An equivalence of multistatistics on permutations

Arthur Nunge

Laboratoire IGM

April 2016
UP
W $\begin{aligned} & \text { UNIVERSITE } \\ & \text { PARIS-EST } \\ & \text { MARNE }\end{aligned}$
PARIS-EST
MARNE-LA-VALLÉE

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition $(2,3,1,1)$ to the above step of the PASEP.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition $(2,3,1,1)$ to the above step of the PASEP.

PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition $(2,3,1,1)$ to the above step of the PASEP.

Combinatorial study of the PASEP

The PASEP is closely related with permutations. Let / be a composition associated to a state of the PASEP, the steady-state probability of this state is given by $\sum_{\mathrm{GC}(\sigma)=1} q^{\operatorname{tot}(\sigma)}$ renormalized to make it a probability.

- GC (σ) (Genocchi composition) is the descent composition of the values of σ
- $\operatorname{tot}(\sigma)$ is the number of 31-2 patterns in σ.

Tevlin's basis (2007)
Tevlin defined a "monomial basis" L_{I} of the non commutative symmetric functions algebra (NCSF). He conjectured that the expansion of the ribbon basis on the $L_{\text {I }}$ has nonnegative integer coefficients.

Tevlin's basis (2007)

Tevlin defined a "monomial basis" L_{I} of the non commutative symmetric functions algebra (NCSF). He conjectured that the expansion of the ribbon basis on the L_{I} has nonnegative integer coefficients.

Combinatorial interpretation of Tevlin's basis

GC \backslash Rec	4	31	22	211	13	121	112	1111
4	1234							
31		1243,1423 4123	1342 3412		2341	2413		
22			1324 3124		2314			
211			3142	1432,4132 4312		2431 4231	3241	
13					2134			
121						2143 4213	3421	
112							3214	
1111								4321

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)
For I a composition of n, we have $R_{I}=\sum_{J} G_{I J} L_{J}$ where $G_{I J}$ is equal to the number of permutations σ satisfying $\operatorname{Rec}(\sigma)=I$ and $\mathrm{GC}(\sigma)=J$.

q-analog of Tevlin's basis (2010)

Novelli, Thibon, and Williams defined a q-analog of NCSF where the transition matrix from $L_{l}(q)$ to $R_{J}(q)$ is given by the following matrix:

$$
\begin{gathered}
\\
\\
\\
\left(\begin{array}{cccccc}
1 & \left(\begin{array}{cccccccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1+q & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right) \\
\cdot & 1+q+q^{2} & 1+q & \cdot & 1 & q \\
\cdot & \cdot & 1+q & \cdot & \cdot & \cdot \\
\cdot & \cdot & q & 1+q+q^{2} & \cdot & 1+q \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
. & \cdot & \cdot & \cdot & 1
\end{array}\right)
\end{gathered}
$$

q-analog of Tevlin's basis (2010)

Novelli, Thibon, and Williams defined a q-analog of NCSF where the transition matrix from $L_{l}(q)$ to $R_{J}(q)$ is given by the following matrix:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & \cdot & . & \cdot \\
\cdot & 1+q & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right) \\
& \left(\begin{array}{cccccccc}
1 & \cdot \\
\cdot & 1+q+q^{2} & 1+q & \cdot & 1 & q & \cdot & \cdot \\
\cdot & \cdot & 1+q & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & q & 1+q+q^{2} & \cdot & 1+q & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1+q & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1
\end{array}\right)
\end{aligned}
$$

Theorem (Novelli, Thibon, Williams, 2010)

For I a composition of n, we have $R_{l}(q)=\sum_{J} F_{I J}(q) L_{J}(q)$ where:

$$
F_{I J}(q)=\sum_{\substack{\operatorname{Rec}(\sigma)=1 \\ \operatorname{LC}(\sigma)=J}} q^{\alpha(\sigma)}
$$

Remark

PASEP theory implies that the previous matrix should also be described with the statistics Rec, GC, and tot.

Two ways of grouping the permutations

LC \Rec	4	31	22	211	13	121	112	1111
4	1234							
31		$\underset{\substack{1243,1423 \\ 4123}}{ }$	$\begin{aligned} & 1324 \\ & 3124 \end{aligned}$		2134	2143		
22			$\begin{aligned} & 1342 \\ & 3142 \\ & \hline \end{aligned}$		2314			
211			3412	1432,4132 4312		$\begin{aligned} & 2413 \\ & 4213 \end{aligned}$	3214	
13					2341			
121						$\begin{aligned} & 2431 \\ & 4231 \\ & \hline \end{aligned}$	3241	
112							3421	
1111								4321

GC \Rec	4	31	22	211	13	121	112	1111
4	1234							
31		$\begin{gathered} 1243,1423 \\ \hline 4123 \end{gathered}$	$\begin{aligned} & 13412 \\ & \hline 342 \end{aligned}$		2341	2413		
22			$\begin{aligned} & 1324 \\ & 3124 \end{aligned}$		2314			
211			3142	1432,4132 4312		$\begin{aligned} & 24311 \\ & { }_{4231} \end{aligned}$	3241	
13					2134			
121						$\begin{aligned} & 2143 \\ & 4213 \end{aligned}$	3421	
112							3214	
1111								4321

Conjecture (Novelli, Thibon, Williams, 2010)

Sending permutations of the left table to $q^{\alpha(\sigma)}$ gives the same matrix than sending the permutations of the right table to $q^{\text {tot }(\sigma)}$.

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

P
P

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

$P \stackrel{\phi_{F V}}{\rightleftarrows}$ WDP
P
Catalan

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

$$
\begin{aligned}
& \mathrm{P} \stackrel{\phi_{F V}}{\longleftrightarrow} \text { WDP } \stackrel{\phi_{1}}{\longleftrightarrow} \text { WDP } \\
& \text { P } \\
& \text { Catalan Catalan }
\end{aligned}
$$

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

$$
\begin{aligned}
& \mathrm{P} \stackrel{\phi_{F V}}{\longleftrightarrow} \text { WDP } \stackrel{\phi_{1}}{\longleftrightarrow} \text { WDP } \\
& S F \stackrel{L h}{\longleftrightarrow} P \\
& \text { Catalan Catalan }
\end{aligned}
$$

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

$\mathrm{P} \stackrel{\phi_{F V}}{\longleftrightarrow}$ WDP $\underset{\text { Catalan }}{\stackrel{\phi_{1}}{\longleftrightarrow}} \underset{\text { Catalan }}{\text { WDP }} \quad \underset{\substack{\text { Catalan }}}{\stackrel{\psi_{1}}{\longleftrightarrow}} \mathrm{SF} \stackrel{\text { Ch }}{\longleftrightarrow} \mathrm{P}$

Sketch of proof: let's make some bijections

Involved combinatorial objects

- Permutations;
- Weighted Dyck Paths;
- Subexceedent Functions;
- Decreasing Weighted Subexceedent Functions.

Steps of the bijection

$$
\mathrm{P} \stackrel{\phi_{F V}}{\longleftrightarrow} \text { WDP } \underset{\text { Catalan }}{\stackrel{\phi_{1}}{\longleftrightarrow}} \underset{\text { Catalan }}{\text { WDP }} \stackrel{\psi_{2}}{\longleftrightarrow} \text { DWSF } \underset{\text { Catalan }}{\stackrel{\psi_{1}}{\longleftrightarrow}} \text { SF } \stackrel{\text { Lh }}{\longleftrightarrow} \mathrm{P}
$$

Weighted Dyck paths

A weight for a Dyck path is a word w satisfying for all $i, w_{i} \leq\left(h_{i}-1\right) / 2$ where h_{i} is the height of the Dyck path between the $(2 i-1)$-th and $2 i$-th steps.

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The ($2 k$)-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2.

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

The Françon-Viennot bijection: P \rightarrow WDP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The $(2 k-1)$-th is / iff $k=\sigma_{i}<\sigma_{i+1}$,
- The $(2 k)$-th is $/$ iff $\sigma_{i-1}>\sigma_{i}=k$.

Moreover, w_{k} is equal to the number of 31-2 patterns such that k plays the rôle of 2 .

Example

$$
\phi_{F V}(0.528713649 . \infty)=
$$

$\phi_{1}:$ WDP \rightarrow WDP

ϕ_{1} is the involution exchanging \triangle with

Example

$\phi_{1}:$ WDP \rightarrow WDP

ϕ_{1} is the involution exchanging \triangle with

Example

$\phi_{1}:$ WDP \rightarrow WDP

ϕ_{1} is the involution exchanging \triangle with

Example

Summary

$$
\mathrm{P} \stackrel{\phi_{F V}}{\longleftrightarrow} \mathrm{WDP} \stackrel{\phi_{1}}{\longleftrightarrow} \mathrm{WDP} \stackrel{\psi_{2}}{\longleftrightarrow} \text { WDSF } \stackrel{\psi_{1}}{\longleftrightarrow} \mathrm{SF} \stackrel{L h}{\longleftrightarrow} \mathrm{P}
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=528197634, \operatorname{Lh}(\sigma)=
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=\overparen{528197634}, \operatorname{Lh}(\sigma)=3
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=\widehat{528197634,} \operatorname{Lh}(\sigma)=31
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=528197634, \operatorname{Lh}(\sigma)=315
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=528197634, \operatorname{Lh}(\sigma)=315503200
$$

Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that for all $i \leq n$, we have $f_{i} \leq n-i$.

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a subexceedent function f as follows: $f_{\sigma_{j}}=\#\left\{i<j \mid \sigma_{i}>\sigma_{j}\right\}$. For instance,

$$
\sigma=528197634, \operatorname{Lh}(\sigma)=315503200
$$

Decreasing subexceedent functions

A subexceedent function is decreasing if the word obtained by removing all the zeros is strictly decreasing.
For example, $L=540300200$.

$\psi_{1}:$ SF \rightarrow DWSF
 - $L=315503200, P=000000000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=314503200, P=000000000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=314503200, P=000000000$, $L=315403200, P=000000000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=314503200, P=000000000$, $L=315403200, P=000000000$, $L=315403200, P=000100000$

```
\psi }\mp@subsup{\mp@code{1}}{\mathrm{ : SF }}{->
- \(L=315503200, P=000000000\), then pivot \(=5\);
- \(L=315403200, P=000100000\)
```


$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$, then pivot $=4$;

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$, then pivot $=4$;
- $L=540103200, P=002200000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$, then pivot $=4$;
- $L=540103200, P=002200000$, then pivot $=3$;

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$, then pivot $=4$;
- $L=540103200, P=002200000$, then pivot $=3$;
- $L=540300200, P=002201000$

$\psi_{1}:$ SF \rightarrow DWSF

- $L=315503200, P=000000000$, then pivot $=5$;
- $L=315403200, P=000100000$, then pivot $=5$;
- $L=512403200, P=001100000$, then pivot $=4$;
- $L=514103200, P=001200000$, then pivot $=4$;
- $L=540103200, P=002200000$, then pivot $=3$;
- $L=540300200, P=002201000$ the algorithm stops.

$\psi_{2}:$ DSF \rightarrow DP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The ($2 k$)-th step is \backslash iff $n-k$ is a value of f,
- The $(2 k+1)$-th step is \backslash iff $f_{k}=0$.

Example

$$
\psi_{2}(540300200)=
$$

\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	

$\psi_{2}:$ DSF \rightarrow DP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The ($2 k$)-th step is \backslash iff $n-k$ is a value of f,
- The $(2 k+1)$-th step is \backslash iff $f_{k}=0$.

Example

$$
\psi_{2}(540300200)=
$$

$\psi_{2}:$ DSF \rightarrow DP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The ($2 k$)-th step is \backslash iff $n-k$ is a value of f,
- The $(2 k+1)$-th step is \backslash iff $f_{k}=0$.

Example

$$
\psi_{2}(540300200)=
$$

$\psi_{2}:$ DSF \rightarrow DP

Let $\sigma \in \mathfrak{S}_{n}$ we construct $\psi_{F V}(\sigma)$ as follows:

- The ($2 k$)-th step is \backslash iff $n-k$ is a value of f,
- The $(2 k+1)$-th step is \backslash iff $f_{k}=0$.

Example

$$
\psi_{2}(540300200)=
$$

Conclusion

Summary

$$
\mathrm{P} \stackrel{\phi_{F V}}{\rightleftarrows} \text { WDP } \stackrel{\phi_{1}}{\longleftrightarrow} \text { WDP } \stackrel{\psi_{2}}{\longleftrightarrow} \text { DWSF } \stackrel{\psi_{1}}{\longleftrightarrow} \text { SF } \stackrel{L h}{\longleftrightarrow} \mathrm{P}
$$

Theorem

The map $\phi=L h^{-1} \circ \psi_{1}^{-1} \circ \psi_{2}^{-1} \circ \phi_{1} \circ \phi_{F V}$ is a bijection satisfying

- $\operatorname{Rec}(\phi(\sigma))=\operatorname{Rec}(\sigma)$;
- $\mathrm{LC}(\phi(\sigma))=\mathrm{GC}(\sigma)$;
- $\alpha(\phi(\sigma))=\operatorname{tot}(\sigma)$.

Perspectives

- Generalisation of the bijection for a larger type of PASEP.
- study of a variant of $\phi_{F V}$ applied after the involution on weighted Dyck paths implying a third combinatorial interpretation and a new bijection preserving sylvester classes on permutations.

Thank you

