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Plan:

e Schur Q-functions
e Pfaffian identities and their applications to Schur ()-functions
e Generalized ()-functions

e Symplectic ()-functions and their factorial analogues

Schur functions Schur ()-functions

partitions strict partitions

linear representation of S), | projective representation of S,

representation of gl(n) representation of q(n)

Grassmannian Lagrangian Grassmannian

determinants Pfaffians



Schur @Q-Functions



Pfaffian

Let A = (a;j)1<i, j<om be a 2m x 2m skew-symmetric matrix. The
Ptaffian of A is defined by

PEA= " son(T)an(1) x(2)0a(@)r(4) ** Gr(2m—1).x(2m)>
7T652m

where §9,,, is the subset of the symmetric group G9,,, given by

( ml) <7(3) < -+ < 7w2m—1)"
Som =T € Gy A N /\ >
\ w(2) 7w(4) m(2m) )

and sgn(m) denotes the signature of 7.
Example If 2m = 4, then

0  ap a3 auy

pe | —2 0 as axn
—a13 —azz 0 asy
—a1y —az —azy 0

= 112034 — Q13024 T A14023.



Pfaffian and determinant

For an r X r skew-symmetric matrix C' and an r X (2m — r) matrix
B, we have

Pf(c B)_ 0 if r > m,
~BO) (_1)m(m_1>/2 det B if r =m.

Schur Pfaffian

If n is even, then we have

Pf (CL’] — 37@> _ H 33]' — Xy
T + x; 1<, j<n I<idi<n Z j + x;




Schur P-function (Nimmo’s formula)

Let = (21, - ,zn) be a sequence of n indeterminates. For a strict
partitio A = (A, -~
function P\ (xq, -+ , ;) corresponding to A\ is defined by

Y \
1<i<n, 1<)<r

P\(x) = ﬁ P

: 7)\l()\)) ()\1 > e > )\l()\) > O), the Schur P-

Tj T Ti)1<i j<n

)\.
\ I1<i<n, 1<y<r

O

/

where r = [(\) or [(\) + 1 according to whether n 4 [()\) is even or odd,

and

Ly

T —
_ J
D(w)_ H CC]'—|—£EZ'.

1<i<y<n



Schur Q-function (Nimmo’s formula)

The Schur Q)-function ¢))(x1, -+ ,x,) corresponding to a strict par-
tition A is defined by

O\(z) =2V Py ().

Then we have

Q\(x)

_ b Tj i/ 1<i, j<n 1<i<n, 1<j<r
\ 1<i<n, 1<y<r

where

| i k=0
k) — ’
x(k) {2 k>0



Pfaffian Identities
and
Applications to Schur’s Q-Functions



Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an (n+1r) X
(n + r) skew-symmetric matrix, we have

o (PfX([n]U{nJri,nJrj})) OPEX
Pf X ([n]) 1<i,j<r PIX([n])
where [n| = {1,2,--- ,n} and
X(I) = (2ij); ier-
Remark (Sylevester identity) For an (m + s) X (m + s) matrix Y, we
have

det Y ([m] U {i}; [m] U {4}) _ etV
det ( det Y (|m]; |m]) >1§i,j§s - det Y([m}; [mD?

where
Y(I;J) = (yi,j)z'el,jej'



Pfaffian analogue of Sylvester identity

Proposition (Knuth) Let n and r be even integers. For an (n+ 1) X
(n + 1) skew-symmetric matrix, we have

PE X ([n] U {n+i,n+5)) . PEX
. ( Pt X ([n]) >1§z’,j§r - PEX([n])’

Applying this to

. . 1
Tj+ T/ 1< j<n 1<i<n, 1<j<r
>\.
\ 1<i<n,1<j<r )

we immediately recover Schur’s original definition of ()-functions.




Schur’s original definition of Q-functions
Proposition For a strict partition A, we have
@) =Pt Q@)
1<, 9<r
where r = [(\) or [(\) + 1 according to whether [()\) is even or odd.
Remark We have

> Qi) = [

>0 1=1
n
Z O o(@)2 0" = Z—w H (1 + xzz)(l + xz'w) 1)
550 2w\ o (1 —z;2)(1 — z;w)

where Qr s = —Qgsp for 0 <r < s, Qo= —Qp, = Qp for r > 0 and
Q?“,’I“ — O fOI’ T Z O



Pfaffian analogue of Cauchy—Binet identity

Theorem Let m and n be positive integers wirh m = n mod 2. Let

A :an m x m skew symmetric matrix, S :an m x N matrix,
B :an n x n skew symmetric matrix, 1 :an n X N matrix.

Then we have

T (e ") ™8

_ (—1)®) pf (_;ts f’g)

where J runs over all subsets of [NV]| with #J = n mod 2, and

S(ml: J) = (sij)1<icm. iegr Tk T) = (i) 1<icn jcs-



Pfaffian analogue of Cauchy—Binet identity

Theorem Let m and n be positive integers wirh m = n mod 2. Then
we have

ZPf( s 0 )P (o607

_ (—1)® pt (_;ts f@)

where J runs over all subsets of [N] with #J = n mod 2.

Remark (Cauchy-Binet formula) For two n x N matrices .S and T', we
have

ZdetS T)det T([n); J) = det (sz)



Cauchy-type formula for Q-functions

Theorem  (Schur) For @ = (x1,--- ,xp) and y = (Y1, ,Yn), We
have

1 n
> T @Qxy) = ]
2l(A) A
A 1,7=1
where A runs over all strict partitions of length < n.

Proof Apply the Pfaffian version of Cauchy—Binet identity to

2 .3
Lz oy x5 -

A (xj - xz) S
= : =|: : 1 :
Tj+Ti/1<i j<n 2 .3 ..

L zp x5, x5
B:(w—w> -
Yi T Y%/ 1<i, j<n

1 2y1 297 2y - -

1 2yn 202 2y3 - -



Jozefiak—Pragacz formula for skew QQ-functions

Theorem

define the skew (-function @/, (x) by
Q)\/,u<w)

= Pt

( (Q)\Z-,Aj(w)>
1<i, j<I

(Jozefiak—Pragacz) For two strict partitions \ and p, we

1, (@)
( PTHrl 1<i<I1<j<r

_t(QAi_Nfrﬂrlj(w))
\ 1<e<l1<y<r

O

where = [(u) or [(;) + 1 according to whether [(A\) 4 [(14) is even or
odd. Then we have

Q\(z,y) = Z Q)\/Iu(w
0

)




Proof Apply (a variant of) the Pfaffian analogue of Cauchy—Binet iden-
tity to

A= (@n@) . 5= (@) |
1<i, j<I 1<i<l, k>0

vy 1 2yy 297 2y - -
B: ( '] ) ) T: H H H H
Yi T Y%/ 1<i, j<n

Then we have

> Qxu(@)Qu(y)

- P\ - T
o J(QMCB y-)) (y‘j —~ yz)
\ Y 1<i<l, 1<j<n Yi T Yi/) 1<i j<n )

— Y =Yy - _=J =

1 2yn 2y2 2y; - -




Generalized Q-Functions



Generalized () functions
Let G = {g4(t) }4>0 be a sequence of univariate polynomials satisfying

go(t) =1, deggy(t) =d
Then we define generalized () functions Qg(w) associated to G by

QS ()

v
/ () (92,00 \
1 br Tj+Ti/)1<i j<n 1<i<n, 1<j<r

D(x) \ _t<g)\j($i)> I<i<n,1<j<r O )

where r = [(\) or [(\) + 1 according to whether n 4 [()\) is even or odd,

and N
7 4

D)= ]] o

1<i<j<n 1 = 7t




Generalized () functions

QS (@)
v
( (J. Z) <9Aj(5€z’)> \
_ 1 5 TjTTi)1<i, j<n 1<i<n, 1<j<r
Dle) | -
\ 1<i<n,1<y<r )
Example

(1) If g4(t) = t% (resp. 2t%) ford > 1, then Qg is the Schur P-function
(resp. Q-function).

(2) If g4(t) = ngl(t + a;) (resp. 2H§i:1(t + a;)) for d > 1, then
Qg is lvanov's factorial P-function (resp. ()-function).



Generalized (Q-functions

QS ()

1
“ D)

Tj+ T /1< j<n

<9Aj($z’)>
1<i<n, 1<9<r

\ (70
1<i<n, 1<<r

O

By applying the Pfaffian analogue of Sylvester identity, we have

Proposition For a strict partition A, we have

)




Jozefiak—Pragacz formula for generalized (Q-functions

Theorem For simplicity, we assume that ¢g;(0) = 0 for d > 1. For two
strict partitions A and u, we put

[ (o) (). ) \
1<, 5<1 1<i<l, 1<5<r

—Y =Yy -_=J =

_tl 0Y
\ (Q)\i/urﬂj(w))qu 1<j<r ¢ )

~t >t, L >~/ >

Q5 (@) = Pt

where r = [(p) or [(u) + 1 according to whether [(\) + [() is even or
odd, and

QY (x,t) = ZQ

Then we have

ng y ZQ)\/M )

Remark Note that Qr/k =+ Qg—k in general.



Symplectic Q-Functions



Symplectic Hall-Littlewood functions
The Hall-Littlewood functions associated to the root system of type

C,, are defined by

Py (z;

weW aERT
where A = > ' ; A\je; is a dominant weight, W is the Weyl group of
type C), and

Wy=A{weW wh=XA}, W)\t Ztl
weW,
={etej1<i<j<njU{2,;:1<i<n}
It is known that
+1
Py(m;t) € Z[tfxy - a7



Symplectic Q-functions

For a strict partition, we define
[(A
Ppy(@) = Pr(m; 1), Qu(@) = 2V Py ().
and call them symplectic P-functions and symplectic ()-functions respec-
tively.
Theorem Let G = {g4(t)}4>0 be a polynomial sequence given by

1
L (d>1).

r+ax

go(t) =1, galx+27) =2 (a? =27

Then we have

r— T

Q@) =Qf(x+= 1),

1

1:(x1+x1_ e ,xn+az,,;1).

where © + &~



Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape
A is a filling of the boxes in the shifted diagram S()\) with entries from

'<1<T<T<2<2<?<T<---<i/<n<i<n
satisfying the following conditions:
e the entries in each row and in each column are weakly increasing;
e each unprimed entry appears at most once in every column;
e each primed entry appears at most once in every row;
e for each k, at most one of {k’, k, k’, k} appears on the main diagonal.

Example

111193
T: 2/ §/ 3




Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape
A is a filling of the boxes in the shifted diagram S(\) with entries from

'<1<T<1<2<2<?<T<---<i/<n<i<n
satisfying the following conditions:
e the entries in each row and in each column are weakly increasing;
e each unprimed entry appears at most once in every column;
e each primed entry appears at most once in every row;
e for each k, at most one of {k’, k, k/, k} appears on the main diagonal.

For such a tableau 7', we define

n P — — .
2T — H xﬁ{k Join TY—#{k |k in T}.
k=1



Tableaux description of symplectic Q-functions

Definition (Hamel-King) A symplectic primed shifted tableau of shape
A is a filling of the boxes in the shifted diagram S()\) with entries from

'<1<T<T<2<2<?<T<---<i/<n<i<n
satisfying the following conditions:
e the entries in each row and in each column are weakly increasing;
e each unprimed entry appears at most once in every column;
e each primed entry appears at most once in every row;

e for each k, at most one of {k’, k, k’, k} appears on the main diagonal.

Example
1111(9|3
T = 25" 31, mT:x%azZ_lxgm.
4




Theorem  (Conjectured by Hamel-King) For a strict partition A, we

have
Quy(@) =) x'
T

where T' runs over all symplectic primed shifted tableaux of shape A.
ldea of Proof Both sides satisfy

¢ Q1 w1 n) = Y Qe 2 1)Q (7).
(L
® Q\/uy(xn) =0 unless A D pand I(A) —I(p) <1,

® Qur/p)(wn) = det (QW—W(%”)) 1<4, §<I(\)

Hence the proof is reduced to the case where A = (r) and & = (zy,).

if 1(A\) — I(p) < 1.



Factorial symplectic Q-functions

Let G = {g4(t) }q>0 be a polynomial sequence given by g((t) = 1 and

1 i o] 1 r+ax!
galz+2 )= ][@+a) - ][ +a) e
1=0 1=0
where @ = (ag,aq,a9,---) is a factorial parameter. Then we define

factorial symplectic ()-functions Q<)\>(wla) to be the generalized (-
functions associated to G given above:

Qu(zla) =Qf(x+z ).



Factorial symplectic Q-functions
Theorem Assume that ag = 0. Then we have

T
Qpy(@la) = 3 (@la)
T
where T" runs over all symplectic primed shifted tableaux of shape A, and

(@la)' = [ w(T;jia-)
(i,5)€S(A)
with
)
T —a ify=Fk,
.+ a it v==~k,

t(v;a) = —
w7 a) <$];1—a if v =Kk,

\:Clgl—ka it v==~k.
Remark The right hand (combinatorics) side was introduced by King—
Hamel.



