Non-zero values in blocks of symmetric groups

Lucia Morotti

Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Leibniz Universität Hannover

q-core partitions

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

q-core partitions

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

Remarks:

- q-cores are well defined (they do not depend on the order in which we remove q-hooks).

q-core partitions

Let λ be a partition and q be a positive integer. The q-core of λ is the partition $\lambda_{(q)}$ obtained by recursively removing from λ as many q-hooks as possible.

Example:

$\lambda=\stackrel{$	$\|x\| x\|x\|$
x	
x	
x	$}{\longrightarrow} \longrightarrow \lambda_{(3)}$

Remarks:

- q-cores are well defined (they do not depend on the order in which we remove q-hooks).
- If μ is obtained from λ by removing an $h q$-hook then $\mu_{(q)}=\lambda_{(q)}$, in particular $\lambda_{(q)}$ has no hook of length divisible by q.

Blocks of symmetric groups

Let $n \geq 0, q \geq 1$ and $\lambda=\lambda_{(q)} \vdash n-w q$ (for some $w \in \mathbb{N}$).
The q-block of S_{n} corresponding to λ is given by

$$
B_{\lambda}:=\left\{\chi^{\alpha} \in \operatorname{Irr}\left(S_{n}\right): \alpha_{(q)}=\lambda\right\} .
$$

Remarks:

- If q is prime then the q-blocks defined above coincide with q-blocks from modular representation (Nakayama conjecture).
- χ^{α} is contained in a unique q-block.
- χ^{α} and χ^{β} are contained in the same q-block if and only if $\alpha_{(q)}=\beta_{(q)}$.

q-regular partitions

A partition is q-regular if none of its parts is divisible by q.
Examples:

- $(8,5,1)$ is 3 -regular.
- $(8,5,1)$ is not 4 -regular.

Remark:

- If q is prime then λ is q-regular if and only if it is the cycle partition of a q-regular conjugacy class of S_{n}.

From now on $q \geq 2$ and $\lambda \vdash n-w q$ is a q-core.

Definition

For $\gamma \vdash n$ define $c_{\lambda}(\gamma):=\left|\left\{\chi^{\alpha} \in B_{\lambda}: \chi_{\gamma}^{\alpha} \neq 0\right\}\right|$.
Theorem
$\min \left\{c_{\lambda}(\gamma): \gamma \vdash n\right.$ is q-regular and $\left.c_{\lambda}(\gamma) \neq 0\right\}=w+1$.

$\min \left\{c_{\lambda}(\gamma): \gamma \vdash n\right.$ is q-regular and $\left.c_{\lambda}(\gamma) \neq 0\right\} \leq w+1$

If $\lambda=()$ let $\gamma=(n-1,1)=(w q-1,1)$.
If $\lambda \neq()$ let $\left(h_{1,1}^{\lambda}, \ldots, h_{r, r}^{\lambda}\right)$ be the diagonal hook lengths of λ and
$\gamma=\left(h_{1,1}^{\lambda}+w q, h_{2,2}^{\lambda}, \ldots, h_{r, r}^{\lambda}\right)$.
Then γ is q-regular and $c_{\lambda}(\gamma)=w+1$ as
if $\lambda=()$ then
$\left\{\alpha: \chi^{\alpha} \in B_{\lambda}\right.$ and $\left.\chi_{\gamma}^{\alpha} \neq 0\right\}=\left\{(n),\left(1^{n}\right)\right\} \cup\left\{\left(n-a q, 2,1^{2-a q}\right): 1 \leq a \leq w-1\right\}$
if $\lambda \neq()$ then
$\left\{\alpha: \chi^{\alpha} \in B_{\lambda}\right.$ and $\left.\chi_{\gamma}^{\alpha} \neq 0\right\}=\left\{\left(\lambda_{1}+a q, \lambda_{2}, \ldots, \lambda_{\lambda_{1}^{\prime}}, 1^{(w-a) q}\right): 0 \leq a \leq w\right\}$.

$\min \left\{c_{\lambda}(\gamma): \gamma \vdash n\right.$ is q-regular and $\left.c_{\lambda}(\gamma) \neq 0\right\} \geq w+1$

Sketch (assuming $\chi^{\alpha} \in B_{\lambda}$ and $\chi_{\gamma}^{\alpha} \neq 0$):

- α has w hooks of length divisible by q.
- If $q \mid h_{i, j}^{\alpha}$ we can construct $f_{i, j}=\sum_{\chi^{\beta} \in B_{\lambda}} d_{i, j}^{\beta} \chi^{\beta}$ vanishing on the conjugacy class labeled by γ. Also $d_{i, j}^{\alpha}= \pm 1$.
- There exists $\beta_{i, j} \neq \alpha$ with $\chi_{\gamma}^{\beta_{i, j}} \neq 0$ and $d_{i, j}^{\beta_{i, j}} \neq 0$.
- $\beta_{i, j} \neq \beta_{k, l}$ for $(i, j) \neq(k, I)$ (with $\left.q \mid h_{i, j}^{\alpha}, h_{k, l}^{\alpha}\right)$.

Remarks

- It can happen that $c_{\lambda}(\gamma)=0$, for example for $q=2, \lambda=(4,3,2,1)$ and $\gamma=(11,1)$ (here $B_{\lambda}=\left\{\chi^{(6,3,2,1)}, \chi^{(4,3,2,1,1,1)}\right\}$).
- For $q \geq 2$ it looks that either $c_{\lambda}(\gamma)=0$ or $c_{\lambda}(\gamma) \geq w+1$ also when γ is not q-regular.
- For $q=1$ we have that () is the only 1 -core and $B_{()}=\operatorname{Irr}\left(S_{n}\right)$. Here it looks that $c_{()}(\gamma) \geq n-1$. Also $c_{()}(n-1,1)=n-1$.

