Tropical Catalan Subdivisions

Cesar Ceballos (joint with Arnau Padrol and Camilo Sarmiento)

The 76th Séminaire Lotharingien de Combinatoire, Ottrott April 6, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Frédéric Chapoton showed me a beautiful picture in François Bergeron's webpage

The 2-Tamari lattice for n = 4

Chapoton: Can you find a similar picture for all *m*-Tamari lattices?

- Chapoton: Can you find a similar picture for all *m*-Tamari lattices?
 - Me: Wow That is a really beautiful picture!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Chapoton: Can you find a similar picture for all *m*-Tamari lattices?
 - Me: Wow That is a really beautiful picture!!!
 - Me: Could you remind me what an *m*-Tamari lattice is?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chapoton: The *m*-Tamari lattice is a poset (that turns out to be a lattice) on Fuss-Catalan paths determined by the following covering relation:

Fuss-Catalan path: lattice path from (0,0) to (mn, n) that stays weakly above the main diagonal.

[Bergeron and Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets, '12]

Me: Could you show me some examples? Chapoton: 2-Tamari and 3-Tamari lattices for n = 3:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Me: These are really nice pictures! ...

Me: These are really nice pictures! ...

Me: Wow ... I think I know how to get them

Me: These are really nice pictures! ...

Me: Wow ... I think I know how to get them ...

Me: These are really nice pictures! ...

Me: Wow ... I think I know how to get them ...

These are the kind of pictures that we can get today:

The 2-Tamari lattice for n = 4.

Goal of this talk Explain these pictures.

Why Tropical Catalan Subdivisions?

These subdivisions come from regular triangulations of products of simplices. Their duals are obtained tropically (Develin-Sturmfels).

2-Tamari lattice for n = 3 3-Tamari lattice for n = 3

Theorem (CPS)

The m-Tamari lattice for n is the edge graph of a polytopal subdivision of an (n-1)-dimensional associahedron induced by a collection of tropical hyperplanes.

Why Tropical Catalan Subdivisions?

Colombia

Barcelona

(a)

э

Why Tropical Catalan Subdivisions?

Barcelona

(a)

Colombia

Tropical Catalan Subdivisions!

Consider the product of two simplices

$$\Delta_n \times \Delta_{\overline{n}} = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \leq i, \overline{j} \leq n \right\}.$$

We want to triangulate the sub-polytope

$$C_n = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \le i \le \overline{j} \le n \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

 $\operatorname{conv}\left\{(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{0}}),(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{2}}),(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{4}}),(\boldsymbol{e}_1,\boldsymbol{e}_{\overline{1}}),\ldots,(\boldsymbol{e}_4,\boldsymbol{e}_{\overline{4}})\right\}$

(日)、

-

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

$$\operatorname{conv}\left\{(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{0}}),(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{2}}),(\boldsymbol{e}_0,\boldsymbol{e}_{\overline{4}}),(\boldsymbol{e}_1,\boldsymbol{e}_{\overline{1}}),\ldots,(\boldsymbol{e}_4,\boldsymbol{e}_{\overline{4}})\right\}$$

イロト 不得 トイヨト イヨト

ъ

Fact

- These collection of cells triangulate the polytope C_n.
- This triangulation is dual to an associahedron.

This triangulation has appeared in many independent papers:

- Gelfand–Graev–Postnikov, Combinatorics of hypergeometric functions associated with positive roots, '97. (as a triangulation of a root polytope)
- Stanley–Pitman, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, '02.
- Petersen–Pylyavskyy–Speyer, A non-crossing standard monomial theory, '10.
- Santos–Stump–Welker, Noncrossing sets and a Grassmann associahedron. '14.

▶ ...

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_2 \subset \Delta_2 \times \Delta_{\overline{2}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_2 \subset \Delta_2 \times \Delta_{\overline{2}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why do you want to draw a 1-dim edge in 4 dimensions?

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_2 \subset \Delta_2 \times \Delta_{\overline{2}}$.

Why do you want to draw a 1-dim edge in 4 dimensions? This might look like a disadvantage. But this approach is actually very powerful.

Let *I*, *J* be a partition of [n] with $0 \in I$ and $n \in J$. The restriction of the triangulation to the face

$$\Delta_I imes \Delta_{\overline{J}} = \operatorname{conv} \left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon i \in I \text{ and } j \in J
ight\}$$

is called the (I, \overline{J}) -triangulation.

The cells of this restricted triangulation are indexed by (I, \overline{J}) -trees (maximal, non-crossing, increasing alternating graphs with support $I \cup \overline{J}$)

In this example,

 $I = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{9}\} \qquad \overline{J} = \{\overline{3}, \overline{4}, \overline{7}, \overline{8}, \overline{10}\}$

イロト 不得 トイヨト イヨト

-

Given such a tree T we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $\nu(I, \overline{J})$ replaces black and white balls by east and north steps respectively.

(日)、

э

Given such a tree T we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $\nu(I, \overline{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

(日)、

э

Given such a tree T we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $\nu(I, \overline{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

(日)、

Note: the path $\rho(T)$ is weakly above ν .

Proposition (CPS)

Let *I*, *J* be a partition of [*n*] with $0 \in I$ and $n \in J$, and $\nu = \nu(I, \overline{J})$.

- ρ is a bijection from (I, \overline{J}) -trees to ν -paths.
- ► two (I, J)-trees are related by a flip iff the corresponding ν-paths are related by a ν-Tamari relation.

・ロト ・ 理ト ・ ヨト ・ ヨト

Proposition (CPS)

Let I, J be a partition of [n] with $0 \in I$ and $n \in J$, and $\nu = \nu(I, \overline{J})$.

- ρ is a bijection from (I, \overline{J}) -trees to ν -paths.
- two (I, J)-trees are related by a flip iff the corresponding ν-paths are related by a ν-Tamari relation.

this should be compared with a similar result in [Préville-Ratelle and Viennot, An extension of Tamari lattices, '14.] $\mathsf{Tam}(\nu)$ as the dual of a triangulation

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). The ν -Tamari lattice $Tam(\nu)$ can be realized geometrically as the dual of a regular triangulation of a subpolytope of $\Delta_a \times \Delta_b$ (in \mathbb{R}^{a+b}).

Corollary (CPS)

Let ν be a lattice path from (0,0) to (a, b). Tam(ν) is the dual of a subdivision of a generalized permutahedron (in \mathbb{R}^a and in \mathbb{R}^b).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\mathsf{Tam}(\nu)$ as the dual of a subdivision

If you do it for all ν -paths you get

Two cells are adjacent iff the corresponding ν -paths are related by a ν -Tamari relation.

You can also obtain the dual tropically

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$Tam(\nu)$ as the graph of a tropical subdivision

Corollary (CPS)

Tam(ν) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement (in $\mathbb{TP}^a \cong \mathbb{R}^a$ and in $\mathbb{TP}^b \cong \mathbb{R}^b$).

The rational Tamari lattice Tam(3, 5).

$Tam(\nu)$ as the graph of a tropical subdivision

Corollary (CPS)

Tam(ν) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement (in $\mathbb{TP}^a \cong \mathbb{R}^a$ and in $\mathbb{TP}^b \cong \mathbb{R}^b$).

The 2-Tamari lattice for n = 4.

What about other types?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The cyclohedron triangulation

Consider the following trees indexed by cyclic symmetric triangulations of a (2n + 2)-gon:

(日)、

э

The cyclohedron triangulation

Theorem (CPS)

This collection of cells form a regular triangulation of $\Delta_n \times \Delta_{\overline{n}}$ dual to an n-dimensional cyclohedron.

Restricting to its faces, we obtain type B_n analogs of the realizations of Tam (ν) .

Thank you!