equivalence of these two definitions.
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Observe that W (β,α)(x) for β = 1 is equal to [Γ(α)]−1
0F1

(

−
α

; x
)

. Hence Eq. (2.1) can be rewrit-

ten as

∞
∑

n=0

tn

(1 + α)n

L(α)
n (1,−y) = et

0F1

( −
1 + α

;−ty

)

= Γ(1 + α) (y t)−α/2 et Jα(2
√

y t),

where Jα(z) is the Bessel function, see Eq. (9.12.11) on p. 242 of [19] or Eq. (5.11.2.5) for

n = 0 on p. 704 of [27].

In the case of ordinary generating function, Eq. (1.20) gives

∞
∑

n=0

tn
Λ

(α,β)
n (x, y) =

∞
∑

n=0

[t (x + y cβz )]n 1

Γ(1 + z)

∣

∣

∣

∣

z=α

=

[

1

1 − t (x + y c
β
z )

]

1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
1

1 − t x
·














1

1 − t y

1−t x
c
β
z















1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
1

1 − t x
Eβ,α+1

(

t y

1 − t x

)

, (2.2)

where Eβ,α(x) is the two-parameter Mittag-Leffler function [2, 6, 23] defined as

Eβ,α(x) =

[

1

1 − x c
β
z

]

1

Γ(1 + z)

∣

∣

∣

∣

z=α−1

=

∞
∑

r=0

xr cβ r
z

1

Γ(1 + z)

∣

∣

∣

∣

z=α−1

=

∞
∑

r=0

xr

Γ(α + β r)
, (2.3)

The function introduced in Eq. (2.3) for β = 1 is equal to [Γ(α)]−1
1F1

(

1

α
; x

)

. Thus Eq. (2.2)

for β = 1 goes over to Eq. (9.12.12) for γ = 1 on p. 242 of [19], or Eq. (5.11.2.6) for b = 1

on p. 704 of [27], that is,

∞
∑

n=0

n!

(1 + α)n

tn L(α)
n (1, y) =

1

1 − t
1F1

(

1

1 + α
;

t y

1 − t

)

.

The ordinary and exponential generating functions of the generalized Laguerre polyno-

mials are accordingly derived as the special case of previous demonstrations; defining 3 for

β = 1:

OG
(α,1)

1
(x, y | t) =

∞
∑

n=0

tn L(α)
n (x, y) and EG

(α,1)

1
(x, y | t) =

∞
∑

n=0

tn

n!
L(α)

n (x, y),

3The subscripts in G’s indicate the degree of lacunarity: 1-no lacunarity, 2-double-lacunary, etc; see also the

next paragraph.
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we obtain from (1.15), (1.17) and the binomial series expansion:

OG
(α,1)

1
(x, y | t) = Γ(1 + α)















∞
∑

n=0

(1 + α)n

n!
(x + y cz)

n















1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
Γ(1 + α)

(1 − t x)1+α

[

1 − t y cz

1 − t x

]−1−α 1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
1

(1 − t x)1+α















∞
∑

n=0

(

t y

1 − t x

)n Γ(1 + α + n)

n!
cn

z















1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
1

(1 − t x)1+α

∞
∑

n=0

1

n!

(

t y

1 − t x

)n

=
1

(1 − t x)1+α
exp

(

t y

1 − t x

)

, (2.4)

which for L
(α)
n (y) = L

(α)
n (1,−y) gives the well-known formula (8.975.1) on p. 1002 of [18].

Furthermore, repeating a similar calculation for exponential generating function for integer

α = m and β = 1, we have

EG
(m,1)

1
(x, y | t) =















∞
∑

n=0

(n + m)!

(n!)2
[t (x + y cz)]

n















1

Γ(1 + z)

∣

∣

∣

∣

z=m

=















et (x+y cz)

m
∑

r=0

(

m

r

)

m!

r!
[t (x + y cz)]

r















1

Γ(1 + z)

∣

∣

∣

∣

z=m

= etx

m
∑

r=0

(

m

r

)

m!

r!















r
∑

s=0

(

r

s

)

(t x)r−s (t y)s cs
z et y cz















1

Γ(1 + z)

∣

∣

∣

∣

z=m

= etx

m
∑

r=0

(

m

r

)

m!

r!















r
∑

s=0

(

r

s

)

(t x)r−s (t y)s et y cz















1

Γ(1 + z)

∣

∣

∣

∣

z=m+s

= etx

m
∑

r=0

(

m

r

)

m!

r!

r
∑

s=0

(

r

s

)

(t x)r−s (t y)s W (1,m+s+1)(t y), (2.5)

where we used the first Kummer relation for confluent hypergeometric series, see Eq. (9.212)

on p. 1023 of [18], in passing from the first to the second line.

3. Lacunary generating functions of Laguerre polynomials

In this paragraph we apply our method to treat various lacunary generating functions for

the Laguerre polynomials. The formulas thus obtained appear, for the most part, to be new.

The double-lacunary exponential generating function of ordinary Laguerre polynomials

(α = 0)

EG
(1,1)

2
(x, y | t) =

∞
∑

n=0

tn

n!
L2n(x, y) (3.1)

is apparently not known. In the following we obtain the explicit form of the series in

Eq. (3.1) in terms of known functions. According to our procedure, we rewrite Eq. (3.1)
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using Eq. (1.19) as

EG
(1,1)

2
(x, y | t) =















∞
∑

n=0

tn

n!
(x + y cz)

2n















1

Γ(1 + z)

∣

∣

∣

∣

z=0

= et x2

exp
[

t y2 c2
z + 2 t x y cz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
. (3.2)

We can provide a definite meaning for the previous expression in terms of known special

functions by recalling the expansion

eb z2
+a z
=

∞
∑

n=0

zn

n!
H(2)

n (a, b), (3.3)

with

H(2)
n (a, b) = n!

⌊n/2⌋
∑

r=0

an−2r br

(n − 2r)! r!
,

where ⌊n⌋ is the floor function. The polynomials H
(2)
n (a, b) are two-variable Hermite polyno-

mials [1, 7, 13], also defined through the operational rule given in Eq. (1.3). They reduce to

the ordinary Hermite polynomials Hn(z) through the relation (1.4). The above family of poly-

nomials provides a basis for the definition of the so-called Hermite-based (H-based) functions

[8]; for example the Hermite-based (H-based) cylindrical Bessel functions are defined as

H Jn(x, y) =

∞
∑

r=0

(−1)r
H

(2)

n+2r
(x, y)

2n+2r r! (n + r)!
.

They have been obtained by replacing xn+2r in the relevant series expansion by H
(2)

n+2r
(x, y).

According to Eq. (3.3), we obtain

exp
[

t y2 c2
z + 2 t x y cz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
=















∞
∑

r=0

cr
z

r!
H(2)

r (2 t x y, t y2)















1

Γ(1 + z)

∣

∣

∣

∣

z=0

=

∞
∑

r=0

1

(r!)2
H(2)

r (2 t x y, t y2)

=

∞
∑

r=0

(i
√

t y)r

(r!)2
Hr(i
√

t x) (3.4)

= HC0(−2 t x y, t y2),

where

HCα(x, y) =

∞
∑

r=0

H
(2)
r (−x, y)

r!Γ(1 + α + r)

is the Hermite-based (H-based) version of the Bessel–Wright function

Cλ(x) =

∞
∑

r=0

(−x)r

r!Γ(1 + λ + r)
= cλz exp

[

−xcz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
,

which goes over to the Bessel–Wright function Wβ,α(x) for β = 1 and α = 1+ λ. Thus we get

in conclusion

EG
(1,1)

2
(x, y | t) = ex2 t

HC0(−2 x y t, y2 t).
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In terms of standard Laguerre polynomials Ln(y) = Ln(1,−y) Eq. (3.1) can thus be rewritten

as
∞
∑

n=0

tn

n!
L2n(y) = et

∞
∑

r=0

(i
√

t y)r

(r!)2
Hr(i
√

t), (3.5)

which constitutes one of key results of the present investigation. The validity of identity (3.5)

as well as of further results of this type for other generating functions (see Eqs. (2.5), and

(3.7), (3.16), (4.1), (4.3) below) can be independently proven by the substitution t → −t2,

followed by coefficient extraction and the use of Eqs. (2.4) and (3.3) [24].

In fact, it turns out that Eq. (3.5) is the special case of a more general relation which extends

this result to the generalized Laguerre polynomials L
(α)

2n
(y):

∞
∑

n=0

(1
2
)n (−t2)n

(α
2
+

1
2
)n (α

2
+ 1)n

L
(α)

2n
(y) = e−t2

∞
∑

n=0

(y t)n

n! (1 + α)n

Hn(t). (3.6)

Using the shift operator cz of Eq. (1.13), the demonstration of Eq. (3.6) works as follows:

∞
∑

n=0

(−t2)n

n!

(2n)!

Γ(1 + α + 2n)
L

(α)

2n
(y) =















∞
∑

n=0

(−t2)n (1 − y cz)
2n

n!















1

Γ(1 + z)

∣

∣

∣

∣

z=α

= exp
[

−t2 (1 − y cz)
2
] 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= e−t2
∞
∑

n=0

Hn(t)

n!

[

t y cz

]n 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= e−t2
∞
∑

n=0

(t y)n

n!Γ(1 + α + n)
Hn(t).

Note that Eq. (3.6) for α = 0 and after substitution −t2 → t, reproduces Eq. (3.5). We note for

completeness another version of the identity Eq. (3.6) rewritten in terms of hypergeometric

representations of Laguerre and Hermite polynomials [27]:

∞
∑

n=0

(1/2)n (1 + α)2n (−t2)n

(2n)! (α/2 + 1/2)n (α/2 + 1)n
1F1

(

−2 n

1 + α
; x

)

= e−t2
∞
∑

n=0

(2 t2 x)n

n! (1 + α)n
2F0

(

−n/2, (1 − n)/2

−
; − 1

t2

)

.

Using the above technique, see Eqs. (3.1)-(3.4), we derive the exponential double-lacunary

generating function for the generalized Laguerre polynomials L
(α)
n (x), for α = m = 1, 2, . . .

and establish that
∞
∑

n=0

tn

n!
L

(m)

2n
(x, y) = et x2

∞
∑

r=0

p2m(r ; x, y, t)

r! (r + 3m)!
H(2)

r (2 t x y, t y2),

which for standard generalized Laguerre polynomials L
(m)
n (y) = L

(m)
n (1,−y), using Eq. (1.4),

has the form
∞
∑

n=0

tn

n!
L

(m)

2n
(y) = et

∞
∑

r=0

p2m(r ; 1,−y, t)

r! (r + 3m)!
(−i
√

t y)rHr(i
√

t). (3.7)
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The polynomials p2m(r ; x, y, t) are of degree 2m in the variable r, with the coefficients de-

pending on x, y and t. For m = 1, 2, p2m(r ; x, y, t) have the explicit form

p2(r ; x, y, t) = [1 + 2 x2t] r2
+ [5 + 4 x y t + 10 x2t] r

+ [6 + 12x2t + 12x y t + 2y2t], (3.8)

p4(r ; x, y, t) = [2 + 10 x2t + 4 x4t2] r4

+ [36 + (180 x2
+ 20 x y) t + (72 x4

+ 16 x3y) t2] r3

+ [238 + (10 y2
+ 1190 x2

+ 300 x y) t

+ (240 x3y + 24 x2y2
+ 476 x4) t2] r2

+ [684 + (110 y2
+ 1480 x y + 3420 x2) t

+ (1184 x3y + 264 x2y2
+ 16 x y3

+ 1368 x4) t2] r

+ [720 + (2400 x y + 3600 x2
+ 300 y2) t

+ (1920 x3y + 96 x y3
+ 720 x2y2

+ 1440 x4
+ 4 y4) t2]. (3.9)

With a moderate effort the polynomials p2m(r; x, y, t) for m > 2 can be also obtained. Ex-

plicit forms, various generating functions and combinatorial interpretations of the polynomi-

als (3.8) and (3.9) were recently obtained by Strehl [25, 30].

The current method can be extended to the more general cases like

EG
(α,β)

2
(x, y | t) =

∞
∑

n=0

tn

n!
Λ

(α,β)

2n
(x, y),

which, according to our procedure, can be written as

EG
(α,β)

2
(x, y | t) =

∞
∑

r=0

tn

n!
(x + y cβz )2n 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= ex2 t exp
[

2 t x y cβz + t y2 c2β
z

] 1

Γ(1 + z)

∣

∣

∣

∣

z=α

= ex2 t















∞
∑

r=0

c
βr
z

r!
H(2)

r (2 t x y, t y2)















1

Γ(1 + z)

∣

∣

∣

∣

z=α

= ex2t
HW (β,α+1)(2 t x y, t y2) (3.10)

with

HW (α,β)(x, y) =

∞
∑

r=0

H
(2)
r (x, y)

r!Γ(α r + β)

being the Hermite-based (H-based) version of the Bessel–Wright function [8].

We give here without demonstration the following two formulas of similar type

∞
∑

n=0

tn L2n(x) =
1

1 − t

∞
∑

r=0

L
(r)
r (x/2)

(1/2)r

[

− t x

2 (1 − t)

]r

(3.11)

and
∞
∑

n=0

tn L3n(x) =
1

1 − t

∞
∑

r=0

(

− 3 t x

1 − t

)r














r
∑

s=0

r! (−x)s

(r − s)! (r + 2s)!
L(s+r)

s (x/3)















. (3.12)
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In this section we have shown that the tools of employing the symbolic method to derive la-

cunary generating functions for Laguerre polynomials can easily be applied with a minimum

of computation effort.

We now employ the symbolic method to derive old and further new ordinary generating

functions for the generalized Laguerre polynomials. We start with a simple observation,

namely

cαz exp
[

b c−1
z

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
=















∞
∑

n=0

bn

n!
cα−n

z















1

Γ(1 + z)

∣

∣

∣

∣

z=0
=

(1 + b)α

Γ(1 + α)
. (3.13)

See also Ref. [4] for a demonstration. We calculate the generating function G(α)

1
(x, y | t) =

∑∞
n=0 tn L

(α−n)
n (x, y), which after applying Eqs. (1.15), (1.18) and (3.13) can be written as

G(α)

1
(x, y | t) = Γ(1 + α)















cαz

∞
∑

n=0

tn

n!

(

x + y cz

cz

)n














1

Γ(1 + z)

∣

∣

∣

∣

z=0

= Γ(1 + α) et y cαz exp
[

t x c−1
z

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
= (1 + t x)α et y, (3.14)

Formula (3.14) for the ordinary Laguerre polynomials, i. e. for y = 1, is equal to (5.11.4.8)

on p. 706 of [27]. In the case of generating function

G(α)

2
(x, y | t) =

∞
∑

n=0

tn L
(α−2n)

2n
(x, y) (3.15)

Eqs. (1.15) and (1.17) yield

G(α)

2
(x, y | t) = Γ(1 + α)















cαz

∞
∑

n=0

tn

(2n)!

(

x + y cz

cz

)2n














1

Γ(1 + z)

∣

∣

∣

∣

z=0

= Γ(1 + α)

[

cαz cosh

(√
t

x

cz

+
√

t y

)]

1

Γ(1 + z)

∣

∣

∣

∣

z=0

=

[

cosh(
√

t y) cosh

(√
t

x

cz

)

+ sinh(
√

t y) sinh

(√
t

x

cz

)]

Γ(1 + α)

Γ(1 + z)

∣

∣

∣

∣

z=α

= (1 − t x2)α/2
{

cosh(
√

t y) cosh[i Tα(t, x)] + sinh(
√

t y) sinh[i Tα(t, x)]
}

= (1 − t x2)α/2 cosh[
√

t y + i Tα(t, x)], (3.16)

where

Tα(t, x) = α arcsin

( √
t x

√
t x2 − 1

)

.

Remark: The use of the initial definition of Λ
(α)
n (x, y), see Eqs. (1.17) and (1.18), in the

treatment ofG(α)

1
(x, y | t) andG(α)

2
(x, y | t) leads to considerable difficulties in obtaining the final

results of Eqs. (3.14) and (3.16). One way to avoid these difficulties is to adopt a modified

(albeit strictly equivalent) definition of Λ
(α−n)
n (x, y) in the form

Λ
(α−n)
n (x, y) = cα−n

z (x + y cz)
n 1

Γ(1 + z)

∣

∣

∣

z=0
.

Actually this last definition was used in deriving Eqs. (3.14) and (3.16), whereas the previous

one was used everywhere else.
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4. Further developments

The method we have developed so far can be extended to obtain even slightly more com-

plicated expressions like

EG
(1,1)

2,ℓ
(x, y | t) =

∞
∑

n=0

tn

n!
L2n+ℓ(x, y) and EG

(1,1)

3,ℓ
(x, y | t) =

∞
∑

n=0

tn

n!
L3n+ℓ(x, y),

for l = 1, 2, . . .. Note that corresponding formulas for the Hermite polynomials were obtained

in [15]. Applying Eqs. (1.14), (3.2), and (3.3) for the double lacunary generating function of

Laguerre polynomials, we have

EG
(1,1)

2,ℓ
(x, y | t) = et x2















(x + czy)ℓ
∞
∑

r=0

cr
z

r!
H(2)

r (2 t x y, t y2)















1

Γ(1 + z)

∣

∣

∣

∣

z=0

= et x2

ℓ
∑

s=0

(

ℓ

s

)

xℓ−sys
HCs(−2 t x y, t y2),

which, for Ln(y) = Ln(1,−y),can be written in terms of standard generalized Laguerre and

Hermite polynomials as follows:

∞
∑

n=0

tn

n!
L2n+ℓ(x) = et

∞
∑

r=0

(−i
√

t)r

r!
Hr(i
√

t x)

ℓ
∑

s=0

(

ℓ

s

)

xl−s

(r + s)!

= et ℓ!

∞
∑

r=0

(i
√

t x)r

r! (ℓ + r)!
L

(r)

ℓ
(x) Hr(i

√
t). (4.1)

Using the analogous procedure, we obtain also EG
(1,1)

3,ℓ
(x, y | t) in the form

EG
(1,1)

3,ℓ
(x, y | t) = et x3















(x + y cz)
ℓ

∞
∑

n=0

cn
z

n!
H(3)

n (3 t x2 y, 3 t x y2, t y3)















1

Γ(1 + z)

∣

∣

∣

∣

z=0

= et x3

ℓ
∑

s=0

(

ℓ

s

)

ysxℓ−s
HC(3)

s (3 t x2 y, 3 t x y2, t y3), (4.2)

where

HC(3)
s (x, y, z) =

∞
∑

r=0

H
(3)
r (x, y, z)

r! (r + s)!

is a third order Hermite-based (H-based) Tricomi function [8], with

H(3)
n (x, y, z) = n!

⌊n/3⌋
∑

r=0

zr H
(2)

n−3r
(x, y)

r! (n − 3r)!

being a third order three-variable Hermite polynomial, with the generating function [10]
∞
∑

n=0

tn

n!
H(3)

n (x, y, z) = et x+t2 y+t3 z .

Eq. (4.2) expressed via standard Laguerre and Hermite polynomials is given as

∞
∑

n=0

tn

n!
L3n+ℓ(x) = et ℓ!

∞
∑

n=0

L
(n)

ℓ
(x)

(n + ℓ)!

⌊n/3⌋
∑

r=0

(−t x3)r(i
√

3 t x)n−3r

r! (n − 3 r)!
Hn−3r













i

√
3 t

2













. (4.3)
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In the case of the generalized Laguerre polynomials for α = 1 and ℓ = 0, L
(1)

3n
(1,−y) = L

(1)

3n
(y),

the generating function is given as

∞
∑

n=0

tn

n!
L

(1)

3n
(y) = et

∞
∑

r=0

q3(r ; y, t)

r! (r + 4)!
H(3)

r (−3 t y, 3 t y2,−t y3),

= et

∞
∑

r=0

yr q3(r ; y, t)

(r + 4)!

⌊r/3⌋
∑

s=0

(−t)s(i
√

3 t)r−3 s

s! (r − 3s)!
Hr−3s













i

√
3 t

2













(4.4)

with

q3(r ; y, t) = [1 + 3 t] r3
+ [9 + 27 t − 9 y t] r2

+ [26 + 78 t − 63 y t + 9 y2 t] r

+ [24 + 72 t − 108 y t + 36y2 t − 3 y3 t],

which is a third order polynomial in r, with the coefficients depending on y and t. Its closed

form and the analytical and combinatorial properties were worked out by Strehl [25, 30].

The extension to the case

EG
(1,1)

m,ℓ
(x, y | t) =

∞
∑

n=0

tn

n!
Lmn+ℓ(x, y)

can be straightforwardly accomplished within the present framework and reads

EG
(1,1)

m,ℓ
(x, y | t) = et ym















(x + y cz)
ℓ

∞
∑

r=0

cr
z

r!
H(m)

r (−α1, α2, . . . , (−1)mαm)















1

Γ(1 + z)

∣

∣

∣

∣

z=0

= et xm

ℓ
∑

s=0

(

ℓ

s

)

xℓ−s ys
HC(m)

s (α1, α2, . . . , αm),

αp =

(

m

p

)

xm−p (−y)p t, p = 1, 2, . . .m, (4.5)

where HC
(m)
n (α1, α2, . . . , αm) is an m-th order Hermite-based Tricomi function, defining as

basis Hermite polynomials H
(m)
n (−α1, α2, . . . , (−1)mαm) in m variables, as specified by the

generating function [10]

∞
∑

n=0

tn

n!
H(m)

n (x1, x2, . . . , xm) = exp















m
∑

s=1

xs ts















.

Let us finally consider the bilateral generating function

∞
∑

n=0

tn

n!
Ln(x, y) Ln(v, u) =

∞
∑

n=0

tn

n!

[

(x + y cz)
n 1

Γ(1 + z)

∣

∣

∣

∣

z=0

] [

(v + u cz̃)
n 1

Γ(1 + z̃)

∣

∣

∣

∣

z̃=0

]

.
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We obtain

∞
∑

n=0

tn

n!
Ln(x, y) Ln(v, u) = et x v

[

e−t y v cz
1

Γ(1 + z)

∣

∣

∣

∣

z=0

] [

e−t x u cz̃
1

Γ(1 + z̃)

∣

∣

∣

∣

z̃=0

]

×
(

et y u cz cz̃
1

Γ(1 + z)

∣

∣

∣

∣

z=0

1

Γ(1 + z̃)

∣

∣

∣

∣

z̃=0

)

= et x v t
HC0,0(t y v, t x u | t y u),

where

HC0,0(x, y | τ) =
∞
∑

r,s,k=0

xr ys τk

r! s! k! (r + k)! (s + k)!
.

Closely related considerations devoted to combinatorics of Laguerre polynomials are devel-

oped in [14].

Using the operational method, we can also obtain other interesting identities for the lacu-

nary generating functions of the generalized Laguerre polynomials. These formulas are listed

below:

∞
∑

n=0

(

1
2

)

n
tn

(

1 + α
2

)

n

L
(α)

2n
(x) = (1 − t)−(1+α/2)

∞
∑

r=0

L
(r+α)
r (x/2)

(1 + α/2)r

(

− t x

2 (1 − t)

)r

=
1
√

1 − t

(√
t

x

2

)−α/2
exp

(

− t x

1 − t

)

Iα/2

(√
t

x

1 − t

)

, (4.6)

obtained with formula (5.11.4.12) of [27], which for α = 2m gives

∞
∑

n=0

(

1
2

)

n
tn

(1 + m)n

L
(2m)

2n
(x) =

1
√

1 − t

(√
t

x

2

)−m

exp

(

− t x

1 − t

)

Im

(√
t

x

1 − t

)

, (4.7)

where m = 0, 1, 2, . . . and Im(z) is the modified Bessel function;

∞
∑

n=0

(1/3)n (2/3)n tn

(1 + α/3)n (2/3 + α/3)n

L
(α)

3n
(x)

= (1 − t)−(1+α)/3

∞
∑

r=0

Γ(1 + α + 3r)

(1 + α/3)r (2/3 + α/3)r

(

− t x

9 (1 − t)

)r

×














r
∑

s=0

(−x)s L
(α+r+s)
s (x/3)

(r − s)! Γ(1 + α + r + 2s)















. (4.8)

Eq. (4.7) corrects the formula (5.11.2.10), p. 704 of [27].
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Let us now derive Eq. (4.6). Following Eqs. (1.15), (1.17) and the Gauss–Legendre formula

for Γ(2 z), we get

∞
∑

n=0

(1/2)n tn

(1 + α/2)n

L
(α)

2n
(x) =

∞
∑

n=0

(1/2)n tn

(2n)!

Γ(1 + α + 2n)

(1 + α/2)n

[

cαz (1 − x cz)
2n
] 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= Γ(1 + α)















cαz

∞
∑

n=0

(1/2 + α/2)n

n!
[t (1 − x cz)

2]n















1

Γ(1 + z)

∣

∣

∣

∣

z=0

=
Γ(1 + α)

(1 − t)(1+α)/2

[

1 + cz

(

2 t x − t x2 cz

1 − t

)]−(1+α)/2
1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
Γ(1 + α)

(1 − t)(1+α)/2

∞
∑

r=0

(−1)r

r!

(

1 + α

2

)

r

cr
z

(

2 t x − t x2 cz

1 − t

)r
1

Γ(1 + z)

∣

∣

∣

∣

z=α

=
Γ(1 + α)

(1 − t)(1+α)/2

∞
∑

r=0

(−1)r

r!

(

1 + α

2

)

r

Λ
(r+α)
r

(

t x2

1 − t
,

2 t x

1 − t

)

= (1 − t)−(1+α)/2

∞
∑

r=0

L
(r+α)
r (x/2)

(1 + α/2)r

(

− t x

2 (1 − t)

)r

.

Eq. (4.7) comes from Eq. (4.6) for α = 2m and using formula (5.11.4.12) on p. 706 of

[27]. An alternative demonstration of Eq. (4.7) can be carried through using mixed bilateral

generating function of Laguerre and Gegenbauer polynomials, see Appendix A.

5. Concluding Remarks

Having obtained the summation formulas Eqs. (4.6) and (4.7), we may write down the

right hand sides of Eqs. (1.11) and (1.12) in explicit form. For α = 0, the initial condition for

Eqs. (1.9) and (1.10), f (x) = I0(βx), β > 0, evolves with time according to

exp[−t D(0)
x ] I0(βx) =

1
√

1 − β2 t2
exp

(

− β
2 t x

1 − β2 t2

)

I0

(

β x

1 − β2 t2

)

, (5.1)

≡ P0(t, x) I0

(

β x

1 − β2 t2

)

, (β t)2 < 1. (5.2)

Furthermore, from Eq. (5.1) one obtains

exp[−t D(α)
x ] x−α/2 Iα/2(β x)

=
(1 − β2 t2)−(1+α)/2

Γ(1 + α/2)
exp

(

− β
2 t x

1 − β2 t2

) (

x

1 − β2 t2

)−α/2

Iα/2

(

β x

1 − β2 t2

)

,

≡ Pα(t, x)

(

x

1 − β2 t2

)−α/2

Iα/2

(

β x

1 − β2 t2

)

, (β t)2 < 1. (5.3)

In Eq. (5.3) we defined the “prefunction” Pα(t, x) > 0 satisfying Pα(0, x) = 1. Eqs. (5.1)

and (5.2) illustrate the scaling property of the time evolution: we show that special solutions

exists which, up to the “prefunction” Pα(t, x), consist in rescaling of the argument of the

initial condition f (x) according to x → βx/(1 − β2 t2). This feature is characteristic for a

number of examples of the so-called generalized Glaisher relations, see [16] and references

therein. An elementary example of a relation of this type is given in Eq. (1.7). Many similar
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examples can be worked out by choosing different forms of f (x) and different values of m in

Eq. (4.7).

Before concluding this paper it is worth presenting some further comments to reconcile

the present results with previous approaches based on the monomiality principle [7, 11, 12,

13, 22]. Within that context the so called Laguerre derivative D
(0)
x has been introduced in

Eq. (1.1), so that

D(0)
x Ln(x, y) = n Ln−1(x, y).

The Laguerre derivative in differential terms is defined as D
(0)
x =

d
dx

x d
dx

. As a further example

of application we consider the action of the exponential containing the Laguerre derivative

acting on the Tricomi function C0(x) = I0(2
√

x), namely

exp[y D(0)
x ] C0(x) = . . . = ey C0(x),

in agreement with the fact that C0(x) is an eigenfunction of the Laguerre derivative [7, 13]

with the eigenvalue equals to one. An alternative operator definition of the Laguerre deriva-

tive is given in Appendix B, where also some of its consequences are explored. The formal

procedure we have developed can be pushed even further.

The use of the following identity

Kx d
dx f (x) = f (Kx).

and the definition of the 0-th order cylindrical Bessel function as a pseudo-Gaussian [8],

namely

J0(x) = e−cz (x/2)2 1

Γ(1 + z)

∣

∣

∣

∣

z=0
,

allow for the derivation of the following identity

c
− 1

2
x d

dx
z J0(x) = e−(x/2)2

,

which, in terms of integral transforms, can be interpreted as a kind of Borel transform [12]

c
− 1

2
x d

dx
z J0(x) =

∫ ∞

0

e−s J0

(√
sx

)

ds.

Finally let us note that, having expressed the cylindrical Bessel functions in terms of Gauss-

ian, it is also possible to “reduce” a Gaussian to a Lorentzian, according to the identity

e−x2

=
1

1 + x2 cz

1

Γ(1 + z)

∣

∣

∣

∣

z=0
.

According to this last identity, we can write the relevant integral as
∫ x

0

e−ξ
2

dξ =

∫ x

0

dξ

1 + czξ2

1

Γ(1 + z)

∣

∣

∣

∣

z=0
=

[

c−1/2
z arctan

(√
cz x

)] 1

Γ(1 + z)

∣

∣

∣

∣

z=0
.

Here we give for completeness the list of new closed form expressions obtained in the present

investigation. These are equations: (2.1), (2.2), (2.5), (3.5), (3.6), (3.7), (3.10), (3.11), (3.12),

(3.16), (4.1), (4.3), (4.4), (4.5), (4.6), (4.7), and (4.8). The methods we have illustrated in this

paper appear fairly flexible and amenable for further implementations, as will be shown in a

future investigation.
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Appendix A.

This appendix is entirely based on the material kindly communicated to the authors by

Strehl [26].

The identity Eq. (4.7),

∞
∑

n=0

(1/2)n tn

(1 + m)n

L
(2m)

2n
(x) =

1
√

1 − t

( √
t x

2

)−m

exp

( −t x

1 − t

)

Im

( √
t x

1 − t

)

, (A.1)

for 0 < t < 1 and m = 0, 1, . . ., will be shown to follow from Eq. (1.20), § 144, p. 281 of [28],

namely from the following mixed bilateral generating function of products of Laguerre and

Gegenbauer polynomials:

∞
∑

n=0

n! tn

(γ)n

L(γ−1)
n (y) Cγ/2n (x) = ρ−γ exp

(

−t (x − t) y

ρ2

)

0F1

(

−
(1 + γ)/2

;
t2 y2

4 ρ4
(x2 − 1)

)

, (A.2)

where C
γ/2
n (x) is a Gegenbauer polynomials and ρ =

√
1 − 2xt + t2. (As apparently first

shown by Weisner [31], Eq. (A.2) can be derived using group-theoretic methods.)

On the left hand side of Eq. (A.2) we set x = 0 and observe that Cν
2n

(0) = (−1)n(ν)n/n! and

Cν
2n+1

(0) = 0, see p. 732 of [27]; then in the sum, only even terms in n survive. Furthermore,

upon replacing t → i
√

t in this sum we end up with

∞
∑

n=0

(2 n)!

(γ)2n

(−1)n

n!
L

(γ−1)

2n
(y) (i

√
t)2n (γ/2)n =

∞
∑

n=0

(1/2)n tn

(1/2 + γ/2)n

L
(γ−1)

2n
(y), (A.3)

where we have used the relation

(2 n)!

(γ)2n

(γ/2)n

n!
=

(1/2)n

((1 + γ)/2)n

.

Observe that Eq. (A.3) can be identified with the left hand side of (A.1) by setting m =

(γ − 1)/2. We apply now the above substitutions (x = 0 and t → i
√

t) to the right hand side
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of Eq. (A.2) which then becomes

(1 − t)−γ/2 exp

(

− t y

1 − t

)

0F1















−
(1 + γ)/2

;

( √
t y

2 (1 − t)

)2












. (A.4)

In the final step, the use in Eq. (A.4) of the hypergeometric representation of Bessel functions

Im(z), see p. 729 of [27],

Im(z) =
1

Γ(1 + m)

(

z

2

)m

0F1

(

−
1 + m

;
z2

4

)

,

accomplishes the proof of Eqs. (4.7) and (A.1).

Appendix B.

In the main body of the paper we have introduced the concept of Laguerre derivative,

which is a useful tool to deal with special polynomials of the Laguerre type. More generally

it provides a key operator to further simplify many of the computational tasks we have dealt

with, provided that we embed its definition within the envisaged umbral restyling.

We note indeed that the use of this operator allows the following alternative definition:

LDx =
d

dX
, where X = x cz,

as a consequence of the fact that

dXn

dX
= n Xn−1.

If we now use the following special notation

exp [λ LDx] = exp
[ λ

cz

d

dx

]

,

by keeping separate the actions of the derivative and umbral operators, we find, e. g.,

exp [λ LDx] Xn
= exp

[ λ

cz

d

dx

]

cn
z xn 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= cn
z

(

x + λ c−1
z

)n 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= (λ + x cz)
n 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= Ln(λ, x) = λnLn (−x/λ) = exp
[

λD(0)
x

] xn

n!
,

or

exp [λ LDx] ea X
= exp

[ λ

cz

d

dx

]

exp
[

a x cz

] 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= exp
[

a cz

(

x + λ c−1
z

)] 1

Γ(1 + z)

∣

∣

∣

∣

z=0

= ea λ exp[a x cz]
1

Γ(1 + z)

∣

∣

∣

∣

z=0
= ea λ I0(2

√
a x).
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Observe also that

exp [λ LDx] ea X
= exp [λ LDx]

∞
∑

r=0

(a X)r

r!

=

∞
∑

r=0

ar

r!
exp [λ LDx] Xr

=

∞
∑

r=0

ar

r!
exp

[

λD(0)
x

] xr

r!

= exp
[

λD(0)
x

]

∞
∑

r=0

(a x)r

(r!)2
= exp

[

λD(0)
x

]

I0(2
√

ax).

The same definition can be used in an even more raffishly way by noting that

exp [λ LDx] e−x
= exp

[ λ

cz

d

dx

] 1

1 + xcz

1

Γ(1 + z)

∣

∣

∣

∣

z=0

=
1

1 + cz

(

x + λ c−1
z

)

1

Γ(1 + z)

∣

∣

∣

∣

z=0

=
1

1 + λ

1

1 + (x cz)/(1 + λ)

1

Γ(1 + z)

∣

∣

∣

∣

z=0

=
1

1 + λ
exp

(

− x

1 + λ

)

= exp
[

λD(0)
x

]

e−x .
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H. Niewodniczański Institute ofNuclear Physics, PolishAcademy of Sciences, ul. Eliasza-Radzikowskiego

152, PL 31-342 Kraków, Poland

E-mail address: katarzyna.gorska@ifj.edu.pl
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