Non-zero values in blocks of symmetric groups

Lucia Morotti

Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

Remarks:

• *q*-cores are well defined (they do not depend on the order in which we remove *q*-hooks).

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

Remarks:

- *q*-cores are well defined (they do not depend on the order in which we remove *q*-hooks).
- If μ is obtained from λ by removing an *hq*-hook then $\mu_{(q)} = \lambda_{(q)}$, in particular $\lambda_{(q)}$ has no hook of length divisible by *q*.

Let $n \ge 0$, $q \ge 1$ and $\lambda = \lambda_{(q)} \vdash n - wq$ (for some $w \in \mathbb{N}$). The *q*-block of S_n corresponding to λ is given by

$$B_{\lambda} := \{ \chi^{\alpha} \in \operatorname{Irr}(S_n) : \alpha_{(q)} = \lambda \}.$$

Remarks:

- If q is prime then the q-blocks defined above coincide with q-blocks from modular representation (Nakayama conjecture).
- χ^{α} is contained in a unique *q*-block.
- χ^{α} and χ^{β} are contained in the same *q*-block if and only if $\alpha_{(q)} = \beta_{(q)}$.

A partition is q-regular if none of its parts is divisible by q.

Examples:

- (8,5,1) is 3-regular.
- (8,5,1) is not 4-regular.

Remark:

• If q is prime then λ is q-regular if and only if it is the cycle partition of a q-regular conjugacy class of S_n .

From now on $q \ge 2$ and $\lambda \vdash n - wq$ is a *q*-core.

Definition

For
$$\gamma \vdash n$$
 define $c_{\lambda}(\gamma) := |\{\chi^{\alpha} \in B_{\lambda} : \chi^{\alpha}_{\gamma} \neq 0\}|.$

Theorem

 $\min\{c_{\lambda}(\gamma): \gamma \vdash n \text{ is } q\text{-regular and } c_{\lambda}(\gamma) \neq 0\} = w + 1.$

$\min\{c_{\lambda}(\gamma): \gamma \vdash n \text{ is } q \text{-regular and } c_{\lambda}(\gamma) \neq 0\} \leq w + 1$

If
$$\lambda = ()$$
 let $\gamma = (n - 1, 1) = (wq - 1, 1)$.
If $\lambda \neq ()$ let $(h_{1,1}^{\lambda}, \dots, h_{r,r}^{\lambda})$ be the diagonal hook lengths of λ and $\gamma = (h_{1,1}^{\lambda} + wq, h_{2,2}^{\lambda}, \dots, h_{r,r}^{\lambda})$.

Then γ is *q*-regular and $c_{\lambda}(\gamma) = w + 1$ as

if $\lambda = ()$ then $\{\alpha : \chi^{\alpha} \in B_{\lambda} \text{ and } \chi^{\alpha}_{\gamma} \neq 0\} = \{(n), (1^{n})\} \cup \{(n-aq, 2, 1^{2-aq}) : 1 \le a \le w-1\}.$ if $\lambda \neq ()$ then $\{\alpha : \chi^{\alpha} \in B_{\lambda} \text{ and } \chi^{\alpha}_{\gamma} \neq 0\} = \{(\lambda_{1}+aq, \lambda_{2}, \dots, \lambda_{\lambda'_{1}}, 1^{(w-a)q}) : 0 \le a \le w\}.$ Sketch (assuming $\chi^{\alpha} \in B_{\lambda}$ and $\chi^{\alpha}_{\gamma} \neq 0$):

- α has w hooks of length divisible by q.
- If $q|h_{i,j}^{\alpha}$ we can construct $f_{i,j} = \sum_{\chi^{\beta} \in B_{\lambda}} d_{i,j}^{\beta} \chi^{\beta}$ vanishing on the conjugacy class labeled by γ . Also $d_{i,j}^{\alpha} = \pm 1$.
- There exists $\beta_{i,j} \neq \alpha$ with $\chi_{\gamma}^{\beta_{i,j}} \neq 0$ and $d_{i,j}^{\beta_{i,j}} \neq 0$.
- $\beta_{i,j} \neq \beta_{k,l}$ for $(i,j) \neq (k,l)$ (with $q|h_{i,j}^{\alpha}, h_{k,l}^{\alpha}$).

- It can happen that $c_{\lambda}(\gamma) = 0$, for example for q = 2, $\lambda = (4, 3, 2, 1)$ and $\gamma = (11, 1)$ (here $B_{\lambda} = \{\chi^{(6,3,2,1)}, \chi^{(4,3,2,1,1,1)}\}$).
- For $q \ge 2$ it looks that either $c_{\lambda}(\gamma) = 0$ or $c_{\lambda}(\gamma) \ge w + 1$ also when γ is not q-regular.
- For q = 1 we have that () is the only 1-core and $B_{()} = Irr(S_n)$. Here it looks that $c_{()}(\gamma) \ge n-1$. Also $c_{()}(n-1,1) = n-1$.