Factorisations of a group element, Hurwitz action and shellability

Vivien Ripoll

Universität Wien, Austria

Séminaire Lotharingien de Combinatoire 76 Otrott, 5 avril 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

joint work with Henri Mühle (École Polytechnique, France)

Outline

- Framework and example: generated group, Hurwitz action on factorisations, shellability
- 2 Motivations: noncrossing partition lattices of reflection groups
- 3 Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

A I A I A I A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Framework and example: generated group, Hurwitz action on factorisations, shellability

2 Motivations: noncrossing partition lattices of reflection groups

3 Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

A B A A B A

Generated group and reduced decompositions

- (G, A) generated group
- $A \subseteq G$ generates G as a monoid
- Let g ∈ G. Write g = a₁a₂...a_n, with a_i ∈ A. Length of g: ℓ_A(g) := minimal such n.

Reduced decompositions of gRed_A(g) := { $(a_1, ..., a_n) | a_i \in A, g = a_1 ... a_n$ }, where $n = \ell_A(g)$. **Example.** $G = S_4$ A = T := {all transpositions (i j)}. $g = (1 \ 2 \ 3 \ 4)$ $\ell_T(g) = 3$ Reduced decompositions of g: g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12) = (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14) = (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

・同・ ・ヨ・ ・ヨ・ ・ヨ

Generated group and reduced decompositions

- (G, A) generated group
- $A \subseteq G$ generates G as a monoid
- Let g ∈ G. Write g = a₁a₂...a_n, with a_i ∈ A. Length of g: ℓ_A(g) := minimal such n.

Reduced decompositions of g Red_A(g) := { $(a_1, ..., a_n) | a_i \in A, g = a_1 ... a_n$ }, where $n = \ell_A(g)$. Example. $G = S_4$ A = T := {all transpositions (i j)}. $g = (1 \ 2 \ 3 \ 4)$ $\ell_T(g) = 3$ Reduced decompositions of g: g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12) = (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14) = (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

▲母 ◆ ● ◆ ● ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆

Generated group and reduced decompositions

- (G, A) generated group
- $A \subseteq G$ generates G as a monoid
- Let g ∈ G. Write g = a₁a₂...a_n, with a_i ∈ A. Length of g: ℓ_A(g) := minimal such n.

Reduced decompositions of g $\operatorname{Red}_{A}(g) := \{(a_{1}, \ldots, a_{n}) \mid a_{i} \in A, g = a_{1} \ldots a_{n}\}, \text{ where } n = \ell_{A}(g).$ **Example.** $G = S_4$ $A = T := \{ all transpositions (i j) \}.$ g = (1 2 3 4) $\ell_T(g) = 3$ Reduced decompositions of g: g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)= (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)= (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

Hurwitz moves Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$. For $1 \le i \le n-1$ define: $\sigma_i \cdot (a_1, \ldots, a_{i-1}, a_i, a_i, a_{i+1}, a_{i+2}, \ldots, a_n)$ $= (a_1, \ldots, a_{i-1}, a_i a_{i+1} a_i^{-1}, a_i, a_{i+2}, \ldots, a_n)$

Assumption: For any $(a_1, \ldots, a_n) \in \text{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $\operatorname{Red}_A(g)$ by the braid group B_n [Hurwitz action].

 $B_{n} = \langle \sigma_{1}, \dots, \sigma_{n-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1}, \ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \rangle_{grp}$

 \sim General Question 1: Is the Hurwitz action transitive on Red_A(g)?

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$. For $1 \leq i \leq n-1$ define:

$$\sigma_i \cdot (a_1, \dots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \dots, a_n) = (a_1, \dots, a_{i-1}, a_i a_{i+1} a_i^{-1}, a_i, a_i, a_{i+2}, \dots, a_n)$$

Assumption: For any $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $\operatorname{Red}_A(g)$ by the braid group B_n [Hurwitz action].

 $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle_{grp}$

 \sim General Question 1: Is the Hurwitz action transitive on Red_A(g)?

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$. For $1 \leq i \leq n-1$ define:

$$\begin{array}{rcl} \sigma_i \cdot & (a_1, \dots, a_{i-1}, & a_i & , & a_{i+1} & , a_{i+2}, \dots, a_n) \\ & = & (a_1, \dots, a_{i-1}, & a_i a_{i+1} a_i^{-1} & , & a_i & , a_{i+2}, \dots, a_n) \end{array}$$

Assumption: For any $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $\operatorname{Red}_A(g)$ by the braid group B_n [Hurwitz action].

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle_{grp}$$

 \sim General Question 1: Is the Hurwitz action transitive on Red_A(g)?

Hurwitz moves

Fix $g \in G$. Take $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$. For $1 \leq i \leq n-1$ define:

$$\begin{array}{rcl} \sigma_i \cdot & (a_1, \dots, a_{i-1}, & a_i & , & a_{i+1} & , a_{i+2}, \dots, a_n) \\ & = & (a_1, \dots, a_{i-1}, & a_i a_{i+1} a_i^{-1} & , & a_i & , a_{i+2}, \dots, a_n) \end{array}$$

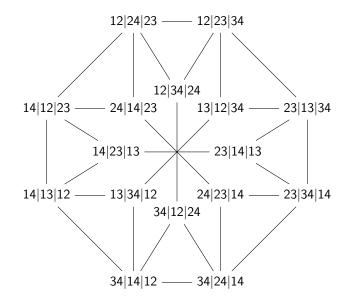
Assumption: For any $(a_1, \ldots, a_n) \in \operatorname{Red}_A(g)$ and any $1 \le i \le n-1$, $a_i a_{i+1} a_i^{-1}$ and $a_{i+1}^{-1} a_i a_{i+1} \in A$. (e.g., A stable by conjugacy)

This defines an action on $\operatorname{Red}_A(g)$ by the braid group B_n [Hurwitz action].

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1 \rangle_{grp}$$

 \sim General Question 1: Is the Hurwitz action transitive on Red_A(g)?

Example: Hurwitz graph of $\operatorname{Red}_T((1\ 2\ 3\ 4)))$



◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ⑦�?

Prefix order

Equip G with a partial order \leq_A : $x \leq_A y \iff x$ is a **prefix** of a reduced decomposition of y $\Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$[e,g]_A := \{x \in G \mid x \leq_A g\}$

- $[e,g]_A$ is a graded poset (by ℓ_A);
- Hasse diagram of the poset [e, g]_A corresponds to geodesics from e to g in the Cayley graph of (G, A);
- for x, y ∈ [e, g]_A: x ≤_A y if and only if a reduced decomposition of x is a subword of a reduced decomposition of y. [by assumption on conjugacy-stability]

ヘロト ヘ部ト ヘヨト ヘヨト

Prefix order

Equip G with a partial order \leq_A : $x \leq_A y \iff x$ is a **prefix** of a reduced decomposition of y $\Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A);
- Hasse diagram of the poset [e, g]_A corresponds to geodesics from e to g in the Cayley graph of (G, A);
- for x, y ∈ [e, g]_A: x ≤_A y if and only if a reduced decomposition of x is a subword of a reduced decomposition of y. [by assumption on conjugacy-stability]

ヘロト ヘヨト ヘヨト ヘヨト

Prefix order

Equip G with a partial order \leq_A : $x \leq_A y \iff x$ is a **prefix** of a reduced decomposition of y $\Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

• $[e,g]_A$ is a graded poset (by ℓ_A);

- Hasse diagram of the poset [e, g]_A corresponds to geodesics from e to g in the Cayley graph of (G, A);
- for x, y ∈ [e, g]_A: x ≤_A y if and only if a reduced decomposition of x is a subword of a reduced decomposition of y. [by assumption on conjugacy-stability]

→ 御 → → 注 → → 注 → → 三臣

Prefix order

Equip G with a partial order \leq_A : $x \leq_A y \iff x$ is a **prefix** of a reduced decomposition of y $\Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A);
- Hasse diagram of the poset [e, g]_A corresponds to geodesics from e to g in the Cayley graph of (G, A);
- for x, y ∈ [e, g]_A: x ≤_A y if and only if a reduced decomposition of x is a subword of a reduced decomposition of y. [by assumption on conjugacy-stability]

- 4 同 2 4 日 2 4 日 2 - 日

Prefix order

Equip G with a partial order \leq_A : $x \leq_A y \iff x$ is a **prefix** of a reduced decomposition of y $\Leftrightarrow \ell_A(x) + \ell_A(x^{-1}y) = \ell_A(y)$

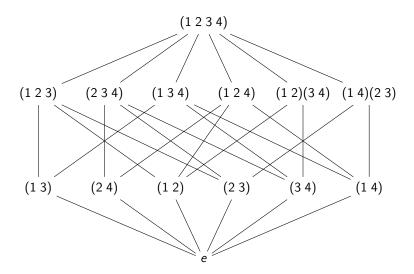
Prefix poset of g

$$[e,g]_A := \{x \in G \mid x \leq_A g\}$$

- $[e,g]_A$ is a graded poset (by ℓ_A);
- Hasse diagram of the poset [e, g]_A corresponds to geodesics from e to g in the Cayley graph of (G, A);
- for x, y ∈ [e, g]_A: x ≤_A y if and only if a reduced decomposition of x is a subword of a reduced decomposition of y. [by assumption on conjugacy-stability]

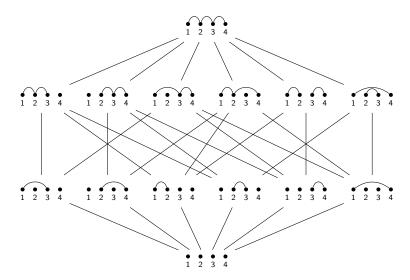
(4月) (3日) (3日) 日

Example: $[e, (1 2 3 4)]_T$ in (S_4, T)

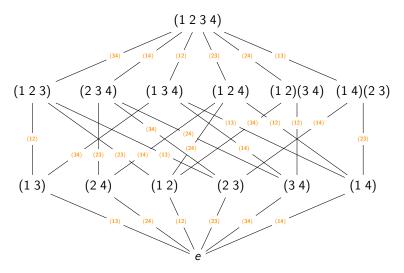


▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

 $[e, (1 2 3 4)]_T$ in $(S_4, T) \simeq$ Noncrossing partitions



Example: $[e, (1 2 3 4)]_T$ in (S_4, T)



Notes: {maximal chains of $[e, g]_A$ } \longleftrightarrow Red_A(g) $\forall x \leq_A y, \ [x, y]_A \simeq [e, x_{\leftarrow \Box}^{-1}y]_A \xrightarrow{} (z \geq x \leq z \geq y) \xrightarrow{} (z \geq y)_A$

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique increasingly labelled maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable \Rightarrow P shellable [Björner-Wachs] \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, ...

Definition

A graded poset P is shellable if its order complex is shellable, i.e.: there is a total order on the maximal chains $C_1 \prec \cdots \prec C_r$ such that $\forall i < j, \exists k < j$ with $C_i \cap C_j \subseteq C_k \cap C_j$, and the chains C_k and C_j differ by only one element.

\sim General question 2 : Is $[e,g]_A$ EL-shellable?

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique *increasingly labelled* maximal chain of I
- this is the lexicographically smallest among all maximal chains.

P EL-shellable \Rightarrow P shellable [Björner-Wachs] \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, ...

Definition

A graded poset P is shellable if its order complex is shellable, i.e.: there is a total order on the maximal chains $C_1 \prec \cdots \prec C_r$ such that $\forall i < j, \exists k < j$ with $C_i \cap C_j \subseteq C_k \cap C_j$, and the chains C_k and C_j differ by only one element.

\sim General question 2 : Is $[e,g]_A$ EL-shellable?

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique *increasingly labelled* maximal chain of I
- this is the lexicographically smallest among all maximal chains.

 $P \text{ EL-shellable} \Rightarrow P \text{ shellable} [Björner-Wachs]$

 \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, \ldots

Definition

A graded poset *P* is shellable if its *order complex* is shellable, i.e.: there is a total order on the maximal chains $C_1 \prec \cdots \prec C_r$ such that $\forall i < j, \exists k < j \text{ with } C_i \cap C_j \subseteq C_k \cap C_j$, and the chains C_k and C_j differ by only one element.

\sim General question 2 : ls $[e,g]_A$ EL-shellable?

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by a totally ordered set) such that for any interval $I \subseteq P$:

- there is a unique *increasingly labelled* maximal chain of I
- this is the lexicographically smallest among all maximal chains.

 $P \text{ EL-shellable} \Rightarrow P \text{ shellable} [Björner-Wachs]$

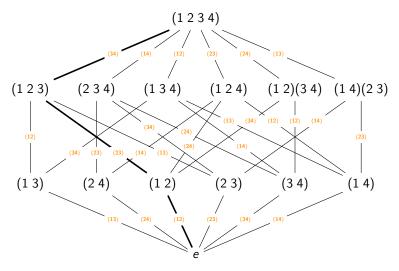
 \Rightarrow nice topology: the order complex is homotopy-equivalent to a wedge of spheres, \ldots

Definition

A graded poset *P* is shellable if its *order complex* is shellable, i.e.: there is a total order on the maximal chains $C_1 \prec \cdots \prec C_r$ such that $\forall i < j, \exists k < j \text{ with } C_i \cap C_j \subseteq C_k \cap C_j$, and the chains C_k and C_j differ by only one element.

 \sim General question 2 : ls $[e,g]_A$ EL-shellable?

Example: $[e, (1 2 3 4)]_T$ in (S_4, T)



 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

Outline

Framework and example: generated group, Hurwitz action on factorisations, shellability

2 Motivations: noncrossing partition lattices of reflection groups

3 Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

通 と く ヨ と く ヨ と

Motivation

- W : finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e, c]_T$ in $(W, \leq_T) \longrightarrow NC_W(c)$

• • = • • = •

Motivation

- W : finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e, c]_T$ in $(W, \leq_T) \longrightarrow NC_W(c)$

Theorem (Deligne, 1974; Bessis & Corran, 2006; Bessis, 2006) For any well-generated complex reflection group W, and any Coxeter element $c \in W$, the braid group $B_{\ell_T(c)}$ acts transitively on $Red_T(c)$.

- Uniform proof only for Coxeter groups!
- Crucial property used to construct a nice presentation of *W*, via its braid groups and its dual braid monoid [Bessis]

Motivation

- W : finite Coxeter group, or well-generated complex reflection group
- T : set of all reflections of W
- c : Coxeter element of W
- W-noncrossing partitions: interval $[e, c]_T$ in $(W, \leq_T) \longrightarrow NC_W(c)$

Theorem (Björner & Edelman, 1980; Reiner, 1997; Athanasiadis, Brady & Watt, 2007; Mühle, 2015)

For any well-generated complex reflection group W, and any Coxeter element $c \in W$, the poset $NC_W(c)$ is shellable.

• Uniform proof only for Coxeter groups! [ABW]

伺下 イヨト イヨト

The Goal

- present a general framework to relate
 - transitivity of the Hurwitz action on Red_A(g)
 - shellability of [e, g]_A

(General Question 1) (General Question 2)

• • = • • = •

- help answering these questions by checking "simple" local criteria
- apply this to interesting examples

Outline

Framework and example: generated group, Hurwitz action on factorisations, shellability

2 Motivations: noncrossing partition lattices of reflection groups

Some results and a conjecture: compatible order on the generators, Hurwitz-transitivity, shellability

A B A A B A

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say P is chain-connected if the chain graph is connected.

Observations:

- P shellable \Rightarrow P chain-connected
- Hurwitz-transitivity on $\operatorname{Red}_A(g) \Rightarrow [e,g]_A$ chain-connected

Proposition

Assume

- [e,g]_A is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$.

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say P is chain-connected if the chain graph is connected.

Observations:

- P shellable \Rightarrow P chain-connected
- Hurwitz-transitivity on $\operatorname{Red}_A(g) \Rightarrow [e,g]_A$ chain-connected

Proposition

Assume

- [e,g]_A is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$.

Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices the maximal chains of P, and C connected to C' whenever they differ by only one element.

Say P is chain-connected if the chain graph is connected.

Observations:

- P shellable \Rightarrow P chain-connected
- Hurwitz-transitivity on $\operatorname{Red}_A(g) \Rightarrow [e,g]_A$ chain-connected

Proposition

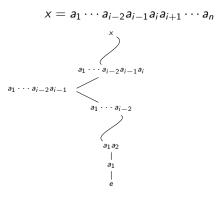
Assume

- [e, g]_A is chain-connected; and
- for all $x \in [e, g]_A$, with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on $Red_A(g)$.

Hurwitz action on the maximal chains

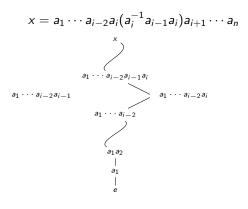
Hurwitz action corresponds to "taking detours"



э

Hurwitz action on the maximal chains

Hurwitz action corresponds to "taking detours"



□ ► ▲ □ ► ▲ □ ►

Compatible generator orders

- *G*, *A*, *g* as before
- assume from now on that $\operatorname{Red}_A(g)$ is finite
- $A_g := \{a \in A \mid a \leq_A g\}$ generators below g.

Definition (Mühle & R, 2015)

A total order \prec on A_g is *g*-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

- inspired by definition of *c*-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry;
- gives EL-shellability in rank 2.

直 ト イヨ ト イヨ ト

Compatible generator orders

- *G*, *A*, *g* as before
- assume from now on that $\operatorname{Red}_A(g)$ is finite
- $A_g := \{a \in A \mid a \leq_A g\}$ generators below g.

Definition (Mühle & R, 2015)

A total order \prec on A_g is *g*-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

- inspired by definition of *c*-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry;
- gives EL-shellability in rank 2.

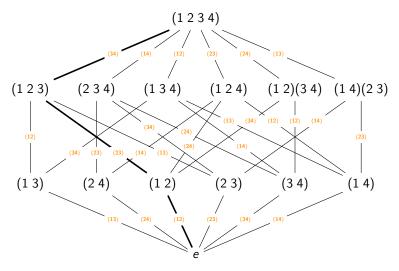
Compatible generator orders

- *G*, *A*, *g* as before
- assume from now on that $\operatorname{Red}_A(g)$ is finite
- $A_g := \{a \in A \mid a \leq_A g\}$ generators below g.

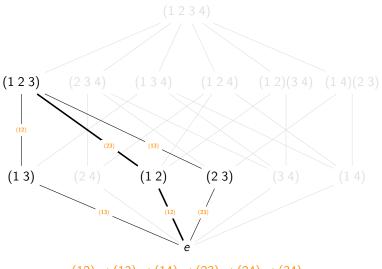
Definition (Mühle & R, 2015)

A total order \prec on A_g is *g*-compatible if for any $x \leq_A g$ with $\ell_A(x) = 2$, there exists a unique $(s, t) \in \text{Red}_A(x)$ with $s \leq t$.

- inspired by definition of *c*-compatible reflection order for Coxeter groups [Athanasiadis, Brady & Watt, 2007], but forgetting the geometry;
- gives EL-shellability in rank 2.



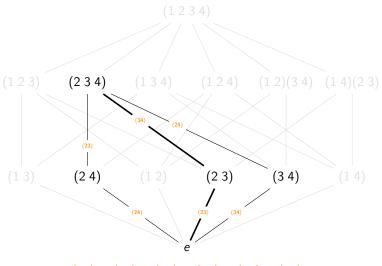
 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$



э

- ₹ 🖬 🕨

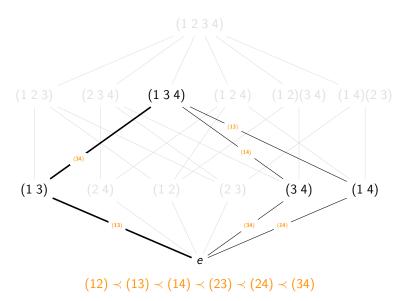
- ∢ ≣ ▶



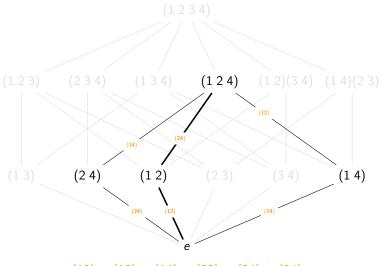
 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

э

• • = • • = •

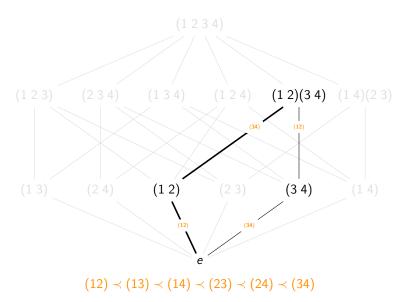


▶ < 문 > < 문 >

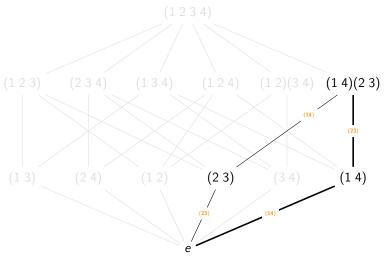


 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

白 ト ・ ヨ ト ・ ヨ ト



御下 ・ ヨト ・ ヨト



 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

白 ト ・ ヨ ト ・ ヨ ト

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on A_g

$$\leftrightarrow$$

the Hurwitz action of B_2 on Red_A(g) is transitive.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \implies$ local Hurwitz transitivity (i.e., for all $x \in [e, g]_A$ with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 - \exists compatible order + chain-connectedness \Rightarrow Hurwitz transitivity.
- Note: \exists compatible order \Rightarrow Hurwitz transitivity.

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

3

Proof:

• In rank 2, any Hurwitz orbit has the form

 $g = a_1 a_2 = a_2 a_3 = \cdots = a_{s-1} a_s = a_s a_1.$

• Assume there is no rising decomposition, then

 $a_1 \prec a_s \prec a_{s-1} \prec \cdots \prec a_3 \prec a_2 \prec a_1$, impossible.

so at least one rising decomposition for each orbit.

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \implies$ local Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

3

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \implies$ local Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 - \exists compatible order + chain-connectedness \Rightarrow Hurwitz transitivity.
- Note: \exists compatible order \Rightarrow Hurwitz transitivity.

Proposition (Rank 2 case)

Suppose $\ell_A(g) = 2$. Then:

 \exists a g-compatible order on $A_g \iff$

the Hurwitz action of B_2 on $Red_A(g)$ is transitive.

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Corollary (arbitrary rank)

 \exists a g-compatible order on $A_g \implies$ local Hurwitz transitivity (i.e., for all $x \in [e,g]_A$ with $\ell_A(x) = 2$, the Hurwitz action of B_2 on $Red_A(x)$ is transitive).

- the converse is false.
- Consequence of corollary:
 - \exists compatible order + chain-connectedness \Rightarrow Hurwitz transitivity.
- Note: \exists compatible order \Rightarrow Hurwitz transitivity.

 \exists a g-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ? No!

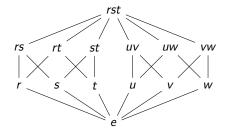
Take $G = \langle r, s, t, u, v, w | \text{ commutations}, rst = uvw \rangle_{grp}$

 \exists a *g*-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ? No!

Take $G = \langle r, s, t, u, v, w | \text{ commutations}, rst = uvw \rangle_{grb}$

 \exists a g-compatible order on $A_g \stackrel{?}{\Longrightarrow} [e,g]_A$ shellable ? No!

Take $G = \langle r, s, t, u, v, w | \text{ commutations}, rst = uvw \rangle_{grp}$



Conjecture (Mühle & R, 2015)

Let G, A, g be as before. Suppose

- there exists a g-compatible order on A_g;
- any interval of $[e,g]_A$ is chain-connected.

Then $[e,g]_A$ is **EL-shellable**.

(and the labelling by generators, ordered by \prec , is an EL-labelling)

We reduced the conjecture to:

Conjecture (Mühle & R, 2015)

Same hypotheses

Then for any generator a in A_g (excepted the \prec -smallest one), there exists another generator b in A_g such that

- $b \prec a$ in the compatible order;
- *b* and a have a common cover in [e, g]_A.

Conjecture (Mühle & R, 2015)
Let G, A, g be as before. Suppose

there exists a g-compatible order on A_g;
any interval of [e, g]_A is chain-connected.

Then [e, g]_A is EL-shellable.
(and the labelling by generators, ordered by ≺, is an EL-labelling)

We reduced the conjecture to:

```
Conjecture (Mühle & R, 2015)
```

Same hypotheses.

Then for any generator a in A_g (excepted the \prec -smallest one), there exists another generator b in A_g such that

- *b* ≺ *a* in the compatible order;
- b and a have a common cover in $[e,g]_A$.

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - **١**...
- Lattice property? (holds for reflection groups)
- Cyclic action on Red_A(g) (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

Thank you!

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - ▶ ...

• Lattice property? (holds for reflection groups)

 Cyclic action on Red_A(g) (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

Thank you!

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - Þ ...
- Lattice property? (holds for reflection groups)
- Cyclic action on Red_A(g) (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

Thank you!

- Applications to specific groups:
 - complex reflection groups (need to construct uniformly a compatible order!);
 - (generalized) alternating groups;
 - (generalized) braid groups
 - $GL_n(\mathbb{F}_q)$ [Huang-Lewis-Reiner]
 - Þ ...
- Lattice property? (holds for reflection groups)
- Cyclic action on Red_A(g) (by conjugation): is there a cyclic sieving phenomenon for certain classes of posets?

Thank you!