Pfaffian Identities and Q-Functions

Soichi OKADA (Nagoya University)

76th Séminaire Lotharingien de Combinatoire Ottrott, April 4, 2016

Plan:

- Schur Q-functions
- Pfaffian identities and their applications to $\operatorname{Schur} Q$-functions
- Generalized Q-functions
- Symplectic Q-functions and their factorial analogues

Schur functions	Schur Q-functions
partitions	strict partitions
linear representation of S_{n}	projective representation of S_{n}
representation of $\mathfrak{g l}(n)$	representation of $\mathfrak{q}(n)$
Grassmannian	Lagrangian Grassmannian
determinants	Pfaffians

Schur Q-Functions

Pfaffian

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2 m}$ be a $2 m \times 2 m$ skew-symmetric matrix. The Pfaffian of A is defined by

$$
\operatorname{Pf} A=\sum_{\pi \in \widetilde{\mathfrak{F}}_{2 m}} \operatorname{sgn}(\pi) a_{\pi(1), \pi(2)} a_{\pi(3), \pi(4)} \cdots a_{\pi(2 m-1), \pi(2 m)},
$$

where $\mathfrak{F}_{2 m}$ is the subset of the symmetric group $\mathfrak{S}_{2 m}$ given by

$$
\mathfrak{F}_{2 m}=\left\{\begin{array}{cccc}
& \pi(1)<\pi(3)<\cdots & <\pi(2 m-1) \\
\pi \in \mathfrak{S}_{2 m}: & \wedge & \wedge & \wedge \\
\pi(2) & \pi(4) & \pi(2 m)
\end{array}\right\}
$$

and $\operatorname{sgn}(\pi)$ denotes the signature of π.
Example If $2 m=4$, then

$$
\operatorname{Pf}\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right)=a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23} .
$$

Pfaffian and determinant

For an $r \times r$ skew-symmetric matrix C and an $r \times(2 m-r)$ matrix B, we have

$$
\operatorname{Pf}\left(\begin{array}{cc}
C & B \\
-^{t} B & O
\end{array}\right)= \begin{cases}0 & \text { if } r>m \\
(-1)^{m(m-1) / 2} \operatorname{det} B & \text { if } r=m\end{cases}
$$

Schur Pfaffian

If n is even, then we have

$$
\operatorname{Pf}\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n}=\prod_{1 \leq i<j \leq n} \frac{x_{j}-x_{i}}{x_{j}+x_{i}} .
$$

Schur \boldsymbol{P}-function (Nimmo's formula)

Let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ be a sequence of n indeterminates. For a strict partitio $\lambda=\left(\lambda_{1}, \cdots, \lambda_{l(\lambda)}\right)\left(\lambda_{1}>\cdots>\lambda_{l(\lambda)}>0\right)$, the Schur P_{-} function $P_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ corresponding to λ is defined by

$$
P_{\lambda}(\boldsymbol{x})=\frac{1}{D(\boldsymbol{x})} \operatorname{Pf}\left(\begin{array}{c|c}
\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\
\hline-t\left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O
\end{array}\right)
$$

where $r=l(\lambda)$ or $l(\lambda)+1$ according to whether $n+l(\lambda)$ is even or odd, and

$$
D(\boldsymbol{x})=\prod_{1 \leq i<j \leq n} \frac{x_{j}-x_{i}}{x_{j}+x_{i}}
$$

Schur Q-function (Nimmo's formula)

The Schur Q-function $Q_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ corresponding to a strict partition λ is defined by

$$
Q_{\lambda}(\boldsymbol{x})=2^{l(\lambda)} P_{\lambda}(\boldsymbol{x}) .
$$

Then we have

$$
\begin{aligned}
& Q_{\lambda}(\boldsymbol{x}) \\
& =\frac{1}{D(\boldsymbol{x})} \operatorname{Pf}\left(\begin{array}{c|c}
\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(\chi\left(\lambda_{j}\right) x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\
\hline-t\left(\chi\left(\lambda_{j}\right) x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O
\end{array}\right),
\end{aligned}
$$

where

$$
\chi(k)= \begin{cases}1 & \text { if } k=0 \\ 2 & \text { if } k>0\end{cases}
$$

Pfaffian Identities

and
Applications to Schur's Q-Functions

Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an $(n+r) \times$ $(n+r)$ skew-symmetric matrix, we have

$$
\operatorname{Pf}\left(\frac{\operatorname{Pf} X([n] \cup\{n+i, n+j\})}{\operatorname{Pf} X([n])}\right)_{1 \leq i, j \leq r}=\frac{\operatorname{Pf} X}{\operatorname{Pf} X([n])},
$$

where $[n]=\{1,2, \cdots, n\}$ and

$$
X(I)=\left(x_{i, j}\right)_{i, j \in I} .
$$

Remark (Sylevester identity) For an $(m+s) \times(m+s)$ matrix Y, we have

$$
\operatorname{det}\left(\frac{\operatorname{det} Y([m] \cup\{i\} ;[m] \cup\{j\})}{\operatorname{det} Y([m] ;[m])}\right)_{1 \leq i, j \leq s}=\frac{\operatorname{det} Y}{\operatorname{det} Y([m] ;[m])},
$$

where

$$
Y(I ; J)=\left(y_{i, j}\right)_{i \in I, j \in J}
$$

Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an $(n+r) \times$ $(n+r)$ skew-symmetric matrix, we have

$$
\operatorname{Pf}\left(\frac{\operatorname{Pf} X([n] \cup\{n+i, n+j\})}{\operatorname{Pf} X([n])}\right)_{1 \leq i, j \leq r}=\frac{\operatorname{Pf} X}{\operatorname{Pf} X([n])} .
$$

Applying this to

$$
X=\left(\begin{array}{c|c}
\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\
\hline-t\left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O
\end{array}\right),
$$

we immediately recover Schur's original definition of Q-functions.

Schur's original definition of Q-functions

Proposition For a strict partition λ, we have

$$
Q_{\lambda}(\boldsymbol{x})=\operatorname{Pf}\left(Q_{\lambda_{i}, \lambda_{j}}(\boldsymbol{x})\right)_{1 \leq i, j \leq r},
$$

where $r=l(\lambda)$ or $l(\lambda)+1$ according to whether $l(\lambda)$ is even or odd.
Remark We have

$$
\begin{gathered}
\sum_{r \geq 0} Q_{r}(\boldsymbol{x}) z^{r}=\prod_{i=1}^{n} \frac{1+x_{i} z}{1-x_{i} z} \\
\sum_{r, s \geq 0} Q_{r, s}(\boldsymbol{x}) z^{r} w^{s}=\frac{z-w}{z+w}\left(\prod_{i=1}^{n} \frac{\left(1+x_{i} z\right)\left(1+x_{i} w\right)}{\left(1-x_{i} z\right)\left(1-x_{i} w\right)}-1\right),
\end{gathered}
$$

where $Q_{r, s}=-Q_{s, r}$ for $0<r<s, Q_{r, 0}=-Q_{0, r}=Q_{r}$ for $r>0$ and $Q_{r, r}=0$ for $r \geq 0$.

Pfaffian analogue of Cauchy-Binet identity

Theorem Let m and n be positive integers wirh $m \equiv n \bmod 2$. Let A : an $m \times m$ skew symmetric matrix, $\quad S$: an $m \times N$ matrix, B : an $n \times n$ skew symmetric matrix, $\quad T$: an $n \times N$ matrix.

Then we have

$$
\begin{aligned}
\sum_{J} \operatorname{Pf}\left(\begin{array}{cc}
A & S([m] ; J) \\
-{ }^{t} S([m] ; J) & O
\end{array}\right) \operatorname{Pf}\left(\begin{array}{cc}
B & T([n], J) \\
-T T([n], J) & O
\end{array}\right) \\
=(-1)^{\binom{n}{2}} \operatorname{Pf}\left(\begin{array}{cc}
A & S^{t} T \\
-T^{t} S & -B
\end{array}\right)
\end{aligned}
$$

where J runs over all subsets of $[N]$ with $\# J \equiv n \bmod 2$, and

$$
S([m] ; J)=\left(s_{i, j}\right)_{1 \leq i \leq m, j \in J}, \quad T([n] ; J)=\left(t_{i, j}\right)_{1 \leq i \leq n, j \in J} .
$$

Pfaffian analogue of Cauchy-Binet identity

Theorem Let m and n be positive integers wirh $m \equiv n \bmod 2$. Then we have

$$
\begin{aligned}
\sum_{J} \operatorname{Pf}\left(\begin{array}{cc}
A & S([m] ; J) \\
-{ }^{t} S([m] ; J) & O
\end{array}\right) \operatorname{Pf}\left(\begin{array}{cc}
B & T([n], J) \\
-T T([n], J) & O
\end{array}\right) \\
=(-1)^{\binom{n}{2}} \operatorname{Pf}\left(\begin{array}{cc}
A & S^{t} T \\
-T^{t} S & -B
\end{array}\right),
\end{aligned}
$$

where J runs over all subsets of $[N]$ with $\# J \equiv n \bmod 2$.
Remark (Cauchy-Binet formula) For two $n \times N$ matrices S and T, we have

$$
\sum_{J} \operatorname{det} S([n] ; J) \operatorname{det} T([n] ; J)=\operatorname{det}\left(S^{t} T\right)
$$

Cauchy-type formula for Q-functions

Theorem (Schur) For $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right)$, we have

$$
\sum_{\lambda} \frac{1}{2^{l(\lambda)}} Q_{\lambda}(\boldsymbol{x}) Q_{\lambda}(\boldsymbol{y})=\prod_{i, j=1}^{n} \frac{1+x_{i} y_{j}}{1-x_{i} y_{j}}
$$

where λ runs over all strict partitions of length $\leq n$.
Proof Apply the Pfaffian version of Cauchy-Binet identity to

$$
\begin{gathered}
A=\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n}, \quad S=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & x_{2}^{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \ldots
\end{array}\right), \\
B=\left(\frac{y_{j}-y_{i}}{y_{j}+y_{i}}\right)_{1 \leq i, j \leq n}, \quad T=\left(\begin{array}{cccc}
1 & 2 y_{1} & 2 y_{1}^{2} & 2 y_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 2 y_{n} & 2 y_{n}^{2} & 2 y_{n}^{3}
\end{array}\right) .
\end{gathered}
$$

Jozefiak-Pragacz formula for skew Q-functions

Theorem (Jozefiak-Pragacz) For two strict partitions λ and μ, we define the skew Q-function $Q_{\lambda / \mu}(x)$ by

$$
Q_{\lambda / \mu}(\boldsymbol{x})
$$

$$
=\operatorname{Pf}\left(\begin{array}{c|c}
\left(Q_{\lambda_{i}, \lambda_{j}}(\boldsymbol{x})\right)_{1 \leq i, j \leq l} & \left(Q_{\lambda_{i}-\mu_{r+1-j}}(\boldsymbol{x})\right)_{1 \leq i \leq l, 1 \leq j \leq r} \\
\hline-t\left(Q_{\lambda_{i}-\mu_{r+1-j}}(\boldsymbol{x})\right)_{1 \leq i \leq l, 1 \leq j \leq r} & O
\end{array}\right)
$$

where $r=l(\mu)$ or $l(\mu)+1$ according to whether $l(\lambda)+l(\mu)$ is even or odd. Then we have

$$
Q_{\lambda}(\boldsymbol{x}, \boldsymbol{y})=\sum_{\mu} Q_{\lambda / \mu}(\boldsymbol{x}) Q_{\mu}(\boldsymbol{y}) .
$$

Proof Apply (a variant of) the Pfaffian analogue of Cauchy-Binet identity to

$$
\begin{gathered}
A=\left(Q_{\lambda_{i}, \lambda_{j}}(\boldsymbol{x})\right)_{1 \leq i, j \leq l}, \quad S=\left(\begin{array}{cc}
Q_{\lambda_{i}-k}(\boldsymbol{x})
\end{array}\right)_{1 \leq i \leq l, k \geq 0} \\
B=\left(\frac{y_{j}-y_{i}}{y_{j}+y_{i}}\right)_{1 \leq i, j \leq n}, \quad T=\left(\begin{array}{cccc}
1 & 2 y_{1} & 2 y_{1}^{2} & 2 y_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 2 y_{n} & 2 y_{n}^{2} & 2 y_{n}^{3}
\end{array}\right) .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
& \sum_{\mu} Q_{\lambda / \mu}(\boldsymbol{x}) Q_{\mu}(\boldsymbol{y}) \\
& \quad=\frac{1}{D(\boldsymbol{y})} \operatorname{Pf}\left(\begin{array}{c|c}
\left(Q_{\lambda_{i}, \lambda_{j}}(\boldsymbol{x})\right)_{1 \leq i, j \leq l} & \left(Q_{\lambda_{i}}\left(\boldsymbol{x}, y_{j}\right)\right)_{1 \leq i \leq l, 1 \leq j \leq n} \\
\hline-{ }^{t}\left(Q_{\lambda_{i}}\left(\boldsymbol{x}, y_{j}\right)\right)_{1 \leq i \leq l, 1 \leq j \leq n} & \left(\frac{y_{j}-y_{i}}{y_{j}+y_{i}}\right)_{1 \leq i, j \leq n}
\end{array}\right) .
\end{aligned}
$$

Generalized Q-Functions

Generalized Q functions

Let $\mathcal{G}=\left\{g_{d}(t)\right\}_{d \geq 0}$ be a sequence of univariate polynomials satisfying

$$
g_{0}(t)=1, \quad \operatorname{deg} g_{d}(t)=d
$$

Then we define generalized Q functions $Q_{\lambda}^{\mathcal{G}}(x)$ associated to \mathcal{G} by $Q_{\lambda}^{\mathcal{G}}(\boldsymbol{x})$
$=\frac{1}{D(\boldsymbol{x})} \operatorname{Pf}\left(\begin{array}{c|c}\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\ \hline-t\left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O\end{array}\right)$,
where $r=l(\lambda)$ or $l(\lambda)+1$ according to whether $n+l(\lambda)$ is even or odd, and

$$
D(\boldsymbol{x})=\prod_{1 \leq i<j \leq n} \frac{x_{j}-x_{i}}{x_{j}+x_{i}}
$$

Generalized Q functions

$Q_{\lambda}^{\mathcal{G}}(\boldsymbol{x})$
$=\frac{1}{D(\boldsymbol{x})} \operatorname{Pf}\left(\begin{array}{c|c}\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\ \hline-t\left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O\end{array}\right)$.
Example
(1) If $g_{d}(t)=t^{d}$ (resp. $2 t^{d}$) for $d \geq 1$, then $Q_{\lambda}^{\mathcal{G}}$ is the Schur P-function (resp. Q-function).
(2) If $g_{d}(t)=\prod_{i=1}^{d}\left(t+a_{i}\right)$ (resp. $\left.2 \prod_{i=1}^{d}\left(t+a_{i}\right)\right)$ for $d \geq 1$, then $Q_{\lambda}^{\mathcal{G}}$ is Ivanov's factorial P-function (resp. Q-function).

Generalized Q-functions

$Q_{\lambda}^{\mathcal{G}}(\boldsymbol{x})$
$=\frac{1}{D(\boldsymbol{x})} \operatorname{Pf}\left(\begin{array}{c|c}\left(\frac{x_{j}-x_{i}}{x_{j}+x_{i}}\right)_{1 \leq i, j \leq n} & \left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} \\ \hline-t\left(g_{\lambda_{j}}\left(x_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq r} & O\end{array}\right)$.
By applying the Pfaffian analogue of Sylvester identity, we have Proposition For a strict partition λ, we have

$$
Q_{\lambda}^{\mathcal{G}}(\boldsymbol{x})=\operatorname{Pf}\left(Q_{\lambda_{i}, \lambda_{j}}^{\mathcal{G}}(\boldsymbol{x})\right)_{1 \leq i, j \leq r}
$$

Jozefiak-Pragacz formula for generalized Q-functions

Theorem For simplicity, we assume that $g_{d}(0)=0$ for $d \geq 1$. For two strict partitions λ and μ, we put

$$
Q_{\lambda / \mu}^{\mathcal{G}}(\boldsymbol{x})=\operatorname{Pf}\left(\begin{array}{c|c}
\left(Q_{\lambda_{i}, \lambda_{j}}^{\mathcal{G}}(\boldsymbol{x})\right)_{1 \leq i, j \leq l} & \left(Q_{\lambda_{i} / \mu_{r+1-j}}^{\mathcal{G}}(\boldsymbol{x})\right)_{1 \leq i \leq l, 1 \leq j \leq r} \\
\hline-t\left(Q_{\lambda_{i} / \mu_{r+1-j}}^{\mathcal{G}}(\boldsymbol{x})\right)_{1 \leq i \leq l, 1 \leq j \leq r} & O
\end{array}\right),
$$

where $r=l(\mu)$ or $l(\mu)+1$ according to whether $l(\lambda)+l(\mu)$ is even or odd, and

$$
Q_{r}^{\mathcal{G}}(\boldsymbol{x}, t)=\sum_{k=0}^{r} Q_{r / k}^{\mathcal{G}}(\boldsymbol{x}) g_{k}(t)
$$

Then we have

$$
Q_{\lambda}^{\mathcal{G}}(\boldsymbol{x}, \boldsymbol{y})=\sum_{\mu} Q_{\lambda / \mu}^{\mathcal{G}}(\boldsymbol{x}) Q_{\mu}^{\mathcal{G}}(\boldsymbol{y})
$$

Remark Note that $Q_{r / k}^{\mathcal{G}} \neq Q_{r-k}^{\mathcal{G}}$ in general.

Symplectic Q-Functions

Symplectic Hall-Littlewood functions

The Hall-Littlewood functions associated to the root system of type C_{n} are defined by

$$
P_{\lambda}(\boldsymbol{x} ; t)=\frac{1}{W_{\lambda}(t)} \sum_{w \in W} w\left(\boldsymbol{x}^{\lambda} \prod_{\alpha \in R^{+}} \frac{1-t \boldsymbol{x}^{-\alpha}}{1-\boldsymbol{x}^{-\alpha}}\right)
$$

where $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}$ is a dominant weight, W is the Weyl group of type C_{n} and

$$
\begin{gathered}
W_{\lambda}=\{w \in W: w \lambda=\lambda\}, \quad W_{\lambda}(t)=\sum_{w \in W_{\lambda}} t^{l(w)} \\
R^{+}=\left\{e_{i} \pm e_{j}: 1 \leq i<j \leq n\right\} \cup\left\{2 e_{i}: 1 \leq i \leq n\right\}
\end{gathered}
$$

It is known that

$$
P_{\lambda}(\boldsymbol{x} ; t) \in \mathbb{Z}[t]\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right]^{W}
$$

Symplectic Q-functions

For a strict partition, we define

$$
P_{\langle\lambda\rangle}(\boldsymbol{x})=P_{\lambda}(\boldsymbol{x} ;-1), \quad Q_{\langle\lambda\rangle}(\boldsymbol{x})=2^{l(\lambda)} P_{\langle\lambda\rangle}(\boldsymbol{x}) .
$$

and call them symplectic P-functions and symplectic Q-functions respectively.
Theorem Let $\mathcal{G}=\left\{g_{d}(t)\right\}_{d \geq 0}$ be a polynomial sequence given by

$$
g_{0}(t)=1, \quad g_{d}\left(x+x^{-1}\right)=2\left(x^{d}-x^{-d}\right) \frac{x+x^{-1}}{x-x^{-1}} \quad(d \geq 1)
$$

Then we have

$$
Q_{\langle\lambda\rangle}(\boldsymbol{x})=Q_{\lambda}^{\mathcal{G}}\left(\boldsymbol{x}+\boldsymbol{x}^{-1}\right),
$$

where $\boldsymbol{x}+\boldsymbol{x}^{-1}=\left(x_{1}+x_{1}^{-1}, \cdots, x_{n}+x_{n}^{-1}\right)$.

Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape λ is a filling of the boxes in the shifted diagram $S(\lambda)$ with entries from

$$
1^{\prime}<1<\overline{1}^{\prime}<\overline{1}<2^{\prime}<2<\overline{2}^{\prime}<\overline{1}<\cdots<n^{\prime}<n<\bar{n}^{\prime}<\bar{n}
$$

satisfying the following conditions:

- the entries in each row and in each column are weakly increasing;
- each unprimed entry appears at most once in every column;
- each primed entry appears at most once in every row;
- for each k, at most one of $\left\{k^{\prime}, k, \overline{k^{\prime}}, \bar{k}\right\}$ appears on the main diagonal.

Example

$$
T=\begin{array}{|c|c|c|c|}
\hline 1 & 1 & \overline{2}^{\prime} & 3^{\prime} \\
\hline & 2^{\prime} & \overline{2}^{\prime} & 3 \\
\cline { 2 - 4 } & & 4 &
\end{array} .
$$

Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape λ is a filling of the boxes in the shifted diagram $S(\lambda)$ with entries from

$$
1^{\prime}<1<\overline{1}^{\prime}<\overline{1}<2^{\prime}<2<\overline{2}^{\prime}<\overline{1}<\cdots<n^{\prime}<n<\bar{n}^{\prime}<\bar{n}
$$

satisfying the following conditions:

- the entries in each row and in each column are weakly increasing;
- each unprimed entry appears at most once in every column;
- each primed entry appears at most once in every row;
- for each k, at most one of $\left\{k^{\prime}, k, \overline{k^{\prime}}, \bar{k}\right\}$ appears on the main diagonal.

For such a tableau T, we define

$$
\boldsymbol{x}^{T}=\prod_{k=1}^{n} x_{k}^{\#\left\{k^{\prime}, k \text { in } T\right\}-\#\left\{\bar{k}^{\prime}, \bar{k} \text { in } T\right\} .}
$$

Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape λ is a filling of the boxes in the shifted diagram $S(\lambda)$ with entries from

$$
1^{\prime}<1<\overline{1}^{\prime}<\overline{1}<2^{\prime}<2<\overline{2}^{\prime}<\overline{1}<\cdots<n^{\prime}<n<\bar{n}^{\prime}<\bar{n}
$$

satisfying the following conditions:

- the entries in each row and in each column are weakly increasing;
- each unprimed entry appears at most once in every column;
- each primed entry appears at most once in every row;
- for each k, at most one of $\left\{k^{\prime}, k, \overline{k^{\prime}}, \bar{k}\right\}$ appears on the main diagonal.

Example

$$
T=\begin{array}{|c|c|c|c|}
\hline 1 & 1 & \overline{2}^{\prime} & 3^{\prime} \\
\hline & 2^{\prime} & \overline{2}^{\prime} & 3 \\
\hline & & 4 &
\end{array}, \quad \boldsymbol{x}^{T}=x_{1}^{2} x_{2}^{-1} x_{3}^{2} x_{4} .
$$

Theorem (Conjectured by Hamel-King) For a strict partition λ, we have

$$
Q_{\langle\lambda\rangle}(\boldsymbol{x})=\sum_{T} \boldsymbol{x}^{T}
$$

where T runs over all symplectic primed shifted tableaux of shape λ. Idea of Proof Both sides satisfy

- $Q_{\langle\lambda\rangle}\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)=\sum_{\mu} Q_{\langle\mu\rangle}\left(x_{1}, \cdots, x_{n-1}\right) Q_{\langle\lambda / \mu\rangle}\left(x_{n}\right)$,
- $Q_{\langle\lambda / \mu\rangle}\left(x_{n}\right)=0$ unless $\lambda \supset \mu$ and $l(\lambda)-l(\mu) \leq 1$,
- $Q_{\langle\lambda / \mu\rangle}\left(x_{n}\right)=\operatorname{det}\left(Q_{\left\langle\lambda_{i}-\mu_{j}\right\rangle}\left(x_{n}\right)\right)_{1 \leq i, j \leq l(\lambda)}$ if $l(\lambda)-l(\mu) \leq 1$.

Hence the proof is reduced to the case where $\lambda=(r)$ and $\boldsymbol{x}=\left(x_{n}\right)$.

Factorial symplectic Q-functions

Let $\mathcal{G}=\left\{g_{d}(t)\right\}_{d \geq 0}$ be a polynomial sequence given by $g_{0}(t)=1$ and

$$
g_{d}\left(x+x^{-1}\right)=\left(\prod_{i=0}^{d-1}\left(x+a_{i}\right)-\prod_{i=0}^{d-1}\left(x^{-1}+a_{i}\right)\right) \frac{x+x^{-1}}{x-x^{-1}}
$$

where $\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ is a factorial parameter. Then we define factorial symplectic Q-functions $Q_{\langle\lambda\rangle}(\boldsymbol{x} \mid \boldsymbol{a})$ to be the generalized Q functions associated to \mathcal{G} given above:

$$
Q_{\langle\lambda\rangle}(\boldsymbol{x} \mid \boldsymbol{a})=Q_{\lambda}^{\mathcal{G}}\left(\boldsymbol{x}+\boldsymbol{x}^{-1}\right) .
$$

If $a_{0}=a_{1}=a_{2}=\cdots=0$, then we have

$$
Q_{\langle\lambda\rangle}(\boldsymbol{x} \mid 0)=Q_{\langle\lambda\rangle}(\boldsymbol{x})=2^{l(\lambda)} P_{\lambda}(\boldsymbol{x} ;-1) .
$$

Factorial symplectic Q-functions

Theorem Assume that $a_{0}=0$. Then we have

$$
Q_{\langle\lambda\rangle}(\boldsymbol{x} \mid \boldsymbol{a})=\sum_{T}(\boldsymbol{x} \mid \boldsymbol{a})^{T}
$$

where T runs over all symplectic primed shifted tableaux of shape λ, and

$$
(\boldsymbol{x} \mid \boldsymbol{a})^{T}=\prod_{(i, j) \in S(\lambda)} \mathrm{wt}\left(T_{i, j} ; a_{j-i}\right)
$$

with

$$
\operatorname{wt}(\gamma ; a)= \begin{cases}x_{k}-a & \text { if } \gamma=k^{\prime}, \\ x_{k}+a & \text { if } \gamma=k, \\ x_{k}^{-1}-a & \text { if } \gamma=\overline{k^{\prime}} \\ x_{k}^{-1}+a & \text { if } \gamma=\bar{k}\end{cases}
$$

Remark The right hand (combinatorics) side was introduced by KingHamel.

