Tropical Catalan Subdivisions

Cesar Ceballos
(joint with Arnau Padrol and Camilo Sarmiento)

The 76th Séminaire Lotharingien de Combinatoire, Ottrott April 6, 2016

Vienna, December 18, 2015:

Frédéric Chapoton showed me a beautiful picture in François Bergeron's webpage

The 2-Tamari lattice for $n=4$

Vienna, December 18, 2015:

Chapoton: Can you find a similar picture for all m-Tamari lattices?

Vienna, December 18, 2015:

Chapoton: Can you find a similar picture for all m-Tamari lattices?

Me: Wow ... That is a really beautiful picture!!!

Vienna, December 18, 2015:

Chapoton: Can you find a similar picture for all m-Tamari lattices?

Me: Wow ... That is a really beautiful picture!!!
Me : Could you remind me what an m-Tamari lattice is?

Vienna, December 18, 2015:

Chapoton: The m-Tamari lattice is a poset (that turns out to be a lattice) on Fuss-Catalan paths determined by the following covering relation:

Fuss-Catalan path: lattice path from $(0,0)$ to $(m n, n)$ that stays weakly above the main diagonal.
[Bergeron and Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets, '12]

Vienna, December 18, 2015:

Me: Could you show me some examples?
Chapoton: 2-Tamari and 3-Tamari lattices for $n=3$:

Vienna, December 18, 2015:

Me : These are really nice pictures! ...

Vienna, December 18, 2015:

Me: These are really nice pictures! ...
Me: Wow ...I think I know how to get them ...

Vienna, December 18, 2015:

Me: These are really nice pictures! ...
Me: Wow ...I think I know how to get them ...

Vienna, December 18, 2015:

Me: These are really nice pictures! ...
Me: Wow ...I think I know how to get them ...

These are the kind of pictures that we can get today:

The 2-Tamari lattice for $n=4$.

Goal of this talk
Explain these pictures.

Why Tropical Catalan Subdivisions?

These subdivisions come from regular triangulations of products of simplices. Their duals are obtained tropically (Develin-Sturmfels).

2-Tamari lattice for $n=3$

3-Tamari lattice for $n=3$

Theorem (CPS)

The m-Tamari lattice for n is the edge graph of a polytopal subdivision of an ($n-1$)-dimensional associahedron induced by a collection of tropical hyperplanes.

Why Tropical Catalan Subdivisions?

Colombia

Barcelona

Why Tropical Catalan Subdivisions?

Colombia

Barcelona

Tropical Catalan Subdivisions!

The associahedral triangulation

Consider the product of two simplices

$$
\Delta_{n} \times \Delta_{\bar{n}}=\operatorname{conv}\left\{\left(\mathbf{e}_{i}, \mathbf{e}_{\bar{j}}\right): 0 \leq i, \bar{j} \leq n\right\} .
$$

We want to triangulate the sub-polytope

$$
\mathcal{C}_{n}=\operatorname{conv}\left\{\left(\mathbf{e}_{i}, \mathbf{e}_{\bar{j}}\right): 0 \leq i \leq \bar{j} \leq n\right\}
$$

The associahedral triangulation

The cells: indexed by triangulations of an $(n+2)$-gon

In this example, the cell is:

$$
\operatorname{conv}\left\{\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{0}}\right),\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{2}}\right),\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{4}}\right),\left(\mathbf{e}_{1}, \mathbf{e}_{\overline{1}}\right), \ldots,\left(\mathbf{e}_{4}, \mathbf{e}_{\overline{4}}\right)\right\}
$$

The associahedral triangulation

The cells: indexed by triangulations of an $(n+2)$-gon

In this example, the cell is:

$$
\operatorname{conv}\left\{\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{0}}\right),\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{2}}\right),\left(\mathbf{e}_{0}, \mathbf{e}_{\overline{4}}\right),\left(\mathbf{e}_{1}, \mathbf{e}_{\overline{1}}\right), \ldots,\left(\mathbf{e}_{4}, \mathbf{e}_{\overline{4}}\right)\right\}
$$

Fact

- These collection of cells triangulate the polytope \mathcal{C}_{n}.
- This triangulation is dual to an associahedron.

The associahedral triangulation

This triangulation has appeared in many independent papers:

- Gelfand-Graev-Postnikov, Combinatorics of hypergeometric functions associated with positive roots, '97. (as a triangulation of a root polytope)
- Stanley-Pitman, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, '02.
- Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory, '10.
- Santos-Stump-Welker, Noncrossing sets and a Grassmann associahedron. '14.

The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_{2} \subset \Delta_{2} \times \Delta_{\overline{2}}$.

The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_{2} \subset \Delta_{2} \times \Delta_{\overline{2}}$.

Why do you want to draw a 1-dim edge in 4 dimensions?

The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $\mathcal{C}_{2} \subset \Delta_{2} \times \Delta_{\overline{2}}$.

Why do you want to draw a 1-dim edge in 4 dimensions?
This might look like a disadvantage.
But this approach is actually very powerful.

The (I, \bar{J})-triangulation

Let I, J be a partition of $[n]$ with $0 \in I$ and $n \in J$.
The restriction of the triangulation to the face

$$
\Delta_{I} \times \Delta_{\bar{J}}=\operatorname{conv}\left\{\left(\mathbf{e}_{i}, \mathbf{e}_{\bar{j}}\right): i \in I \text { and } j \in J\right\}
$$

is called the (I, \bar{J})-triangulation.

The (I, \bar{J})-triangulation

The cells of this restricted triangulation are indexed by (I, \bar{J})-trees (maximal, non-crossing, increasing alternating graphs with support $I \cup \bar{J}$)

In this example,

$$
I=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{9}\} \quad \bar{J}=\{\overline{3}, \overline{4}, \overline{7}, \overline{8}, \overline{1} 0\}
$$

The (I, \bar{J})-triangulation

Given such a tree T we associate two paths $\nu(I, \bar{J})$ and $\rho(T)$:

$\nu(I, \bar{J})$ replaces black and white balls by east and north steps respectively.

The (I, \bar{J})-triangulation

Given such a tree T we associate two paths $\nu(I, \bar{J})$ and $\rho(T)$:

$\nu(I, \bar{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

The (I, \bar{J})-triangulation

Given such a tree T we associate two paths $\nu(I, \bar{J})$ and $\rho(T)$:

$\nu(I, \bar{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

Note: the path $\rho(T)$ is weakly above ν.

The (I, \bar{J})-triangulation

Proposition (CPS)
Let I, J be a partition of $[n]$ with $0 \in I$ and $n \in J$, and $\nu=\nu(I, \bar{J})$.

- ρ is a bijection from (I, \bar{J})-trees to ν-paths.
- two (I, \bar{J})-trees are related by a flip iff the corresponding ν-paths are related by a ν-Tamari relation.

The (I, \bar{J})-triangulation

Proposition (CPS)

Let I, J be a partition of $[n]$ with $0 \in I$ and $n \in J$, and $\nu=\nu(I, \bar{J})$.

- ρ is a bijection from (I, \bar{J})-trees to ν-paths.
- two (I, \bar{J})-trees are related by a flip iff the corresponding ν-paths are related by a ν-Tamari relation.
this should be compared with a similar result in
[Préville-Ratelle and Viennot, An extension of Tamari lattices, '14.]

$\operatorname{Tam}(\nu)$ as the dual of a triangulation

Theorem (CPS)
Let ν be a lattice path from $(0,0)$ to (a, b). The ν-Tamari lattice Tam (ν) can be realized geometrically as the dual of a regular triangulation of a subpolytope of $\Delta_{a} \times \Delta_{b}\left(\right.$ in $\left.\mathbb{R}^{a+b}\right)$.

$\operatorname{Tam}(\nu)$ as the dual of a subdivision

Corollary (CPS)

Let ν be a lattice path from $(0,0)$ to (a, b). Tam (ν) is the dual of a subdivision of a generalized permutahedron (in \mathbb{R}^{a} and in \mathbb{R}^{b}).

$\operatorname{Tam}(\nu)$ as the dual of a subdivision

$\operatorname{Tam}(\nu)$ as the dual of a subdivision

$\operatorname{Tam}(\nu)$ as the dual of a subdivision

If you do it for all ν-paths you get

Two cells are adjacent iff the corresponding ν-paths are related by a ν-Tamari relation.

$\operatorname{Tam}(\nu)$ as the dual of a subdivision

You can also obtain the dual tropically

$\operatorname{Tam}(\nu)$ as the graph of a tropical subdivision

Corollary (CPS)

Tam (ν) is the edge graph of a polyhedral complex induced by a

The rational Tamari lattice $\operatorname{Tam}(3,5)$.

$\operatorname{Tam}(\nu)$ as the graph of a tropical subdivision

Corollary (CPS)

Tam (ν) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement (in $\mathbb{P}^{a} \cong \mathbb{R}^{a}$ and in $\mathbb{T \mathbb { P } ^ { b }} \cong \mathbb{R}^{b}$).

The 2-Tamari lattice for $n=4$.

What about other types?

The cyclohedron triangulation

Consider the following trees indexed by cyclic symmetric triangulations of a $(2 n+2)$-gon:

The cyclohedron triangulation

Theorem (CPS)

This collection of cells form a regular triangulation of $\Delta_{n} \times \Delta_{\bar{n}}$ dual to an n-dimensional cyclohedron.

Restricting to its faces, we obtain type B_{n} analogs of the realizations of $\operatorname{Tam}(\nu)$.

Thank you!

