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LACUNARY LAGUERRE SERIES FROM A COMBINATORIAL
PERSPECTIVE

VOLKER STREHL

Abstract. In recent work, Babusci, Dattoli, Górska, and Penson have presented
a number of lacunary generating functions for the generalized Laguerre polynomials

L
(α)
n (x), i.e., series of the type

∑
n≥0 cnL

(α)
2n (x) tn, by a method closely related to

umbral calculus. This work is complemented here, deriving many of their results by
interpreting Laguerre polynomials combinatorially as enumerators for discrete struc-
tures (injective partial functions). This combinatorial view pays in that it suggests
natural extensions and gives a deeper insight into the known formulas.

1. Introduction

1.1. History and motivation. The following citation is taken from the Introduction
of an article by Adriano Garsia and Jeff Remmel [19], published in 1980 in the very first
volume of the European Journal of Combinatorics. It has been reproduced (in French)
in a slightly shortened version by Dominique Foata in the introduction to the written
version [17] of his talk on the combinatorics of orthogonal polynomials, presented at
the International Congress of Mathematicians in Warsaw, 1983.

It has become increasingly apparent since the work of Foata–
Schutzenberger and recent works of the Lotharingian school of combi-
natorics [. . . ] that the special functions and identities of classical math-
ematics are gravid with combinatorial information. This information can
be expressed in the form of correspondences or more precisely encodings
of objects into words of certain languages and natural bijections between
different classes of languages. The classical identities appear then as
relations between enumerators of these words by suitable statistics. At
present a systematic study is taking place to mine this information out
of the classical literature. This increasingly rich inventory of correspon-
dences has led to new identities as well as more revealing proofs of the
old ones.

In this context, Foata mentions various schools of combinatorics (écoles bostonienne,
californienne, lotharingienne, québecoise, viennoise) inspired by these ideas, and the
number of references, witnessing the enormous activities in the spirit expressed in this
citation, has drastically increased compared to the original text.

The above quotation very well describes the atmosphere of departure around 1980.
I will not try to give an overview, least of all a comprehensive account of what has
been achieved in those days. But in relation to the present article I have to mention
some particular work that I have personally been involved in. Foata’s work on the
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combinatorics of Hermite polynomials, see [11], and also [12] and [13], with a simple
proof of the bilinear generating function, known as Mehler’s formula, and its multilinear
generalizations, constitutes an early striking example for the elegance and efficiency of
combinatorial concepts and methods in this domain. The combinatorial model itself,
involutions alias matchings of complete graphs, belongs to combinatorial folklore.

In 1981 I have been invited by Dominique Foata to jointly work on similar items
for the Laguerre polynomials, i.e., their bilinear generating function that goes under
the name Hille–Hardy identity, which will appear in this article towards the end as
Eq. (12.2). We have set up a combinatorial model, the very same one that will be
introduced here in Section 4.2, and we have given a proof of the Hille–Hardy identity
based on this model. The model then guided us to invent and to prove a multilinear
extension, see [14] and [15].

Another striking event in those days was the combinatorial proof of the generating
function for the Jacobi polynomials, achieved by Foata and Leroux in [16]. The model
deals with complementary pairs of Laguerre configurations, which naturally produces
tree-like objects and therefore relates to Lagrange inversion. For me it has been a chal-
lenge to study further properties of the Jacobi polynomials, including Bailey’s bilinear
generating function, by looking through combinatorial glasses. Some of this work has
been published in articles, but I will not give the references here, because it has ma-
terialized, together with lots of otherwise unpublished work, in my habilitation thesis
[36].

After having completed [36], my interests shifted, well under the influence of the
spectacular success of Zeilberger’s ideas and implementations, towards the algorithmic
side of hypergeometric series, binomial identities, and symbolic summation. See, e.g.,
my article [37] which deals with both, combinatorial and algorithmic aspects. The
chapter on the combinatorics of special function identities appeared to be closed for
me.

It came as a surprise when Karol Penson contacted me in 2012, sending me the
list [1] (not containing any proofs) of lacunary generating functions for the Laguerre
polynomials and asking, what a combinatorialist could say about these new results. My
first reaction was reluctant, because the formulas looked pretty complicated, and I was
not sure that one could produce combinatorial proofs that would be more enlightening
than tour-de-force work. My mind changed when I received a first version of what is now
the article [2]. I started to look closer and it appeared to me that indeed something
interesting could be said when interpreting these identities in terms of the good old
Laguerre configurations. The present article is the result of my investigations. I have
taken some of the major results of [2] and cast them into combinatorics. But it would
not have been too exciting for me to present intricate combinatorial proofs for results
that have been obtained (formally) analytically more easily. In my opinion the value
of the combinatorial approach lies in that it guides on the way towards reasonable
generalizations, specializations, and refinements in an intuitive, even “visible” way.

1.2. Structure of the article. Sections 2 to 5 prepare the ground for the combinato-
rial work with Hermite and Laguerre series. To start with, Section 2 is about notation
and conventions relating to exponential generating functions for families of combinato-
rial structures. It will be assumed that the reader is familiar with these notions that
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have been formalized in essentially equivalent ways in many places. The classical ti-
tles (in chronological order) [33], [4], [10], [21], [39], [3], [9] constitute just a subjective
selection from the literature.

The main actors of this article, Hermite and Laguerre configurations, are introduced
in Section 3. These are families of combinatorial objects used to interpret the integer
coefficients (in a suitable normalization) of the classical polynomials bearing the same
name. In Section 3.3 some pointers are given to other work on Laguerre polynomials
(or, more generally, classical orthogonal polynomials) and combinatorics, that is not
touched upon in this article.

In the subsequent section, Section 4, some elementary examples are given that demon-
strate the use of these combinatorial models. Some of these ideas are used later on.
Another item of the same kind is the use of differential operators from a combinatorial
perspective, which is presented in Section 5. This material has been included mainly
because in the article [2] by Babusci et al. differential operators play an important role,
but here this aspect is not treated any further.

The proper combinatorial contributions of this article are presented beginning with
Section 6, where a very natural idea for obtaining lacunary generating function com-
binatorially is exploited: just copy the base sets where the combinatorial structures
live, and use a basic decomposition property of Laguerre configuration. These copying
procedures could be used to obtain k-lacunary series for k = 2, 3, 4, . . ., but only the
cases k = 2 and k = 3 are treated in detail, and for k = 4 the result is given. It should
then be obvious what the result for arbitrary k looks like.

The approach to lacunary Laguerre series as presented in Section 7 is different, and,
in my opinion, it is more interesting than the previous one. The basic idea is to consider
superpositions of Laguerre configurations and perfect matchings (i.e., a special class of
Hermite configurations) as combinatorial objects. This forces the ground set to be
of even cardinality, which naturally leads to a lacunary generating function. As a
result, we obtain a very nice, strikingly simple double lacunary generating function for
the Laguerre polynomials, which is expressed in terms of Hermite polynomials. The
interest of this combinatorial set-up lies in the fact, that it can be easily generalized in
various ways, one of which is presented in Section 8. By considering the superposition of
Laguerre and (general) Hermite configurations, i.e., involutions alias general matchings,
we are led to a bilateral (not lacunary) generating function, that can be specialized to
yield further lacunary Laguerre series. In my experience, it would have been difficult
to imagine the general result without the underlying combinatorial model in mind.

Another extension of the basic identity in Section 7 is then tackled in Section 9. This

generalizes from the ordinary Laguerre polynomials L
(0)
2n to the generalized Laguerre

polynomials L
(k)
2n . The cases k = 1 and k = 2 have been treated experimentally by

Babusci et al. in [2], with rather strange (at first sight, at least) coefficient polynomials
showing up which were not explained any further. The combinatorial approach, how-
ever, yields a very nice and simple explanation for these “wild” polynomials, that are
counting certain balls-into-boxes configurations. This leads to a very satisfactory result
for general k through a combinatorial proof.

Section 10 can be seen as an addendum to the foregoing: first, in Section 10.1 the
same situation as in Section 9 is treated, but now with an additional cycle counting
parameter. Secondly, in Section 10.2 it is indicated that also triple lacunary Laguerre
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series can be obtained this way. Not all details are given, but they could be worked
out, if desired.

A result from [2], featuring the polynomials L
(α−2n)
2n (x), which is already typographi-

cally different from all the others, is the object of Section 11. Indeed, these polynomials
are not proper Laguerre polynomials, as their parameter α − 2n depends on n. These
polynomials are essentially Charlier polynomials, which are generally easier to treat
than Laguerre polynomials, as the combinatorial objects counted by them are just
colored permutation. Anyway, the daunting analytical expression has a very simple
combinatorial explanation.

Finally, in Section 12 another interesting hypergeometric series from [2] is considered,
which is actually equivalent to one treated here already in Section 6. By relating
this series to the classical Hille–Hardy bilinear generating function for the Laguerre
polynomials, for which a combinatorial proof is known since long, see [14] and [15], one
obtains intriguing hypergeometric and binomial identities. The core result is expressed
as a nice umbral substitution identity, which relates Laguerre and Legendre polynomials.
This looks as if a direct combinatorial proof should be manageable, but I have not been
able to construct one — so I leave this as a combinatorial puzzle.

2. Notation and conventions

If E is a family of combinatorial structures (in the sense of the combinatorial species
or species of structure of [3], but we will use only very basic facts and conventions),
and A is any finite set, then E[A] will denote the set of E-structures living on A. If
A = [n] = {1, 2, . . . , n}, then E[n] will be written in place of E[[n]]. For any set A of
cardinality n, which is denoted by ]A = n, the sets E[A] and E[n] are equivalent in
a functorial way. This is made precise in species theory, but needs not to be detailed
here. As mentioned at the beginning of Section 1.2, there are many places, where a
similar formalism for the combinatorics of exponential generating is described.

Generally, we are dealing here with structures which are both labeled (by the elements
of the respective ground set A), and weighted, in the sense that a mapping (weight
function), w : E[A] → R[x] is specified that is compatible with transport of structures
via bijections. Here R is some suitable ring, R[x] is its polynomial ring, in the variable
x. Typically, the weight w(e) for e ∈ E[A] will be of the kind w(e) = w̃(e)x]A, where
w̃(e) ∈ R encodes some structural information about e and the term x]A keeps track of
the size (also called order) of the underlying vertex set.

The adequate tools for enumeration are then exponential generating functions:

E(x) =
∑
n≥0

1

n!

∑{
w(e) ; e ∈ E[n]

}
=
∑
n≥0

xn

n!

∑{
w̃(e) ; e ∈ E[n]

}
.

It will be convenient to use the set-up of multisorted structures, which then gives rise
to exponential generating functions in more than one variable. The case of two-sorted
structures is typical: the family of structures e belonging to E and living on a pair (A,B)
of disjoint finite sets will be denoted as E[A,B], and these structures are weighted by
w(e) = w̃(e)x]Ay]B. The exponential generating function would then be written as

E(x, y) =
∑
n≥0

∑
X]Y=[n]

1

]X!

1

]Y !

∑{
w(e) ; e ∈ E[X, Y ]

}
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=
∑
n≥0

1

n!

∑
k+`=n

(
n

k, `

)
xk y`

∑{
w(e) ; e ∈ E[k, `]

}
=
∑
n≥0

1

n!
En(x, y),

where E[k, `] = E[A,B] for A = [k] and B = [k + `] \ [k], say. In this notation the
enumerating polynomials En(x, y) for E-structures of order n are homogeneous polyno-
mials in x and y of total degree n. There is no need for an extra variable t, with the
term tn indicating the order of E-structures, but it can be made visible by making the
substitution x→ x t, y → y t, if desired.

3. The combinatorial vocabulary: Hermite and Laguerre
configurations

3.1. Hermite configurations. For any finite set A, let I[A], respectively M[A], de-
note the set of all involutions, respectively fixed point free involutions on A (alias
matchings respectively perfect matchings of the complete graph with vertex set A). For
µ ∈ I[A] the set of its fixed points will be denoted by fix (µ), and fix(µ) = ]fix (µ)
is its cardinality. Similarly, we write trans(µ) for the set of transpositions of µ, and
trans(µ) = ]trans(µ) for its cardinality. Each involution µ will be given the valuation

νx,y(µ) = xfix(µ)y2 trans(µ),

and the homogeneous generating polynomial for involutions of order n is

Hn(x, y) =
∑{

νx,y(µ) ; µ ∈ I[n]
}
,

our combinatorial version of the classical Hermite polynomials. Specifically, for any
pair (A,B) of disjoint finite sets the set H[A,B] of Hermite configurations is the set

H[A,B] =
{
µ ∈ I[A ]B] ; fix (µ) = A

}
,

so µ ∈ H[A,B] is essentially given by A (as a set) and a fixed-point free involution on
B. For M[B] to be non-empty, the cardinality of B must be even, and for a set B of
cardinality 2k one has

mk = ]M[B] =

1 · 3 · 5 · · · (2m+ 1) =
(2m)!

2mm!
, if k = 2m,

0, if k is odd.
(3.1)

Thus

Hn(x, y) =
∑

A]B=[n]

∑{
νx,y(µ) ; µ ∈ H[A,B]

}
=
∑

0≤k≤n

(
n

k

)
mk x

n−k yk

=
∑

0≤2k≤n

(
n

2k

)
m2k x

n−2k y2k

=
∑

0≤2k≤n

n!

k! (n− 2k)! 2k
xn−2k y2k.
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In hypergeometric terms,

Hn(x, y) = xn · 2F0

[
−n/2 , 1− n/2

− ;
2y2

x2

]
,

and it is easy to obtain the exponential generating function∑
n≥0

1

n!
Hn(x, y) = ex+y

2/2.

As a special case, for x = 0 one has∑
n≥0

1

n!
Hn(0, y) =

∑
n≥0

y2n

(2n)!
m2n = ey

2/2.

Referring to the standard notation Hn(x) for the Hermite polynomials, as given for
instance in the NIST Handbook [29], one observes

Hn(t) = Hn(2 t, i
√

2), Hn(x, y) = (
−i y√

2
)nHn

(
i x√
2 y

)
.

3.2. Laguerre configurations. As for the combinatorial version of the Laguerre poly-
nomials, it is also preferable to use a homogeneous version in two variables.

For disjoint finite sets X, Y let L[X, Y ] denote the set of all injective functions
λ : X → X ] Y , henceforth called Laguerre configurations. Also put L[N ] =⋃
X]Y=N L[X, Y ], which can be seen as the set of injective partial functions on N .
The connected components of such a Laguerre configuration λ are of two types:

– λ-cycles, contained in X, of some length ` ≥ 1,

a0
λ→ a1

λ→ a2
λ→ . . .

λ→ a`−1
λ→ a0,

– λ-chains beginning in X and ending in Y , of some length ` ≥ 0,

a0
λ→ a1

λ→ a2
λ→ . . .

λ→ a`−1
λ→ b,

with a0, . . . , a`−1 ∈ X and b ∈ Y . Here the case ` = 0 means nothing but
b 6∈ λ(X).

Figure 1 shows a typical Laguerre configuration λ with three cycles and four chains,
one of which is simply a vertex of Y which is not an endpoint of a proper chain. Note
the following special cases:

– L[X, ∅] is the family of permutations of X,
– L[∅, Y ] is {Y }, i.e. the set Y taken as a singleton set of structures.

For Laguerre configurations the following valuation will be employed:

ωαx,y(λ) = (1 + α)cyc(λ)x]Xy]Y ∈ Z[α, x, y],

where cyc(λ) is the number of λ-cycles1, and it is then easily checked that∑{
ωαx,y(λ) ; λ ∈ L[X, Y ]

}
= (1 + α + ]Y )]X ,

1Taking 1 + α instead of α as a counter for cycles is a matter of convenience, because it conforms
with the traditional definition of generalized Laguerre polynomials. Specializing α → 0 means “cy-
cles allowed, but no bookkeeping is done for the number of cycles” and α → −1 means “cycles are
forbidden”.
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where (γ)n = γ · (γ + 1) · · · (γ + n− 1) is the rising factorial or Pochhammer symbol.

X

Y

Figure 1. A typical Laguerre configuration λ with weight ωαx,y(λ) = (1 + α)3 x17y4

Now the combinatorial (generalized) Laguerre polynomials are, for any set N of
cardinality n,

L(α)
n (x, y) =

∑{
ωαx,y(λ) ; λ ∈ L[N ]

}
=

∑
X]Y=[N ]

∑{
ωαx,y(λ) ; λ ∈ L[X, Y ]

}
=
∑

0≤k≤n

(
n

k

)
(1 + α + k)n−k x

n−k yk

= xn · 1F1

[
−n

1 + α
; −y

x

]
.

This relates to the usual conventions for the Laguerre polynomials simply by

L(α)
n (y) =

1

n!
L(α)
n (1,−y), L(α)

n (x, y) = n!xn L(α)
n (−y/x).

In the case α = 0 the standard notation Ln(y) for the traditional Laguerre polynomi-

als will be used instead of L
(0)
n (y), and consequently also Ln(x, y) is used in place of

L(0)
n (x, y).

A standard combinatorial reasoning, taking the two types of connected components
into account, immediately shows that the exponential generating function for Laguerre
configurations is ∑

n≥0

1

n!
L(α)
n (x, y) = (1− x)−(1+α)ey/(1−x),

where the first factor on the right takes care of the cycles (thus counting permutations),
and the second one represents the set of chains of elements of X ending in an element
of Y .

A slight extension of this combinatorial model that is sometimes handy and that will
be used in Section 6, is as follows: consider three mutually disjoint finite sets X, Y, Z,
and let

L[X, Y ;Z] = L[X, Y ] Z],

taking as valuation for these objects

ωαx,y,z(λ) = (1 + α)cyc(λ)x]Xy]Y z]Z .
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Then the generating polynomial is∑{
ωαx,y,z(λ) ; λ ∈ L[X, Y ;Z]

}
= (1 + α + ]Z + ]Y )]X x

]Xy]Y z]Z ,

and for any set N of cardinality n, keeping the “extra” set Z fixed,∑
X]Y=N

∑{
ωαx,y,z(λ) ; λ ∈ L[X, Y ;Z]

}
= L(α+]Z)

n (x, y) z]Z .

A familiar special case occurs when the set Y is copy of X, say Y = X ′. Then
the Laguerre configurations λ ∈ L[X,X ′;Z] can be interpreted as matchings of the
complete bipartite graph KX,X′]Z with vertex sets X and X ′ ] Z, where the pairs
(a, λ(a)) ∈ X × (X ′ ] Z) are the selected edges. Let ]X = n and ]Z = m. The
polynomial

L(m)
n (x, 1) =

n∑
k=0

(
n

k

)(
n+m

k

)
xk = 2F1

[
−n,−n−m

1
; x

]
is (essentially) what is known as the matching polynomial ([27]) of the complete bipartite
graph Kn,n+m, also known as rook polynomial ([33]) of a rectangle of size n× (n+m).
See Figure 2 for an illustration of how the coefficients of

L(2)
4 (x, y) = y4 + 24xy3 + 180x2y2 + 480x3y + 360x4

can be seen as counters for matchings in K4,6.

type

] cases
(
4
1

)(
6
1

)
1! = 64

(
4
2

)(
6
2

)
2! = 180

(
4
3

)(
6
3

)
3! = 480

(
4
4

)(
6
4

)
4! = 360

Figure 2. The coefficients of L(2)
4 (x, y) by counting matchings in K4,6

3.3. Other work. A lot more could be said about Laguerre polynomials (or, more
generally, classical orthogonal polynomials) and combinatorics. There are various mod-
els, like derangements, words, lattice paths, rook configurations, matchings, etc., that
have been used for exploring properties of these families of polynomials. Since these
developments, interesting and important as they are, will not be used in the remainder
of this article, I will confine myself to shortly mention three areas of activity from the
the period between the 1970’s and the early 1990’s.

– The general notion of a reluctant function was introduced by Mullin and Rota in
[28] in the context of binomial enumeration, see also [25] for a recent reference.
The particular subfamily of injective reluctant function is relevant for us: these

are precisely the functions enumerated by the polynomials L(−1)
n (x, y), i.e., La-

guerre configurations in the present sense, but with α = −1, which means that
no cycles, only chains are allowed2. The chains also appear in other models, e.g.,

2Note that the Rota school uses a different convention for the generalized Laguerre polynomials:

what Rota denotes L
(α)
n (x) is L

(α−1)
n (x) according to standard terminology.
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as tubes in [19]. Laguerre polynomials are featuring as a prominent example in
Rota’s finite operator calculus, respectively umbral calculus, see, e.g., [34] and
[35].

– Starting with articles [6] by Even and Gillis and [23] by Jackson, the exploration
of the combinatorial aspects of the linearization coefficients for classical orthog-
onal polynomials has been a “hot topic” for quite some time, with Laguerre
polynomials being of particular interest, see, e.g., the work [18] by Foata and
Zeilberger. Finally, Gessel [20] and Zeng [40], besides substantial results, offer
a systematic view on these achievements.

– In the field of algorithmics and algorithm analysis orthogonal polynomials made
their appearance when studying the dynamic behavior of simple data structures
(like lists, queues, dictionaries) under insertions, searches, and deletions, see [8]
as an authoritative paper in this direction. The deeper reason for this applica-
tion of orthogonal polynomials to discrete structures is the modeling via lattice
paths and their relation to continued fractions, as put forward, e.g., by Flajolet
in [7] . A combinatorial theory of orthogonal polynomials based on this lattice
path model (where the moment sequences of these polynomials are of central
importance) has been worked out by Viennot. It has been presented at a collo-
quium which was held in honor of Edmond Nicolas Laguerre at the occasion of
his 150th birthday in his birthplace Bar-le-Duc (France), see [38].

4. Examples for the use of the combinatorial models

The purpose of this section is to illustrate the combinatorial reasoning with Hermite
and Laguerre configurations by discussing typical examples.

4.1. Hermite configurations. Let N denote a set of cardinality 2n. Here we will
examine pairs (µ, S) where µ ∈ M[N ] and where S ⊆ N . For convenience, put R =
N \ S, and let r = ]R, s = ]S = 2n− r.

For any µ ∈M[N ] define

– µR : the set of all µ-transpositions contained in R,
A : the subset of R on which µR acts, with ]A = 2a;

– µS : the set of all µ-transpositions contained in S,
C : the subset of S on which µS acts, with ]C = 2c;

– β : the remaining transpositions of µ, which can be considered as an element of
B[B′, B′′], the set of bijections between B′ = R \A and B′′ = S \C, both being
sets of cardinality b = n− a− c.

Figure 3 shows the objects µ and S separately, in Figure 4 the decomposition of µ using
S is displayed.

We have then the bijective mapping

M[N ]→
⋃

A]B′=R
B′′]C=S

M[A]×B[B′, B′′]×M[C] : µ 7→ (µR, β, µS),
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R

S

µ

N

Figure 3. A perfect matching µ ∈M[18] and a bipartition R ] S = [18]

A

B0 B00
C

�
µS

µR

R

S

µ

Figure 4. Decomposing the perfect matching µ using the bipartition R ] S

a quantitative version of which is given by

m2n =
∑

2a+b=r

(
r

2a

) ∑
2c+b=s

(
s

2c

)
m2a b!m2c

=
∑

2a+b=r

∑
2c+b=s

(
r

b

)(
s

b

)
m2a b!m2c.

If we let run S over all subsets of N of cardinality s, we get

m2n

(
2n

s

)
= (2n)!

∑
2a+b=r

∑
2c+b=s

1

(2a)! b! (2c)!
m2am2c,

which can be easily turned into

m2n

(
2n

s

)
=
∑
a+d=n

(
2n

2a, 2d

)
m2am2d 22d−s

(
d

s− d

)
by simple manipulations. But this identity also has a simple combinatorial meaning,
now starting reading from the right side: for any µ ∈ H[N ]

– we partition the transpositions of µ into two subsets, thus obtaining perfect
matchings µA on a subset A ⊆ N of cardinality 2a, and µD on the set D = N \A
of cardinality 2d = 2n− 2a;

– we partition the d transpositions of µD into two subsets, thus obtaining perfect
matchings µC on a set C of cardinality 2c with c = s − d respectively µB on
a set B of cardinality 2b with b = 2d − s, containing s − d respectively 2d − s
transpositions;
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– from each transposition of µB we select one of the points: this defines B′ ⊂ B
and B′′ = B \ B′, both of cardinality b = 2d − s, and the transpositions of µB
establishes a bijection between B′ and B′′.

So we are back to the first description of M given above, where now S = B′′ ] C is
indeed of cardinality 2c+ b = 2(s− d) + (2d− s) = s.

This kind of reasoning will be used below in Section 8.

4.2. Laguerre configurations. As a first illustration for the use of Laguerre configu-
rations, I will mention a very simple, but useful technique, that will be employed later
on.

For three mutually disjoint finite sets X, Y, Z one has

L[X ] Y, Z] ' L[X, Y ] Z]× L[Y, Z], (4.1)

where “'” means: “there is a cycle-count-preserving bijection” between the sets of
combinatorial objects on both sides.

To be precise, take g ∈ L(X, Y ]Z) and h ∈ L(Y, Z). Then the union g∪h (seen as a
relation) is not necessarily an injective mapping: it may happen that for some z ∈ Y ]Z
one has z = g(x) = h(y) for some x ∈ X and some y ∈ Y , but if this happens, then
x and y are uniquely determined. In this situation, leave g as it is and map y to the
starting point of the unique g-chain that ends in z. This defines an injective function
f = g ? h from X ] Y into X ] Y ] Z, so f ∈ L(X ] Y, Z), and this construction is
reversible. Furthermore

cyc(g ? h) = cyc(g) + cyc(h).

The quantitative counterpart of Eq. (4.1) is nothing but factoring

(1 + α +m)k+` = (1 + α + `+m)k · (1 + α +m)`.

This construction, which can also be read inversely as a decomposition of f ∈ L[X]Y, Z]
into g ∈ L(X, Y ] Z) and h ∈ L(Y, Z), is illustrated in Figures 5, 6 and 7.

X

Y

Z

Y

Z
X

Figure 5. g ∈ L[X, Y ] Z] (left) and h ∈ L[Y, Z] (right)

In terms of the Laguerre polynomials the property just mentioned translates into

L(α)
n (x+ y, z) = L(α)

n (x,L(α)(y, z)), (4.2)

where the expression on the right has to be read as an umbral substitution:

L(α)
n (x,L(α)(y, z)) = expand(L(α)

n (x,w))
∣∣
wk 7→L(α)k (y,z)

.

This umbral property of the Laguerre polynomials can also be neatly illustrated by
using the model of matchings on complete bipartite graphs. Let M,N be disjoint finite
sets with ]M = m, ]N = n, and let N be a copy of N . For the complete bipartite
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Figure 6. Superposition of g and h with collisions (left) and with re-
solved collisions (right)

Figure 7. f = g ? h ∈ L[X ] Y, Z]

graph Kn,n+m ' N × (N ] M) a 2-sorted matching is a pair (σ, τ) of matchings of
Kn,n+m, considered as edge sets (with σ, respectively τ consisting of red, respectively
blue edges), such that σ ] τ is again a matching of Kn,n+m. The weight of such a pair
(σ, τ) is defined as

φx,y,z(σ, τ) = x]σy]τzn−]σ−]τ ,

see Figure 8 for an illustration.

Figure 8. A 2-sorted matching (σ, τ) of K7,10 of weight x3y2z2 (σ in red,
τ in blue, uncovered vertices of N in yellow)

Then L(m)
n (x + y, z) is the generating polynomial for 2-sorted matchings (σ, τ) of

Kn,n+m w.r.t. φx,y,z. But each pair (σ, τ) is specified by

– the number s = ]σ with 0 ≤ s ≤ n,
– subsets S ⊆ N and S ′ ⊆ N ]M with ]S = ]S ′ = s,
– a bijection between S and S ′, which is the restriction of σ to S × S ′,
– a matching of (N \ S) × ((N ]M) \ S ′), i.e., the restriction of ν to N \ S and

(N ]M) \ S ′.
For any s, there are

(
n
s

)(
n+m
s

)
possibilities for choosing (S, S ′) and then s! possibilities

for the restriction of σ which thus contribute a total of L(0)
s (x, 0) = s!xs. Finally, the
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possibilities for τ are the counted by L(m)
n−s(y, z). As a result:

L(m)
n (x+ y, z) =

∑
0≤s≤n

(
n

s

)(
n+m

s

)
L(0)
s (x, 0)L(m)

n−s(y, z),

which is equivalent to Eq. (4.2). This will be used later in Section 12.

5. Differential operators for Laguerre configurations

It is interesting to see how familiar differential (or difference) formulas for the La-
guerre polynomials can be interpreted (or deduced) from a combinatorial perspective.

For fixed n ∈ N, let

Ln =
⋃

A⊕B=[n]

L[A,B]

denote the set of all Laguerre configurations of order n, and for 0 ≤ k ≤ n

Ln,k =
⋃

A⊕B=[n]
]A=k

L[A,B].

Then, as mentioned before, Ln,0 is a singleton set, consisting of the function λ∅ with
empty domain ∅, and Ln,n is nothing but the set of all permutations of [n]. The
corresponding generating polynomials are

L(α)
n,0(x, y) = yn, L(α)

n,n(x, y) = (1 + α)n x
n.

The set of all Laguerre configurations on [n] can be constructed iteratively by starting
with λ∅ on level k = 0 by “adding n functional arrows”, one at a time, thus passing
from Ln,k to Ln,k+1 for 0 ≤ k < n, as follows:

– take λ ∈ L[A,B], where ]A = k,
– pick one element b ∈ B and one element c 6∈ λ(A),
– add to λ the new arrow b→ c.

Then λ′ = λ ∪ {b → c} ∈ L[A′, B′], where A′ = A ∪ {b} and B′ = B \ {b}. Among
all the n− k possible choices for c (given one of the n− k possible choices for b) there
is precisely one which leads to the creation of a new cycle, namely when c is the start
vertex of the (unique) λ-chain that ends in b. Note that for recovering λ from λ′ one
needs to know which of the k + 1 arrows from λ′ was added last.

Taking all possibilities into consideration, and expressing the choices by differential
“pointing” operators, one sees that

(1 + α + y ∂y)(x ∂y)L(α)
n,k(x, y) = (k + 1)L(α)

n,k+1(x, y) = (x ∂x)L(α)
n,k+1(x, y). (5.1)

Note that (x∂y) randomly selects in λ a point b from B (variable y) and turns it into a
point of A′ (variable x). Then c is chosen as the start vertex of a λ-chain, viz.,

– either of the unique λ-chain ending in b, thus forming a λ′-cycle (which gets
valuation 1 + α),

– or by selecting (by using y∂y) any of the remaining points from B \ {b} .

Thus one gets by induction

[(1 + α + y ∂y)(x ∂y)]
k

k!
L(α)
n,0(x, y) =

[(1 + α + y ∂y)(x ∂y)]
k

k!
yn = L(α)

n,k(x, y),
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and, by summing over k,

exp [(1 + α + y ∂y)(x ∂y)] y
n = L(α)

n (x, y),

which should be compared to Eq. (1.5) in [2].
Summing identity (5.1) over k, we get

(1 + α + y ∂y)(x ∂y)L(α)
n (x, y) = (x ∂x)L(α)

n (x, y),

which is nothing but the hypergeometric differential equation for the Laguerre polyno-
mials in homogeneous form.

More examples of a combinatorially inspired use of differential operators in the con-
text of Laguerre and Jacobi polynomials can be found in [26].

6. An natural approach to lacunary Laguerre series

The technique of Section 4.2 can be used for obtaining lacunary Laguerre series in a
very natural setting. The idea is that the Laguerre configurations counted by L2n(x, y)
can be seen as configurations on a set N = N ]N ′, where N is a set of cardinality n,
and where N ′ is a copy of N with a natural bijection (perfect matching) between N
and N ′.

The lacunary Laguerre series (3.11) in [2], viz.∑
n≥0

tn L2n(x) =
1

1− t
∑
r≥0

L
(r)
r (x/2)

(1/2)r

[
− t x

2(1− t)

]r
, (6.1)

is the special case for α→ 0 of∑
n≥0

(1/2)n t
n

((1 + α)/2)n
L
(α)
2n (x) =

1

(1− t)(1+α/2)
∑
r≥0

L
(r+α)
r (x/2)

((1 + α)/2)r

[
− t x

2(1− t)

]r
. (6.2)

By using the binomial series and comparison of coefficients for tn, one gets

(2n)!L
(α)
2n (x) =

∑
0≤r≤n

(
n

r

)
r! 2r L(r+α)

r (x/2) (1 + 2r + α)2n−2r(−x)r, (6.3)

or, in our notation,

L(α)
2n (x, y) =

∑
0≤r≤n

(
n

r

)
(1 + α + 2r)2n−2r L(α+r)

r (2x, y)x2n−2r yr. (6.4)

Before delving into combinatorics, a short remark about these identities is in order.
By using

((1 + α)/2)n (1 + α/2)n
((1 + α)/2)r (1 + α/2)r

= (1 + α + 2r)2n−2r4
r−n,

Eq. (6.3) is easily seen to be equivalent to

(1/2)n
((1 + α)/2)n(1 + α/2)n

L
(α)
2n (x) =

∑
0≤r≤n

(−x/2)r

((1 + α)/2)r(1 + α/2)r
L(r+α)
r (x/2)

1

(n− r)! ,

(6.5)
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which leads to the generating function of Eq. (6.2). By exchanging the roles of ((1 +
α)/2)n and (1 + α/2)n when passing to the generating function one may also obtain∑
n≥0

(1/2)n t
n

(1 + α/2)n
L
(α)
2n (x) =

1

(1− t)(1+α)/2
∑
r≥0

1

(1 + α/2)r
L(α+r)
r (x/2)

[ −x t
2(1− t)

]r
. (6.6)

Identities (6.2) and (6.6) look deceptively similar, yet they are not quite the same
(although they may be considered equivalent in view of the preceding argument). From
(6.2) on gets (6.1) by a simple specialization α → 0, but the same substitution leads
from (6.6) to∑

n≥0

(
2n

n

)(
t

4

)n
L2n(x) =

1

(1− t)1/2
∑
r≥0

1

r!
L(r)
r (x/2)

[ −x t
2(1− t)

]r
. (6.7)

Remark that the identity in Eq. (6.6) occurs as Eq. (4.6) of [2], see also my remarks
reproduced in Appendix A of that article. Here this result will show up again in
Section 12.

We now proceed towards a combinatorial proof of (6.4). Let N be a set of cardinality
n and let N1, N2 be two copies of N , and N = N1 ] N2. There is a natural bijection
ρ = N1 ↔ N2, for ξ ∈ N we write ξ′ = ρ(ξ). For a subset A ⊆ N put A′ = ρ(A) and
Ai = A ∩Ni (i ∈ {1, 2}).

From the bipartition N = N1]N2 one naturally gets, for any bipartition N = X]Y ,
a 4-partition N = A ]B ] C ]D as follows:

for ξ ∈ N : ξ ∈


A, if (ξ, ξ′) ∈ X ×X,
B, if (ξ, ξ′) ∈ X × Y,
C, if (ξ, ξ′) ∈ Y ×X,
D, if (ξ, ξ′) ∈ Y × Y.

Then X = A ]B, Y = C ]D and the partition (A,B,C,D) satisfies

A = A′, B1 = C ′2, B2 = C ′1, D = D′. (6.8)

Schematically (see Figure 9, with bold contour lines indicating the regions where arrows
are defined)

A1

A2

B1

B2

C1

C2

D1

D2

Figure 9. The scheme for L[X, Y ] before decomposition

Looking at the corresponding Laguerre configurations, one gets

L[X, Y ] = L[A ]B,C ]D]

' L[A,B ] C ]D]× L[B,C ]D]

' L[A,B ] C ]D]× L[B,D1 ; C1 ] C2 ]D2]

= L[A,N \ A]× L[B,D1 ; (N \ A)2],
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where the decomposition property, as discussed in Section 4.2, see Eq. (4.1), has been
used. The situation for the two Laguerre-factors (omitting arrows) is now as depicted
in Figure 10:

D2

D1

D1

D2

C1C2

B1 B2A1

A2

B1

C2

B2

C1

L[A, N \ A]

L[B, D1; (N \ A)2]

Figure 10. The scheme for L[X, Y ] after decomposition

We obtain

L(α)
2n (x, y) =

∑
X]Y=N

∑{
ω
(α)
x,y (f) ; f ∈ L[X, Y ]

}
=
∑′

A]B]C]D=N

∑{
ωx,1(g) ; g ∈ L[A,N \ A]

}
×

×∑{
ωx,y,y(h) ; h ∈ L[B1 ] C1, D1 ; (N \ A)2]

}
,

where
∑′ means that one sums over partitions (A,B,C,D) of N that satisfy Eq. (6.8).

Then one realizes:

– For each 0 ≤ a ≤ n there are
(
n
a

)
choices for the A-part.

– For each A-part the contribution from the g ∈ L[A,N \A] is (1 + α+ 2b)2ax
2a,

where b = n− a.
– For each A, the contribution coming from all the h ∈ L[B,D1 ; (N \ A)2] looks

if it should be Lα+bb (x, y) yb, because ]B + ]D1 = ]C + ]D2 = n− a = b, but in
addition the multiplicity from partitioning B into B1 and B2 in all possible ways
(which all lead to the same contribution) has to be taken into account. This
multiplicity is 2]B, which is accommodated by simply replacing the variable x
by 2x.

If we put all this together this gives us Eq. (6.4), which we now write as

L(α)
2n (x, y) =

∑
a+b=n

(
n

a, b

)
(1 + α + 2b)2a x

2a · L(α+b)
b (2x, y) yb. (6.9)

A surplus of the proof just given is that it immediately tells you what happens
for a triple lacunary series, see identity (3.12) of [2], by looking at the combinatorial
picture by stacking three copies of a base set N on top of each other, and adapting the
definitions of A, B, C and D, see Figure 11 for a schematic illustration.

The result is

L(α)
3n (x, y)

=
∑

a+b+c=n

(
n

a, b, c

)
(1 + α + b+ 3c)3a+2b

(
3

1

)b
x3a+2b · L(α+b+2c)

c (3x, y) yb+2c.
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L[A ] B, C ] D]

L[A, B ] C ] D]

L[B, D1; (N � A)2 ] (N \ A)3]

a b c

Figure 11. The scheme for L[X, Y ] in the triple lacunary case, again
with A in red, B in green, C in cyan, D in yellow.

A completely analogous approach for a quadruple lacunary series gives

L(α)
4n (x, y) =

∑
a+b+c+d=n

(
n

a, b, c, d

)
(1 + α + b+ 2c+ 4d)4a+3b+2c

(
4

1

)b(
4

2

)c
×

× x4a+3b+2cL(1+α+b+2c+3d)
d (4x, y) yb+2c+3d.

The general pattern should now be clear.

7. The simplest lacunary Laguerre series

In this section a different approach to lacunary Laguerre series will be employed,
namely correlating Laguerre configurations with arbitrary perfect matchings on a
ground set.

Identity (3.5) from [2] reads∑
n≥0

tn

n!
L2n(x) = et ·

∑
r≥0

(ix
√
t)r

r!2
Hr(i
√
t). (7.1)

The particular feature of this identity is that the n-th term on the l.h.s. comes with the
Laguerre polynomial L2n(x), but with n! (instead of (2n)!), as one would expect) in the
denominator. If we force (2n)! to appear in the denominator and make the innocuous
substitution t→ t2/2, we get an interesting factor:∑

n≥0

t2n

(2n)!

(2n)!

n! 2n
L2n(x) =

∑
n≥0

t2n

(2n)!
m2n L2n(x) =

∑
n≥0

tn

n!
mn Ln(x).

The matching numbers mn from Section 3.1 appear! This suggests a combinatorial
meaning: consider it as an exponential generating function for pairs (µ, λ) ∈ M[A] ×
L[A], i.e., µ is a perfect matching and λ is a Laguerre configuration on the same vertex
set A, where A must have even cardinality by the perfectness of µ.
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Rewriting Eq. (7.1) with t → t2/2 and x → −y in terms of our“combinatorial”
Laguerre and Hermite polynomials, we are led to

∑
n≥0

t2n

(2n)!

(2n)!

n!2n
1

(2n)!
L(0)

2n (1, y) = et
2/2 ·

∑
n≥0

(yt)n

n!2
Hn(t, 1),

and then the substitutions yt→ y and t→ x give us

∑
n≥0

m2n

(2n)!

1

(2n)!
L(0)

2n (x, y) = ex
2/2 ·

∑
n≥0

1

n!2
Hn(x y, y). (7.2)

This will now be proven by a combinatorial counting argument. First note that all
terms on both sides of (7.2) indeed have an even total degree in x, y. Therefore it
suffices to consider the contributions for a fixed total degree 2n in x, y on both sides by
writing

m2n · L(0)
2n (x, y) = (2n)!2

[
ex

2/2 ·
∑
s≥0

1

s!2
Hs(x y, y)

]〈2n〉
, (7.3)

where [. . .]〈2n〉 denotes the sum of the terms of total degree 2n in [ . . .].
Let N denote a set of cardinality 2n. The left-hand side of (7.3) enumerates pairs

(µ, λ) ∈M(N)× L(N). This can be evaluated explicitly and shown to be equal to the
right-hand side.

Fix a partition R ] S = N of the base set N , let r = ]R and s = ]S = 2n− r. The
following argument gives the contribution coming from the (µ, λ) with λ ∈ L[R, S].
Actually, this contribution depends only on the cardinalities of R and S, not on the
functional structure of λ !

Now take the bijection considered in Section 4.1,

M[N ]→
⋃

A]B′=R
B′′]C=S

M[A]×B[B′, B′′]×M[C] : µ 7→ (µR, β, µS),

with r = ]R = 2a+ b and s = ]S = 2c+ b. Furthermore note that µS can be considered
as an element of H[B′′, C]. Now let us count:

– For fixed (A,B′, B′′, C) the number of relevant (µR, β, µS) is, by construction,
m2a · b! ·m2c.

– The number of choices for (A,B′, B′′, C) for fixed (a, b, c) is
(
r
2a

)(
s
2c

)
.

– For fixed (R, S) with cardinalities (r, s) there are
]L[R, S] = (1 + s)r = (2n)!/s! Laguerre configurations.

– There are
(
2n
s

)
choices of the ordered pair (R, S) for given (r, s), which leads to

a valuation ω0
x,y(λ) = xrys of the Laguerre configurations, cycles are (not yet)

counted.
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To summarize, the l.h.s. of Eq. (7.3) can be written as∑
r+s=2n

(
2n

s

)
(2n)!

s!
xrys

∑
2a+b=r

(
r

2a

) ∑
2c+b=s

(
s

2c

)
m2a b!m2c

=
∑

r+s=2n

(2n)!

r!s!

(2n)!

s!

∑
2a+b=r

r!

(2a)!b!
m2a x

2a
∑

2c+b=s

(
s

2c

)
b!m2c (x y)by2c

= (2n)!2
∑

r+s=2n

∑
2a+b=r

m2a

(2a)!
x2a

1

s!2
Hs(x y, y)

= (2n)!2

[∑
a≥0

m2a
x2a

(2a)!

∑
s≥0

1

s!2
Hs(x y, y)

]〈2n〉

= (2n)!2

[
ex

2/2
∑
s≥0

1

s!2
Hs(x y, y)

]〈2n〉
.

The combinatorial proof of Eq. (7.3) and hence of Eq. (7.1) is now complete. One
could easily add cycle counting with a parameter α to this proof, thus obtaining a
combinatorial proof of identity (3.6) of [2]. But much more can be done by extending
the combinatorial perspective. Instead of pairing Laguerre configurations with perfect
matchings, one can pair them with arbitrary matchings on the same ground set. This
will be done in the next section, and the α for cycle counting will also be included in
this generalization.

8. An extension motivated by combinatorics

The combinatorial picture presented in the foregoing Section 7 leads immediately
to the following idea for an extension: play the same game, but now with arbitrary
involutions (Hermite configurations) instead of perfect matchings! Note that the use of
perfect matchings forced terms occurring on the left of (7.2) to have an even total degree
— hence the lacunarity of the series expansion! If we replace M × L by I × L, then
lacunarity gets lost, but otherwise one can hope that a similar counting argument would
go through. This is is indeed the case and, interestingly, now the functional structure
of the Laguerre configurations plays a role, whereas in the previous proof only the
underlying pair of sets (X, Y ) was relevant. In addition, in this enlarged set-up also the
cycle counting for the Laguerre configurations will be tracked by the parameter α.

The generating function identity to be proven in this section, written in terms of the
combinatorial Hermite and Laguerre polynomials, is

∑
n≥0

Hn(u, v)

n!

L(α)
n (x, y)

(1 + α)n
=M(x v)

∑
s,p≥0

Hs(x y v
2, y v)

s!

L(α+s)
p (xu, y u)

p! (1 + α)s+p
. (8.1)

Before delving into the details, I would like to stress that — at least from my personal
perspective — it would be difficult to imagine such an identity without being guided
by combinatorial imagination.
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By considering the contributions of total degree n on both sides, one finds that
identity (8.1) is equivalent to

Hn(u, v) · L(α)
n (x, y)

=
∑

r+s+p=n

(
n

r, s, p

)
r! (1 + α + s+ p)r ·

[
e(x v)

2/2 ·Hs(x y v
2, y v)·L(α+s)

p (xu, y u)
]〈n〉

,

(8.2)

where again [. . .]〈n〉 means that the homogeneous part of degree n (in one of the variable
pairs {x, y} or {u, v}, for the other pair this follows automatically) has to be taken.

X

V

Y

U

Figure 12. σ ∈ H[U, V ] and λ ∈ L[X, Y ] separately

The combinatorial argument used here directly generalizes the approach taken in
Section 7. For a set N of cardinality n take any (σ, λ) ∈ H[N ]× L[N ], more precisely,
σ ∈ H[U, V ] and λ ∈ L[X, Y ], so that N = U ] V and N = X ] Y are two bipartitions
of N . To shorten the notation somewhat, we will use AB ≡ A ∩ B for any two sets
A,B in the sequel.

Let ]U = p, ]V = q = n − p, ]X = i, ]Y = j = n − i. The two bipartitions of N
define

– a bipartition UX ] UY of U , with ]UX = k, ]UY = `,
– a bipartition V X ] V Y of V , with ]V X = r, ]V Y = s.

Now σ
∣∣
V

is a perfect matching of V , so that the ideas of Section 4.1 can be applied
w.r.t. the bipartition of V = V X ] V Y . This defines a set W ⊆ V which contains
precisely the transpositions of σ

∣∣
V

which “cross the border” between V X and V Y . This
gives a 4-partition

V = (V X \WX) ]WX ]WY ] (V Y \WY )

with ](V X \WX) = 2a, ]WX = ]WY = b, ](V Y \WY ) = 2c.
Then

– σV X = σ|V X\WX ∈M[V X \WX]

– σV Y ∈ H[WY, V Y \WY ] with σV Y
∣∣
V Y \WY

∈M[V Y \WY ] and

fix(σV Y ) = WY ,
– β = σ

∣∣
WX]WY

∈ B[WX,WY ].
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X

Y

U V

UX

V Y

UY

V X

Figure 13. Superposition (σ, λ) ∈ H[U, V ]× L[X, Y ]

X

Y

U V

W

UX

V Y

UY

WX

WY

V X

Figure 14. Superposition (σ, λ) ∈ H[U, V ]×L[X, Y ] with matching set
W and matching between WX and WY .

We have ]V X = r and ]V Y = s, so that in particular

k + ` = p, r + s = 2(a+ b+ c) = q, k + r = i, s+ ` = j.

As for λ ∈ L[X, Y ], due to X = UX ] V X, and using the decomposition of Laguerre
configurations as in (4.1), we have the equivalence

L[UX ] V X, Y ] 3 λ↔ (λV X , λUX) ∈ L[V X,UX ] Y ]× L[UX, Y ],
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X

Y

U V

W

UX

V Y

UY

WX

WY

V X

Figure 15. Final configuration after changing the critical arrows:
σV X ∈ H[∅, V X \ WX], β ∈ B[WY,WX], σV Y ∈ H[WY, V Y \ WY ],
λV X ∈ L[V X,UX ] Y ], λUX ∈ L[UX, Y ]

and, furthermore,
cyc(λ) = cyc(λUX) + cyc(λV X).

For fixed U, V,X, Y and hence for fixed UX,UY, V X, V Y the transformation

(σ, λ) 7→ (σV X , β, σV Y , λV X , λUX)

is a bijection which preserves cycle counting between

H[U, V ]× L[X, Y ]

and the union of

M[V X \WX]×B[WX,WY ]× H[WY, V Y \WY ]× L[V X,UX ] Y ]× L[UX, Y ],

running over all bipartitions (V X \WX)]WX = V X and (V Y \WY )]WY = V Y .
The correspondence is indeed literally:

σV X β σV Y λV X λUX
l l l l l

M[V X \WX] B[WX,WY ] H[WY, V Y \WY ] L[V X,UX ] Y ] L[UX, Y ]

Note that the cycle counting part from λ splits into the corresponding parts of λ′ and
λ′′:

(1 + α + j)i = (1 + α + j)k · (1 + α + j + k)r = (1 + α + j)k · (1 + α + s+ p)r

Summing now over all possible partitions

(V X \WX) ]WX ]WY ] (V Y \WY ) ] UX ] UY
of N , and using the weight function

νu,v(σ) · ωαx,y(λ),
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we obtain the expression∑
r+s+p=n

(
n

r, s, p

)
r! (1 + α + s+ p)r ·

[
e(x v)

2/2 ·Hs(x y v
2, y v)·L(α+s)

p (xu, y u)
]〈n〉

,

where the contribution

– from σV X ∈M[V X \WX] goes into M(x v) = e(x v)
2/2,

– from (β, σV Y ) ∈ B[WX,WY ]× H[WY, V Y \WY ] goes into Hs(x y v
2, y v),

– from λV X ∈ L[V X,UX ] Y ] goes into L(α+s)
p (xu, y u),

– from λUX ∈ L[UX, Y ] goes into the term (1 + α + s+ p)r.

This proves Eq. (8.2) and hence Eq. (8.1).

Specializing the result (8.1) by setting v = 1 (for convenience) and extracting the
coefficient of uk (for fixed k) on both sides, we obtain a whole range of lacunary Laguerre
series: ∑

m≥0

L(α)
2m+k(x, y)

2mm! (1 + α)2m+k

=M(x)
∑
s≥0

Hs(x y, y)

s!

L(α+s)
k (x, y)

(1 + α)s+k
.

For the proof, just note that for having a term uk to appear in Hn(u, 1) on the left-hand
side of the main result one must have that n − k is even, so put n = 2m + k. In this
case the coefficient is

hn,m =
n!

k!m! 2m
.

On the other hand, on the right-hand side of the main result the variable u appears

only in the term L(α+s)
p (xu, yu), which is homogeneous of degree p, so that it can be

written as L(α+s)
p (x, y)up. This shows that the summation over p collapses into the

single contribution for p = k.

9. An extension featuring balls-into-boxes combinatorics

Recall that in Section 7 we showed combinatorially that∑
n≥0

tn

n!
L2n(x) = et ·

∑
r≥0

(i x
√
t)r

r!2
Hr(i

√
t). (9.1)

This is the case k = 0 of

∞∑
n=0

tn

n!
L
(k)
2n (x) = et ·

∞∑
r=0

p2k(r; 1,−x, t)
r!(r + 3k)!

(i x
√
t)rHr(i

√
t), (9.2)

where p2k(r;x, y; t) is a homogeneous polynomial of degree 2k in {x, y} and also of degree
2k in r, with integer coefficients. It can be argued algebraically that such polynomials
must exists, and one can use computer algebra to determine the first cases. Indeed, the
authors of [2] have done this for the cases k = 1 and k = 2, see their identities (3.7),
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(3.8) and (3.9). Here is what their results are:

p2(r;x, y, t) = (1 + 2tx2)r2 + (5+4xyt+ 10tx2)r (9.3)

+ (6 + 12tx2+12xyt+ 2ty2),

p4(r;x, y, t) = (2 + 10tx2 + 4t2x4)r4 (9.4)

+ [36 + (180x2+20yx)t+ (72x4+16x3y)t2]r3

+ [238 + (10y2 + 1190x2+300yx)t

+ (240x3y + 24x2y2 + 476x4)t2]r2

+ [684 + (110y2+1480yx+ 3420x2)t

+ (1184x3y + 264y2x2+16xy3 + 1368x4)t2]r

+ [720 + (2400yx+ 3600x2 + 300y2)t

+ (1920x3y+96xy3 + 720y2x2 + 1440x4 + 4y4)t2].

Presented as such this does not really look inspiring. I went further and did the com-
putation for k = 3, and again, at first glance the result, presented in Figure 16 does
not look inviting: Indeed, this expression does not seem to simplify in any reasonable
way. But change of the priority of the variables leads to a simplified expression that

p6(r;x, 1, t) =
(
8 t3 + 48 t2 + 54 t+ 6

)
r6

+
(
48xt3 + 312 t3 + 192xt2 + 1872 t2 + 108xt+ 2106 t+ 234

)
r5

+
(
120x2t3 + 1680xt3 + 288x2t2 + 5000 t3 + 6720xt2 + 54x2t

+30000 t2 + 3780xt+ 33750 t+ 3750
)
r4

+
(
160x3t3 + 3600x2t3 + 192x3t2 + 23280xt3 + 8640x2t2 + 42120 t3

+93120xt2 + 1620x2t+ 252720 t2 + 52380xt+ 284310 t+ 31590
)
r3

+
(
120x4t3 + 3840x3t3 + 48x4t2 + 40200x2t3 + 4608x3t2 + 159600xt3

+ 96480x2t2 + 196592 t3 + 638400xt2 + 18090x2t

+1179552 t2 + 359100xt+ 1326996 t+ 147444
)
r2

+
(
48x5t3 + 2040x4t3 + 30560x3t3 + 816x4t2 + 198000x2t3

+ 36672x3t2 + 541152xt3 + 475200x2t2 + 481728 t3 + 2164608xt2

+89100x2t+ 2890368 t2 + 1217592xt+ 3251664 t+ 361296
)
r

+ 8x6t3 + 432x5t3 + 8640x4t3 + 80640x3t3 + 3456x4t2 + 362880x2t3

+ 96768x3t2 + 725760xt3 + 870912x2t2 + 483840 t3 + 2903040xt2

+ 163296x2t+ 2903040 t2 + 1632960xt+ 3265920 t+ 362880

Figure 16. The polynomial p6(r;x, 1, t)
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definitely looks attractive:

p6(r;x, 1, t) = 8 x6t3

+ 48x5t3 (5 t+ 2) (r + 9)

+ 24x4t2 (r + 9) (r + 8)

+ 32x3t2 (5 t+ 6) (r + 9) (r + 8) (r + 7)

+ 6x2t
(
20 t2 + 48 t+ 9

)
(r + 9) (r + 8) (r + 7) (r + 6)

+ 12x t
(
4 t2 + 16 t+ 9

)
(r + 5) (r + 9) (r + 8) (r + 7) (r + 6)

+ (8 t3 + 48 t2 + 54 t+ 6) (r + 9) (r + 8) (r + 7) (r + 6) (r + 5) (r + 4) .

This encourages one to look back to the expressions given in the cases k = 1,

p2(r;x, 1, t) = 2 x2t+ 4xt (r + 3) + (2 t+ 1) (r + 3) (r + 2)

=
2∑
i=0

1∑
j=0

xi tj
(

2j

i

)
(r + 3)!

(r + 1 + i)!
a1,j, with (a1,0, a1,1) = (1, 2),

and k = 2,

p4(r;x, 1; t) = 4x4t2

+ 16x3t2 (r + 6)

+ 2x2 t (12 t+ 5) (r + 6) (r + 5)

+ 4x t (4t+ 5) (r + 6) (r + 5) (r + 4)

+ (4 t2 + 10 t+ 2) (r + 6) (r + 5) (r + 4) (r + 3)

=
4∑
i=0

2∑
j=0

xi tj
(

2j

i

)
(r + 6)!

(r + 2 + i)!
a2,j, with (a2,0, a2,1, a2,2) = (2, 10, 4).

This suggests that in general one should have

∑
n≥0

L
(k)
2n (x)

tn

n!
= et

∑
r≥0

p̃2k(r;−x, t)
r!

(i x
√
t)rHr(i

√
t), (9.5)

where

p̃2k(r;x, t) =
∑

0≤i≤2k

∑
0≤j≤k

xi tj
(

2j

i

)
1

(r + k + i)!
ak,j,

with (positive integer) coefficients (ak,j)0≤j≤k. Note that in this notation the term
(r + 3)! (for k = 1) and (r + 6)! (for k = 2) disappears from the identity. This change
is indicated by writing p̃2k(r;x, t) instead of p2k(r;x, t). Now p̃2k(r;x, t) is no longer a
polynomial in r, but the advantage is that the term (r+ something)! cancels and we do
not need to know what “something” is.
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Computing the first values of the ak,`, we get

k\j 0 1 2 3 4 5 6
0 1
1 1 2
2 2 10 4
3 6 54 48 8
4 24 336 492 176 16
5 120 2400 5100 2920 560 32
6 720 19440 55800 45240 13680 1632 64

This clearly suggests a linear recurrence

ak,` = 2ak−1,`−1 + (k + 2`) ak−1,`,

which would show that the numbers ak,`/2
` are integers. Based on this conjectured

recurrence one could derive various generating functions, but it seems more interesting
to look at the numbers and generating polynomials

ak,` = ak,`
`!

k!
and ak(t) =

∑
0≤`≤k

ak,`t
`.

Then the recurrence reads

k ak,` = 2 ` ak−1,`−1 + (k + 2`) ak−1,`,

and the ak(t) (k ≥ 0) have a very simple rational generating function:∑
k≥0

ak(t) z
k =

1− z
1− 2(1 + t)z + (1 + t)z2

.

The vertical generating functions of the ak,` are given by∑
k≥`

ak,` z
k =

1

1− z

(
z(2− z)

(1− z)2

)`
=

1

1− z

(
1− (1− z)2

(1− z)2

)`
=

(−1)`

1− z ·
(

1− 1

(1− z)2

)`
.

An exponential generating function for the ak(t) (k ≥ 0) can be obtained, but it does
not have a particularly nice form.

Here is a table of first values of the ak,`:

k\` 0 1 2 3 4 5 6
0 1
1 1 2
2 1 5 4
3 1 9 16 8
4 1 14 41 44 16
5 1 20 85 146 112 32
6 1 27 155 377 456 272 64
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These numbers are known to the Online Encyclopedia of Integer Sequences [30] as
entry A056242. They were apparently first considered by Hwang and Mallows [22] in
counting order-consecutive partitions, but in the present context another combinatorial
interpretation of the balls-into-boxes type is better suited.

– For integers k, ` with 0 ≤ ` ≤ k consider
– k (ordered) singleton boxes, each of which can contain at most one ball,
– ` (ordered) twin boxes, each of which can contain at most one ball in each

of the two twin compartments.
– Then ak,` is the number of distributions of balls into the boxes s.th.

– each twin box contains at least one ball,
– the total number of balls in singleton boxes equals the total number of balls

in twin boxes.

In Figure 17 this model is illustrated for k = 3:

– The first row shows that without any twin box (` = 0) there is just one possible
configuration, so a3,0 = 1;

– The second and the third row show representatives for the case ` = 1, the
second row (one ball) giving 6 possibilities, the third row (two balls) giving
3 possibilities, so a3,1 = 9,

– The fourth and the fifth row show representatives for the case ` = 2, the fourth
row (two balls) giving 12 possibilities, the third row (three balls) giving 4 pos-
sibilities, so a3,2 = 16,

– The sixth row shows a representative for the case ` = 3, where only three balls
are necessary. This gives 8 possibilities, so a3,3 = 8.

Figure 17. Balls-into-boxes for k = 3 and 0 ≤ ` ≤ 3

Expansion of the main identity (9.5) gives

m2n

(
2n

s

)(
2n+ k

k

)
=

∑
2a+2b+i+j=2n

(
2n

2a, 2b, i, j

)
m2a βs−i,bmi+j ak,(i+j)/2,

where

βr,b =

(
2b

r

)(
r

b

)
b! 2b−r = m2b

(
b

r − b

)
22b−r,
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so that

m2n

(
2n

s

)(
2n+ k

k

)
=

∑
2a+2b+i+j=2n

(
2n

2a, 2b, i, j

)
m2am2bm2c 22b−s+i

(
b

s− i− b

)
ak,(i+j)/2

=
∑

a+b+c=n

(
2n

2a, 2b, 2c

)
m2am2bm2c ak,c

∑
i+j=2c

(
2c

i, j

)(
b

2b− s+ i

)
22b−s+i. (9.6)

There are two interesting special cases:

– Case k = 0:

m2n

(
2n

s

)
=
∑
a+b=n

(
2n

2a, 2b

)
m2am2b 22b−s

(
b

s− b

)
We know this already! This is the numerical consequence from the combinatorial
proof given in Section 7.

– Case s = 0:

m2n

(
2n+ k

k

)
=
∑
a+c=n

(
2n

2a, 2c

)
m2am2c ak,c (9.7)

In this case the relevance of the balls-into-boxes argument becomes obvious:
– Consider a set N of cardinality 2n and a set K of cardinality k, disjoint

from N .
– The left-hand side of (9.7) counts the pairs (µ, S), where µ ∈ M[N ] and
S ⊂ N ]K, with ]S = k.

– The right-hand side of (9.7) counts pairs (µA, µC) ∈ M[A] × M[C] for
bipartitions N = A ] C, together with a balls-into-boxes configuration
on K × trans(µC), the elements of K being the singleton boxes and the
transpositions of µC being the “twin boxes”.
For M[A] ×M[C] to be nonempty, the cardinalities of A and C must be
even, so ]A = 2a and ]C = 2c with a+ c = n.

– The balls-into-boxes configuration configuration just mentioned contains `
balls, say, where c ≤ ` ≤ 2c. The ` balls placed on trans(µB) together with
the k− ` empty singleton boxes in K make a k-subset S of N ]K, µA and
µB together give an element µ ∈M[N ].

– The argument just outlined is perfectly reversible.
This situation is illustrated in Figure 18 in a situation where n = 8, k = 10,
a = c = 4, ` = 6.

The general case of Eq. (9.6) can be illustrated by amalgamating these combinatorial
views for the special cases.

10. More extensions: balls-into-boxes with parameter α, and a triple
lacunary Laguerre series

In this section two extension of the results given in Section 9 will be presented, but
the details will only be sketched.
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N K

A

C

S

Figure 18. Illustration of the second special case, where balls-into-boxes
appear (the balls are the red and blue vertices).

10.1. The α-extension. Identity (9.7) can be generalized into

m2n · (1 + α + 2n)k =
∑

2a+2c=2n

(
2n

2a, 2c

)
m2am2c aa

(α)
k,c ,

where now the coefficients aa
(α)
k,c are defined by

aa
(α)
k,` = 2` · aa(α)k−1,`−1 + (α + k + 2`) · aa(α)k−1,`, aa

(α)
0,0 = 1.

This leads to

m2n

(
2n

s

)
(1 + α + 2n)k

=
∑

a+b+c=n

(
2n

2a, 2b, 2c

)
m2am2bm2c aa

(α)
k,c

∑
i+j=2c

(
2c

i, j

)(
b

2b− s+ i

)
22b−s+i,

which is the same as

m2n L(α+k)
2n (1, x) = (1 + α)2n

∑
0≤s≤2n

xs

(1 + α)k+s

∑
a+b+c=n

(
2n

2a, 2b, 2c

)
m2am2bm2c aa

(α)
k,c

×
∑
i+j=2c

(
2c

i, j

)(
b

2b− s+ i

)
22b−s+i

= (1 + α)2n
∑

a+b+c=n

(
2n

2a, 2b, 2c

)
m2am2c aa

(α)
k,c

×
∑

0≤s≤2n

xs

(1 + α)k+s

∑
i+j=2c

(
2c

i

)
(2b)!

(s− i)! [t2b]Hs−i(t
2, t).
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With

p
(α)
k (r, x, t) =

∑
0≤i≤2k

∑
0≤j≤k

xitj
(

2j

i

)
1

(α)r+k+i
a
(α)
k,j ,

where a
(α)
k,j = aa

(α)
k,j /j!, one gets

m2n L(α+k)
2n (1, x) = (2n)! (α)2n [t2n] et

2/2
∑
r≥0

xr

r!
p
(α)
k (r, x, t2/2)Hr(t

2, t),

and hence ∑
n≥0

t2n

2n n! (α)2n
L(α+k)

2n (1, x) = et
2/2
∑
r≥0

xr

r!
p
(α)
k (r, x, t2/2)Hr(t

2, t),

which in conventional notation reads∑
n≥0

t2n

n!

(2n)!

(1 + α)2n
L
(α+k)
2n (x) = et

∑
r≥0

1

r!
p
(α)
k (r,−x, t) (i x

√
t)rHr(i

√
t),

where the polynomials p
(α)
k (r, x, t) have a nice combinatorial meaning.

10.2. A triple lacunary Laguerre series. In analogy to Eq. (9.2) one may consider
the case of triple lacunary Laguerre series of the form∑
n≥0

tn

n!
L
(k)
3n (x) = et ·

∑
r≥0

xr q3k(r;x, t)

(r + 4k!)

∑
0≤s≤br/3c

(−t)s (i
√

3t)r−3s

(r − 3s)! s!
Hr−3s(i

√
3t/2), (10.1)

with polynomial factors q3k(r;−x, t). The case k = 1 has been worked out in [2], see
identity (4.4) and the following line, which reads

q3(r;x, t) = (1 + 3 t) r3 + (9 + 27 t− 9t x) r2 + (26 + 78 t− 63 t x+ 9 t x2) r

+ (24 + 72 t− 108t x+ 36 t x2 − 3 t x3),

but without any hint what these integer coefficients might count. Indeed, we have the
general form

q3k(r;x, t) =
∑

0≤i≤3k

∑
0≤j≤k

(−x)i tj
(

3j

i

)
(r + 4k)!

(r + k + i)!
bk,j,

where the generating polynomials

bk(t) =
∑

0≤`≤k

bk,` t
`

are defined via the linear recurrence

bk,` = 3 bk−1,`−1 + (k + 3`) bk−1,`,

with exponential generating function∑
k≥0

∑
0≤`≤k

bk,` t
` z

k

k!
=

et/(1−z)
2

(1− z) et
.
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The first values for the bk,` are

k\` 0 1 2 3 4 5
0 1
1 1 3
2 2 18 9
3 6 114 135 27
4 24 816 1692 756 81
5 120 6600 21060 15660 3645 243

Again, the numbers bk,` = bk,` · `!/k! are integers, which satisfy the recurrence

k bk,` = 3 ` bk−1,`−1 + (k + 3`) bk−1,`.

The first values (not yet in the OEIS) are

k\` 0 1 2 3 4 4
0 1 0 0 0 0 0
1 1 3 0 0 0 0
2 1 9 9 0 0 0
3 1 19 45 27 0 0
4 1 34 141 189 81 0
5 1 55 351 783 729 243

The straightforward combinatorial interpretation for bk,` is a balls-into-boxes situation
as before, but now with k singleton boxes and ` triple boxes and a corresponding
occupancy rule.

With this information at hand it is not difficult to obtain a combinatorial proof of
Eq. (10.1) along the lines presented in Section 9.

11. A lacunary Charlier series

In this section we consider the lacunary Laguerre series identity∑
n≥0

tnL
(α−2n)
2n (x, y) = (1− t x2)α/2 cosh

(√
t y + i α arcsin

( √
t x√

t x2 − 1

))
, (11.1)

which is Eq. (3.16) in [2]. It is convenient to replace t by t2 and α by −α, so that in
terms of the combinatorial version of the Laguerre polynomials with variables x, y the
identity reads∑

n≥0

t2n

(2n)!
L(−α−2n)

2n (x, y) = (1− (t x)2)−α/2 cosh

(
t y − i α arcsin

(
t x√

(t x)2 − 1

))
.

(11.2)
As usual, the variable t can be dropped, so that after setting t = −1 we get∑

n≥0

1

(2n)!
L(−α−2n)

2n (−x, y) = (1− x2)−α/2 cosh

(
y + i α arcsin

(
x√

x2 − 1

))
. (11.3)

It should be stressed that the polynomials

L(−α−2n)
2n (x, y)
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are not really Laguerre polynomials (because their cycle-counting parameter −α − 2n
depends on n). Instead, they are essentially homogeneous versions of the Charlier
polynomials, which can be seen from

L(−α−n)
n (−x, y) =

∑
0≤k≤n

(
n

k

)
(1− α− n+ n− k)k (−x)k yn−k

=
∑

0≤k≤n

(
n

k

)
(α)k x

k yn−k

= yn · 1F0

[
−n, α
− ;

x

y

]
,

so that

L(−α−2n)
2n (−x, y) =

∑
0≤k≤2n

(
2n

k

)
(α)k x

k y2n−k.

Obviously, these polynomials are the enumerating polynomials for those Laguerre con-
figurations on X ] Y = {1, 2, . . . , 2n} which consist, apart from the singletons in Y , of
permutations of X only, and with a weight α put on each cycle. Those structures will
be called Charlier configurations for short.

As for the factor (1 − x2)−α/2 in Eq. (11.3), this is nothing but the exponential
generating functions for permutations consisting of cycles of even length only, with
weight α put on each cycle. Therefore it suffices to show that

cosh

(
y + i α arcsin(

x√
x2 − 1

)
(11.4)

is the exponential generating function for Charlier configurations of even order, where
all cycles are of odd length.

For this purpose, consider the familiar series

arcsin(
x√

x2 − 1
) = −i

(
x+

x3

3
+
x5

5
+ · · ·

)
.

This shows that

i α arcsin(
x√

x2 − 1
) = α

(
x+ 2!

x3

3!
+ 4!

x5

5!
+ . . .

)
is the exponential generating function for cyclic permutations of odd length only. By
general principles,

exp
(
y + i α arcsin(x/

√
x2 − 1)

)
is the exponential generating function for structures which are composed of an arbitrary
number of

– singletons with weight y,
– cycles of odd length 2`+ 1 (` ≥ 1) with weight αx2`+1 for each cycle.

Now we restrict attention to only those compound structures of even order, i.e., for
which the total weight (product over all component weights) is even as a monomial in
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x and y, which is achieved if and only if the number of components is even. But this
means that instead of substituting into the exponential series

ez =
∑
n≥0

zn

n!
,

we have to substitute into the cosh-series

cosh(z) =
∑
n≥0

z2n

(2n)!
.

Thus Eq. (11.4) is indeed the exponential generating function of Charlier configurations
of even order composed of cycles of odd length (variable x) and singletons (variable y,
cycle count α), as required.

12. Binomial identities, umbral substitution, and a combinatorial
puzzle

In Section 4 of [2], Eqs. (4.6) ff., the authors derive an interesting lacunary Laguerre
series in terms of Bessel functions by using their proper methods. We have already met
this generating function here as Eq. (6.7). I have pointed out to the authors of [2] that
this result can be deduced from a mixed bilateral generating function for products of
Laguerre and Gegenbauer polynomials. My hint is reproduced in Appendix A of [2].
In this last section, I want to take a closer look on this result, with combinatorics in
mind.

For convenience, I write Eq. (6.7) in the following form:∑
n≥0

(1/2)n
(1 + α)n

L
(2α)
2n (2y) tn =

1

(1− t)α+1/2
e−2y t/(1−t)0F1

[ −
1 + α

;
y2 t

(1− t)2
]
. (12.1)

The right-hand side is reminiscent of the well-known Hille–Hardy identity, see [32, The-
orem 69, p. 212], which has received a combinatorial proof, including a combinatorially
motivated multivariate extension in [15], see also [14] for an analytic proof:∑
n≥0

n!

(1 + α)n
L(α)
n (x)L(α)

n (y) tn =
1

(1− t)α+1
e−(x+y)t/(1−t)0F1

[ −
1 + α

;
x y t

(1− t)2
]
. (12.2)

By setting x = y, one gets∑
n≥0

n!

(1 + α)n
L(α)
n (y)L(α)

n (y) tn =
1

(1− t)α+1
e−2y t/(1−t)0F1

[ −
1 + α

;
y2 t

(1− t)2
]

(12.3)

and hence, by comparison of (12.1) and (12.3), one has∑
n≥0

n!

(1 + α)n
L(α)
n (y)2 tn =

1

(1− t)1/2
∑
n≥0

(1/2)n
(1 + α)n

L
(2α)
2n (2y) tn,

or, equivalently,

n!

(1 + α)n
L(α)
n (y)2 =

∑
0≤k≤n

(1/2)k
k!

(1/2)n−k
(1 + α)n−k

L
(2α)
2n−2k(2y).
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Written in terms of the combinatorial Laguerre polynomials, this reads

L(α)
n (2x, y)2 =

∑
0≤k≤n

(
n

k

)
(2k)!

k!

(1 + α)n
(1 + α)n−k

x2kL(2α)
2n−2k(x, y)

=
∑

0≤k≤n

(
n

k

)(
α + n

k

)
(2k)!x2k L(2α)

2n−2k(x, y). (12.4)

As a side remark: the Hille–Hardy identity itself can be written as

L(α)
n (x, y)L(α)

n (x, z) =
∑

0≤k≤n

(
n

k

)
(1 + α + k)n−k(y z)

kL(α+2k)
n−k (x2, x y + x z),

(Bateman project [5, Sec. 10.12, Eq. (42)]). So we have both

L(α)
n (x, y)2 =

∑
0≤k≤n

(
n

k

)(
α + n

n− k

)
(n− k)!xn−k y2k L(α+2k)

n−k (x, 2y),

L(α)
n (x, y)2 =

1

4n

∑
0≤k≤n

(
n

k

)(
α + n

k

)
(2k)!x2k L(2α)

2n−2k(x, 2y).

Back to the main identity Eq. (12.4). Written as a family of binomial identities, it
can be stated for 0 ≤ m ≤ 2n as

2m
∑
k

(
n
k

)(
n+α
k

)(
n

m−k

)(
n+α
m−k

)(
m
k

) =
∑
k

(
n
k

)(
n+α
k

)(
2n−2k
m−2k

)(
2n−2k+2α
m−2k

)(
m
2k

) . (12.5)

One has to be careful with the range of summation! The cases 0 ≤ m ≤ n and
n ≤ m ≤ 2n should be considered separately! For 0 ≤ m ≤ n the summation

∑
k runs

on the left-hand side effectively from k = 0 to k = m; for n ≤ m ≤ 2n the summation∑
k runs effectively from k = m− n to k = n.
In the case α = 0, Eqs. (12.4) respectively (12.5) simplify to

Ln(2x, y)2 =
∑

0≤k≤n

(
n

k

)2

(2k)!x2k L2n−2k(x, y), (12.6)

respectively

2m
∑

0≤k≤n

(
n
k

)2( n
m−k

)2(
m
k

) =
∑

0≤k≤n

(
n
k

)2(2n−2k
m−2k

)2(
m
2k

) (0 ≤ m ≤ 2n). (12.7)

Two particular cases are worth mentioning:

– For m = 2n, Eq. (12.7) reduces to the well-known

4n =
∑

0≤k≤n

(
2k

k

)(
2n− 2k

n− k

)
,

for which several combinatorial proofs (e.g., counting lattice paths) are known.
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– For m = n one gets from (12.7):

2n
∑

0≤k≤n

(
n

k

)3

=
∑

0≤k≤n

(
n

k

)2(
2n− 2k

n− 2k

)2

(2k)!(n− 2k)!

=
∑

0≤k≤n

(
2k

k

)(
2n− 2k

n− k

)
(2n− 2k)!

(n− 2k)!

=
∑

0≤k≤n

(
2k

k

)(
2n− 2k

n− k

)(
2k

n

)
. (12.8)

This is an interesting identity, because it features the Franel numbers fn =∑n
k=0

(
n
k

)3
, which have an intimate relation with the more famous Apéry numbers

an, viz.,

an =
∑

0≤k≤n

(
n

k

)2(
n+ k

k

)2

=
∑

0≤k≤n

(
n

k

)(
n+ k

k

)
fn,

see [37] for comprehensive information about this intriguing identity, which sur-
prisingly can be seen as a descendant of Bailey’s bilinear generating function
for the Jacobi polynomials, for which I have given a combinatorial proof a long
time ago in my habilitation thesis [36]. Incidentally, there is another formula
which looks deceptively similar to (12.8) — watch the last binomial coefficient
of the right of both formulas! —, but which is not the same:∑

0≤k≤n

(
n

k

)3

=
∑

0≤k≤n

(
2k

k

)(
2n− 2k

n− k

)(
n

2k

)
. (12.9)

The equivalence of the two summations of Eq. (12.8) and Eq. (12.9) is not
obvious! It amounts to show the hypergeometric identity

1

2n

(
2n

n

)
3F2

[
1/2, 1/2− n/2,−n/2

1/2− n, 1/2− n ; 1

]
= 3F2

[
−n, 1/2− n/2,−n/2

1, 1/2− n ; 1

]
,

which does not seem to fall under one of the standard hypergeometric transfor-
mations — but see a remark on this below.

Identity (12.5), as well as the particular cases mentioned, can be verified algorithmically
(independently from the derivation given here, which after all is based on two nontrivial
results about generating functions) by

a) using Doron Zeilberger’s method for determining recurrence operators for hy-
pergeometric expressions, see e.g. [31], which I have executed myself, but I will
not present here details about the operators and the proof certificates;

b) using Christian Krattenthaler’s program HYP for verifying and/or discovering
hypergeometric transformation identities — which Christian has done success-
fully in [24].

After this hypergeometric digression, we turn to the identity of Eq. (12.4) again. In
the sequel it will be assumed for convenience that α = 0, thus writing now L(x, y) in
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place of L(0)(x, y). We then have

Ln(2x, y)2 =
∑

0≤k≤n

(
n

k

)2

(2k)!x2k L2n−2k(x, y). (12.10)

From the umbral property (4.2) we can write

Ln(2x, y) = Ln(x,L(x, y))

=
∑

0≤k≤n

(
n

k

)
(1 + n− k)kx

kLn−k(x, y)

=
∑

0≤k≤n

(
n

k

)2

k!xkLn−k(x, y)

=
∑

0≤k≤n

(
n

k

)2

Lk(x, 0)Ln−k(x, y).

If we now introduce

Pn(x, y) =
∑

0≤k≤n

(
n

k

)2

xkyn−k

as the homogeneous Legendre polynomials, then, using the umbral substitution

Λ :

{
xk → Lk(x, 0) (k ≥ 0),

y` → L`(x, y) (` ≥ 0),

and writing it in compositional form, we turn the preceding identity into

Ln(2x, y) = Λ ◦ P(x, y).

On the other hand, the right-hand side of (12.10) is just∑
0≤k≤n

(
n

k

)2

(2k)!x2k L2n−2k(x, y) =
∑

0≤k≤n

(
n

k

)2

L2k(x, 0)L2n−2k(x, y)

= Λ ◦ P(x2, y2),

so we end up with a very pleasing version of (12.4):

[ Λ ◦ P(x, y) ]2 = Λ ◦ P(x2, y2).

One can even show that the combinatorial Legendre polynomials are the only (nontriv-
ial) homogeneous polynomials which satisfy this umbral substitution property w.r.t.
Λ.

Back to combinatorics. Write (12.4) as

Ln(2x, 1)2 =
∑

0≤k≤n

(
n

k

)2

(2k)!x2k L2n−2k(x, 1). (12.11)

Then, in view of the interpretation of the Laguerre polynomials L(0)
n (x, y) as match-

ing polynomials of the complete bipartite graph Kn,n, both sides of Eq. (12.11) count
matchings (not necessarily perfect ones), the factor 2 on the left giving rise to 2-sorted
matchings, as mentioned in Section 4.2.
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– On the left: pairs of 2-sorted (red and blue edges) matchings of Kn,n, as shown
in Figure 19 for n = 5, with two independent K5,5’s (in green and magenta);

Figure 19. A configuration for n = 5, counted by L5(2x+ 1)2

– On the right: matchings of K2n,2n having a perfect kernel K2k,2k K2k,2k and an
ordinary matching for the complementary K2n−2k,2n−2k (in green), as shown in
Figure 20.

Figure 20. A configuration for n = 5, k = 4, counted by
(
5
2

)2
4!x4 L6(x, 1)

One would think that such an explicit description of two families of matchings should
make a bijective proof feasible, but I have not been able to achieve this — so I leave it
as a puzzle.
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