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Plan:

• Schur Q-functions

• Pfaffian identities and their applications to Schur Q-functions

• Generalized Q-functions

• Symplectic Q-functions and their factorial analogues

Schur functions Schur Q-functions

partitions strict partitions

linear representation of Sn projective representation of Sn

representation of gl(n) representation of q(n)

Grassmannian Lagrangian Grassmannian

determinants Pfaffians



Schur Q-Functions



Pfaffian

Let A = (aij)1≤i, j≤2m be a 2m × 2m skew-symmetric matrix. The
Pfaffian of A is defined by

Pf A =
∑

π∈F2m

sgn(π)aπ(1),π(2)aπ(3),π(4) · · · aπ(2m−1),π(2m),

where F2m is the subset of the symmetric group S2m given by

F2m =

π ∈ S2m :
π(1) < π(3) < · · · < π(2m− 1)

> > >

π(2) π(4) π(2m)

 ,

and sgn(π) denotes the signature of π.
Example If 2m = 4, then

Pf


0 a12 a13 a14

−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 = a12a34 − a13a24 + a14a23.



Pfaffian and determinant

For an r × r skew-symmetric matrix C and an r × (2m − r) matrix
B, we have

Pf

(
C B
−tB O

)
=

{
0 if r > m,

(−1)m(m−1)/2 detB if r = m.

Schur Pfaffian

If n is even, then we have

Pf

(
xj − xi
xj + xi

)
1≤i, j≤n

=
∏

1≤i<j≤n

xj − xi
xj + xi

.



Schur P -function (Nimmo’s formula)

Let x = (x1, · · · , xn) be a sequence of n indeterminates. For a strict
partitio λ = (λ1, · · · , λl(λ)) (λ1 > · · · > λl(λ) > 0), the Schur P -

function Pλ(x1, · · · , xn) corresponding to λ is defined by

Pλ(x) =
1

D(x)
Pf


(
xj − xi
xj + xi

)
1≤i, j≤n

(
x
λj
i

)
1≤i≤n, 1≤j≤r

−t

(
x
λj
i

)
1≤i≤n, 1≤j≤r

O

 ,

where r = l(λ) or l(λ)+1 according to whether n+ l(λ) is even or odd,
and

D(x) =
∏

1≤i<j≤n

xj − xi
xj + xi

.



Schur Q-function (Nimmo’s formula)

The Schur Q-function Qλ(x1, · · · , xn) corresponding to a strict par-
tition λ is defined by

Qλ(x) = 2l(λ)Pλ(x).

Then we have

Qλ(x)

=
1

D(x)
Pf


(
xj − xi
xj + xi

)
1≤i, j≤n

(
χ(λj)x

λj
i

)
1≤i≤n, 1≤j≤r

−t

(
χ(λj)x

λj
i

)
1≤i≤n, 1≤j≤r

O

 ,

where

χ(k) =

{
1 if k = 0,

2 if k > 0.



Pfaffian Identities
and

Applications to Schur’s Q-Functions



Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an (n+ r)×
(n + r) skew-symmetric matrix, we have

Pf

(
PfX([n] ∪ {n + i, n + j})

PfX([n])

)
1≤i, j≤r

=
PfX

PfX([n])
,

where [n] = {1, 2, · · · , n} and

X(I) =
(
xi,j

)
i, j∈I .

Remark (Sylevester identity) For an (m + s) × (m + s) matrix Y , we
have

det

(
detY ([m] ∪ {i}; [m] ∪ {j})

detY ([m]; [m])

)
1≤i, j≤s

=
detY

detY ([m]; [m])
,

where
Y (I ; J) =

(
yi,j

)
i∈I, j∈J .



Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an (n+ r)×
(n + r) skew-symmetric matrix, we have

Pf

(
PfX([n] ∪ {n + i, n + j})

PfX([n])

)
1≤i, j≤r

=
PfX

PfX([n])
.

Applying this to

X =


(
xj − xi
xj + xi

)
1≤i, j≤n

(
x
λj
i

)
1≤i≤n, 1≤j≤r

−t

(
x
λj
i

)
1≤i≤n, 1≤j≤r

O

 ,

we immediately recover Schur’s original definition of Q-functions.



Schur’s original definition of Q-functions

Proposition For a strict partition λ, we have

Qλ(x) = Pf

(
Qλi,λj(x)

)
1≤i, j≤r

,

where r = l(λ) or l(λ) + 1 according to whether l(λ) is even or odd.

Remark We have ∑
r≥0

Qr(x)z
r =

n∏
i=1

1 + xiz

1− xiz
,

∑
r,s≥0

Qr,s(x)z
rws =

z − w

z + w

 n∏
i=1

(1 + xiz)(1 + xiw)

(1− xiz)(1− xiw)
− 1

 ,

where Qr,s = −Qs,r for 0 < r < s, Qr,0 = −Q0,r = Qr for r > 0 and
Qr,r = 0 for r ≥ 0.



Pfaffian analogue of Cauchy–Binet identity

Theorem Let m and n be positive integers wirh m ≡ n mod 2. Let

A : an m×m skew symmetric matrix, S : an m×N matrix,

B : an n× n skew symmetric matrix, T : an n×N matrix.

Then we have∑
J

Pf

(
A S([m]; J)

−tS([m]; J) O

)
Pf

(
B T ([n], J)

−tT ([n], J) O

)
= (−1)(

n
2) Pf

(
A StT

−T tS −B

)
,

where J runs over all subsets of [N ] with #J ≡ n mod 2, and

S([m]; J) =
(
si,j

)
1≤i≤m, j∈J , T ([n]; J) =

(
ti,j

)
1≤i≤n, j∈J .



Pfaffian analogue of Cauchy–Binet identity

Theorem Let m and n be positive integers wirh m ≡ n mod 2. Then
we have∑

J

Pf

(
A S([m]; J)

−tS([m]; J) O

)
Pf

(
B T ([n], J)

−tT ([n], J) O

)
= (−1)(

n
2) Pf

(
A StT

−T tS −B

)
,

where J runs over all subsets of [N ] with #J ≡ n mod 2.

Remark (Cauchy–Binet formula) For two n×N matrices S and T , we
have ∑

J

detS([n]; J) detT ([n]; J) = det
(
StT

)
.



Cauchy-type formula for Q-functions

Theorem (Schur) For x = (x1, · · · , xn) and y = (y1, · · · , yn), we
have ∑

λ

1

2l(λ)
Qλ(x)Qλ(y) =

n∏
i,j=1

1 + xiyj
1− xiyj

,

where λ runs over all strict partitions of length ≤ n.

Proof Apply the Pfaffian version of Cauchy–Binet identity to

A =

(
xj − xi
xj + xi

)
1≤i, j≤n

, S =

1 x1 x21 x32 · · ·
... ... ... ...

1 xn x2n x3n · · ·

 ,

B =

(
yj − yi
yj + yi

)
1≤i, j≤n

, T =

1 2y1 2y21 2y32 · · ·
... ... ... ...

1 2yn 2y2n 2y3n · · ·

 .



Jozefiak–Pragacz formula for skew Q-functions

Theorem (Jozefiak–Pragacz) For two strict partitions λ and µ, we
define the skew Q-function Qλ/µ(x) by

Qλ/µ(x)

= Pf


(
Qλi,λj(x)

)
1≤i, j≤l

(
Qλi−µr+1−j

(x)

)
1≤i≤l,1≤j≤r

−t

(
Qλi−µr+1−j

(x)

)
1≤i≤l,1≤j≤r

O

 ,

where r = l(µ) or l(µ) + 1 according to whether l(λ) + l(µ) is even or
odd. Then we have

Qλ(x,y) =
∑
µ

Qλ/µ(x)Qµ(y).



Proof Apply (a variant of) the Pfaffian analogue of Cauchy–Binet iden-
tity to

A =

(
Qλi,λj(x)

)
1≤i, j≤l

, S =

(
Qλi−k(x)

)
1≤i≤l, k≥0

,

B =

(
yj − yi
yj + yi

)
1≤i, j≤n

, T =

1 2y1 2y21 2y32 · · ·
... ... ... ...

1 2yn 2y2n 2y3n · · ·

 .

Then we have∑
µ

Qλ/µ(x)Qµ(y)

=
1

D(y)
Pf


(
Qλi,λj(x)

)
1≤i, j≤l

(
Qλi(x, yj)

)
1≤i≤l, 1≤j≤n

−t

(
Qλi(x, yj)

)
1≤i≤l, 1≤j≤n

(
yj − yi
yj + yi

)
1≤i, j≤n

 .



Generalized Q-Functions



Generalized Q functions

Let G = {gd(t)}d≥0 be a sequence of univariate polynomials satisfying

g0(t) = 1, deg gd(t) = d

Then we define generalized Q functions QG
λ(x) associated to G by

QG
λ(x)

=
1

D(x)
Pf


(
xj − xi
xj + xi

)
1≤i, j≤n

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

−t

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

O

 ,

where r = l(λ) or l(λ)+1 according to whether n+ l(λ) is even or odd,
and

D(x) =
∏

1≤i<j≤n

xj − xi
xj + xi

.



Generalized Q functions

QG
λ(x)

=
1

D(x)
Pf


(
xj − xi
xj + xi

)
1≤i, j≤n

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

−t

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

O

 .

Example
(1) If gd(t) = td (resp. 2td) for d ≥ 1, thenQG

λ is the Schur P -function
(resp. Q-function).

(2) If gd(t) =
∏d

i=1(t + ai) (resp. 2
∏d

i=1(t + ai)) for d ≥ 1, then

QG
λ is Ivanov’s factorial P -function (resp. Q-function).



Generalized Q-functions

QG
λ(x)

=
1

D(x)
Pf


(
xj − xi
xj + xi

)
1≤i, j≤n

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

−t

(
gλj(xi)

)
1≤i≤n, 1≤j≤r

O

 .

By applying the Pfaffian analogue of Sylvester identity, we have

Proposition For a strict partition λ, we have

QG
λ(x) = Pf

(
QG
λi,λj

(x)

)
1≤i, j≤r

.



Jozefiak–Pragacz formula for generalized Q-functions
Theorem For simplicity, we assume that gd(0) = 0 for d ≥ 1. For two
strict partitions λ and µ, we put

QG
λ/µ(x) = Pf


(
QG

λi,λj
(x)

)
1≤i, j≤l

(
QG

λi/µr+1−j
(x)

)
1≤i≤l, 1≤j≤r

−t

(
QG

λi/µr+1−j
(x)

)
1≤i≤l, 1≤j≤r

O

 ,

where r = l(µ) or l(µ) + 1 according to whether l(λ) + l(µ) is even or
odd, and

QG
r (x, t) =

r∑
k=0

QG
r/k

(x)gk(t).

Then we have
QG
λ(x,y) =

∑
µ

QG
λ/µ

(x)QG
µ(y).

Remark Note that QG
r/k

̸= QG
r−k in general.



Symplectic Q-Functions



Symplectic Hall–Littlewood functions
The Hall–Littlewood functions associated to the root system of type

Cn are defined by

Pλ(x; t) =
1

Wλ(t)

∑
w∈W

w

xλ
∏

α∈R+

1− tx−α

1− x−α


where λ =

∑n
i=1 λiei is a dominant weight, W is the Weyl group of

type Cn and

Wλ = {w ∈ W : wλ = λ}, Wλ(t) =
∑

w∈Wλ

tl(w),

R+ =
{
ei ± ej : 1 ≤ i < j ≤ n

}
∪ {2ei : 1 ≤ i ≤ n}.

It is known that

Pλ(x; t) ∈ Z[t][x±1
1 , · · · , x±1

n ]W .



Symplectic Q-functions

For a strict partition, we define

P⟨λ⟩(x) = Pλ(x;−1), Q⟨λ⟩(x) = 2l(λ)P⟨λ⟩(x).

and call them symplectic P -functions and symplecticQ-functions respec-
tively.

Theorem Let G = {gd(t)}d≥0 be a polynomial sequence given by

g0(t) = 1, gd(x + x−1) = 2
(
xd − x−d

) x + x−1

x− x−1
(d ≥ 1).

Then we have
Q⟨λ⟩(x) = QG

λ(x + x−1),

where x + x−1 = (x1 + x−1
1 , · · · , xn + x−1

n ).



Tableaux description of symplectic Q-functions

Definition (Hamel–King) A symplectic primed shifted tableau of shape
λ is a filling of the boxes in the shifted diagram S(λ) with entries from

1′ < 1 < 1
′
< 1 < 2′ < 2 < 2

′
< 1 < · · · < n′ < n < n′ < n

satisfying the following conditions:

• the entries in each row and in each column are weakly increasing;

• each unprimed entry appears at most once in every column;

• each primed entry appears at most once in every row;

• for each k, at most one of {k′, k, k′, k} appears on the main diagonal.
Example

T =
1 1 2

′ 3′

2′ 2
′ 3
4

.



Tableaux description of symplectic Q-functions

Definition (Hamel–King) A symplectic primed shifted tableau of shape
λ is a filling of the boxes in the shifted diagram S(λ) with entries from

1′ < 1 < 1
′
< 1 < 2′ < 2 < 2

′
< 1 < · · · < n′ < n < n′ < n

satisfying the following conditions:

• the entries in each row and in each column are weakly increasing;

• each unprimed entry appears at most once in every column;

• each primed entry appears at most once in every row;

• for each k, at most one of {k′, k, k′, k} appears on the main diagonal.
For such a tableau T , we define

xT =

n∏
k=1

x
#{k′,k in T}−#{k′,k in T}
k .



Tableaux description of symplectic Q-functions

Definition (Hamel–King) A symplectic primed shifted tableau of shape
λ is a filling of the boxes in the shifted diagram S(λ) with entries from

1′ < 1 < 1
′
< 1 < 2′ < 2 < 2

′
< 1 < · · · < n′ < n < n′ < n

satisfying the following conditions:

• the entries in each row and in each column are weakly increasing;

• each unprimed entry appears at most once in every column;

• each primed entry appears at most once in every row;

• for each k, at most one of {k′, k, k′, k} appears on the main diagonal.
Example

T =
1 1 2

′ 3′

2′ 2
′ 3
4

, xT = x21x
−1
2 x23x4.



Theorem (Conjectured by Hamel–King) For a strict partition λ, we
have

Q⟨λ⟩(x) =
∑
T

xT

where T runs over all symplectic primed shifted tableaux of shape λ.

Idea of Proof Both sides satisfy

• Q⟨λ⟩(x1, · · · , xn−1, xn) =
∑
µ

Q⟨µ⟩(x1, · · · , xn−1)Q⟨λ/µ⟩(xn),

• Q⟨λ/µ⟩(xn) = 0 unless λ ⊃ µ and l(λ)− l(µ) ≤ 1,

• Q⟨λ/µ⟩(xn) = det
(
Q⟨λi−µj⟩(xn)

)
1≤i, j≤l(λ)

if l(λ)− l(µ) ≤ 1.

Hence the proof is reduced to the case where λ = (r) and x = (xn).



Factorial symplectic Q-functions

Let G = {gd(t)}d≥0 be a polynomial sequence given by g0(t) = 1 and

gd(x + x−1) =

d−1∏
i=0

(x + ai)−
d−1∏
i=0

(x−1 + ai)

 x + x−1

x− x−1
,

where a = (a0, a1, a2, · · · ) is a factorial parameter. Then we define
factorial symplectic Q-functions Q⟨λ⟩(x|a) to be the generalized Q-
functions associated to G given above:

Q⟨λ⟩(x|a) = QG
λ(x + x−1).

If a0 = a1 = a2 = · · · = 0, then we have

Q⟨λ⟩(x|0) = Q⟨λ⟩(x) = 2l(λ)Pλ(x;−1).



Factorial symplectic Q-functions

Theorem Assume that a0 = 0. Then we have

Q⟨λ⟩(x|a) =
∑
T

(x|a)T

where T runs over all symplectic primed shifted tableaux of shape λ, and

(x|a)T =
∏

(i,j)∈S(λ)
wt(Ti,j; aj−i)

with

wt(γ; a) =


xk − a if γ = k′,

xk + a if γ = k,

x−1
k − a if γ = k′,

x−1
k + a if γ = k.

Remark The right hand (combinatorics) side was introduced by King–
Hamel.


