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Vienna, December 18, 2015:

Frédéric Chapoton showed me
a beautiful picture in François
Bergeron’s webpage

The 2-Tamari lattice for n = 4
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Vienna, December 18, 2015:

Chapoton: The m-Tamari lattice is a poset (that turns out to be
a lattice) on Fuss-Catalan paths determined by the
following covering relation:

ab �
a

b

Fuss-Catalan path: lattice path from (0, 0) to (mn, n) that stays
weakly above the main diagonal.

[Bergeron and Préville-Ratelle. Higher trivariate diagonal harmonics via

generalized Tamari posets, ’12]



Vienna, December 18, 2015:

Me: Could you show me some examples?

Chapoton: 2-Tamari and 3-Tamari lattices for n = 3:
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These are the kind of pictures that we can get today:

The 2-Tamari lattice for n = 4.

Goal of this talk
Explain these pictures.



Why Tropical Catalan Subdivisions?

These subdivisions come from regular triangulations of products of
simplices. Their duals are obtained tropically (Develin–Sturmfels).

2-Tamari lattice for n = 3 3-Tamari lattice for n = 3

Theorem (CPS)

The m-Tamari lattice for n is the edge graph of a polytopal
subdivision of an (n − 1)-dimensional associahedron induced by a
collection of tropical hyperplanes.
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The associahedral triangulation

Consider the product of two simplices

∆n ×∆n = conv
{

(ei , ej) : 0 ≤ i , j ≤ n
}
.

We want to triangulate the sub-polytope

Cn = conv
{

(ei , ej) : 0 ≤ i ≤ j ≤ n
}



The associahedral triangulation

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

conv {(e0, e0), (e0, e2), (e0, e4), (e1, e1), . . . , (e4, e4)}

Fact

I These collection of cells triangulate the polytope Cn.
I This triangulation is dual to an associahedron.



The associahedral triangulation

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

conv {(e0, e0), (e0, e2), (e0, e4), (e1, e1), . . . , (e4, e4)}

Fact

I These collection of cells triangulate the polytope Cn.
I This triangulation is dual to an associahedron.



The associahedral triangulation

This triangulation has appeared in many independent papers:

I Gelfand–Graev–Postnikov, Combinatorics of hypergeometric functions
associated with positive roots, ’97. (as a triangulation of a root polytope)

I Stanley–Pitman, A polytope related to empirical distributions, plane
trees, parking functions, and the associahedron, ’02.

I Petersen–Pylyavskyy–Speyer, A non-crossing standard monomial theory,
’10.

I Santos–Stump–Welker, Noncrossing sets and a Grassmann associahedron.
’14.

I . . .



The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a
4-dimensional polytope C2 ⊂ ∆2 ×∆2.

Why do you want to draw a 1-dim edge in 4 dimensions?
This might look like a disadvantage.
But this approach is actually very powerful.



The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a
4-dimensional polytope C2 ⊂ ∆2 ×∆2.

Why do you want to draw a 1-dim edge in 4 dimensions?

This might look like a disadvantage.
But this approach is actually very powerful.



The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a
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The (I , J)-triangulation

Let I , J be a partition of [n] with 0 ∈ I and n ∈ J.
The restriction of the triangulation to the face

∆I ×∆J = conv
{

(ei , ej) : i ∈ I and j ∈ J
}

is called the (I , J)-triangulation.



The (I , J)-triangulation

The cells of this restricted triangulation are indexed by (I , J)-trees
(maximal, non-crossing, increasing alternating graphs with support I ∪ J)

In this example,

I = {0, 1, 2, 5, 6, 9} J = {3, 4, 7, 8, 10}



The (I , J)-triangulation

Given such a tree T we associate two paths ν(I , J) and ρ(T ):

⌫E E N E E EN N N

ν(I , J) replaces black and white balls by east and north steps respectively.

ρ(T ) counts the in-degrees of the white balls.

Note: the path ρ(T ) is weakly above ν.
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The (I , J)-triangulation

⌫

⇢

Proposition (CPS)

Let I , J be a partition of [n] with 0 ∈ I and n ∈ J, and ν = ν(I , J).

I ρ is a bijection from (I , J)-trees to ν-paths.

I two (I , J)-trees are related by a flip iff the corresponding
ν-paths are related by a ν-Tamari relation.

this should be compared with a similar result in

[Préville-Ratelle and Viennot, An extension of Tamari lattices, ’14.]
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Tam(ν) as the dual of a triangulation

Theorem (CPS)

Let ν be a lattice path from (0, 0) to (a, b). The ν-Tamari lattice
Tam(ν) can be realized geometrically as the dual of a regular
triangulation of a subpolytope of ∆a ×∆b (in Ra+b).



Tam(ν) as the dual of a subdivision

Corollary (CPS)

Let ν be a lattice path from (0, 0) to (a, b). Tam(ν) is the dual of
a subdivision of a generalized permutahedron (in Ra and in Rb).

⌫



Tam(ν) as the dual of a subdivision

⌫

Perm(⌫) =

123+123+23+23
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Tam(ν) as the dual of a subdivision

⌫

Perm(⌫) =

123+123+23+23

1

2

3 1 2

3
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3 +123+ 2 +  2

Justify right



Tam(ν) as the dual of a subdivision

If you do it for all ν-paths you get

⌫

Two cells are adjacent iff the corresponding ν-paths are related by
a ν-Tamari relation.



Tam(ν) as the dual of a subdivision

You can also obtain the dual tropically



Tam(ν) as the graph of a tropical subdivision

Corollary (CPS)

Tam(ν) is the edge graph of a polyhedral complex induced by a
tropical hyperplane arrangement (in TPa ∼= Ra and in TPb ∼= Rb).

The rational Tamari lattice Tam(3, 5).



Tam(ν) as the graph of a tropical subdivision

Corollary (CPS)

Tam(ν) is the edge graph of a polyhedral complex induced by a
tropical hyperplane arrangement (in TPa ∼= Ra and in TPb ∼= Rb).

The 2-Tamari lattice for n = 4.



What about other types?



The cyclohedron triangulation

Consider the following trees indexed by cyclic symmetric
triangulations of a (2n + 2)-gon:

02 2 3 3 4 4 0 11

1

3

223

4



The cyclohedron triangulation

Theorem (CPS)

This collection of cells form a regular triangulation of ∆n ×∆n

dual to an n-dimensional cyclohedron.

Restricting to its faces, we obtain type Bn analogs of the
realizations of Tam(ν).



Thank you!


