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Generated group and reduced decompositions

(G ,A) generated group

A ⊆ G generates G as a monoid

Let g ∈ G . Write g = a1a2 . . . an, with ai ∈ A.
Length of g : `A(g) := minimal such n.

Reduced decompositions of g

RedA(g) := {(a1, . . . , an) | ai ∈ A, g = a1 . . . an}, where n = `A(g).

Example. G = S4 A = T := {all transpositions (i j)}.

g = (1 2 3 4) `T (g) = 3 Reduced decompositions of g :

g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)
= (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)
= (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)
= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

Vivien Ripoll Factorisations, Hurwitz action and shellability



Generated group and reduced decompositions

(G ,A) generated group

A ⊆ G generates G as a monoid

Let g ∈ G . Write g = a1a2 . . . an, with ai ∈ A.
Length of g : `A(g) := minimal such n.

Reduced decompositions of g

RedA(g) := {(a1, . . . , an) | ai ∈ A, g = a1 . . . an}, where n = `A(g).

Example. G = S4 A = T := {all transpositions (i j)}.

g = (1 2 3 4) `T (g) = 3 Reduced decompositions of g :

g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)
= (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)
= (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)
= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

Vivien Ripoll Factorisations, Hurwitz action and shellability



Generated group and reduced decompositions

(G ,A) generated group

A ⊆ G generates G as a monoid

Let g ∈ G . Write g = a1a2 . . . an, with ai ∈ A.
Length of g : `A(g) := minimal such n.

Reduced decompositions of g

RedA(g) := {(a1, . . . , an) | ai ∈ A, g = a1 . . . an}, where n = `A(g).

Example. G = S4 A = T := {all transpositions (i j)}.

g = (1 2 3 4) `T (g) = 3 Reduced decompositions of g :

g = (12)(23)(34) = (23)(13)(34) = (13)(12)(34) = (13)(34)(12)
= (14)(13)(12) = (34)(14)(12) = (34)(12)(24) = (34)(24)(14)
= (24)(23)(14) = (23)(34)(14) = (23)(14)(13) = (12)(34)(24)
= (12)(24)(23) = (24)(14)(23) = (14)(12)(23) = (14)(23)(13)

Vivien Ripoll Factorisations, Hurwitz action and shellability



Hurwitz action

Hurwitz moves

Fix g ∈ G . Take (a1, . . . , an) ∈ RedA(g). For 1 ≤ i ≤ n − 1 define:

σi · (a1, . . . , ai−1, ai , ai+1 , ai+2, . . . , an)

= (a1, . . . , ai−1, aiai+1a−1i , ai , ai+2, . . . , an)

Assumption: For any (a1, . . . , an) ∈ RedA(g) and any 1 ≤ i ≤ n − 1,
aiai+1a−1i and a−1i+1aiai+1 ∈ A. (e.g., A stable by conjugacy)

This defines an action on RedA(g) by the braid group Bn [Hurwitz action].

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i − j | > 1〉grp

; General Question 1: Is the Hurwitz action transitive on RedA(g)?
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Example: Hurwitz graph of RedT

(
(1 2 3 4)

)

14|13|12 13|34|12

34|14|12

34|12|24

34|24|14

24|23|14 23|34|14

23|14|13

23|13|3413|12|34

12|23|34

12|34|24

12|24|23

24|14|2314|12|23

14|23|13



The prefix poset

Prefix order

Equip G with a partial order ≤A:
x ≤A y ⇔ x is a prefix of a reduced decomposition of y

⇔ `A(x) + `A(x−1y) = `A(y)

Prefix poset of g

[e, g ]A := {x ∈ G | x ≤A g}

[e, g ]A is a graded poset (by `A);

Hasse diagram of the poset [e, g ]A corresponds to geodesics from e
to g in the Cayley graph of (G ,A);

for x , y ∈ [e, g ]A: x ≤A y if and only if a reduced decomposition of x
is a subword of a reduced decomposition of y . [by assumption on
conjugacy-stability]
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Example: [e, (1 2 3 4)]T in (S4,T )

[plain]

e

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)



[e, (1 2 3 4)]T in (S4,T ) ' Noncrossing partitions

[plain]

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4



Example: [e, (1 2 3 4)]T in (S4,T )

[plain]

e

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (24) (12) (23) (34) (14)

(12)

(34) (23) (14)(23)
(24)

(34)

(13)

(34)
(14)

(24)

(14)

(12)(13) (12)

(23)

(34) (14) (12) (23) (24) (13)

Notes: {maximal chains of [e, g ]A} ←→ RedA(g)

∀x ≤A y , [x , y ]A ' [e, x−1y ]A



Shellability

Definition

A graded poset P is EL-shellable if there exists a labelling of the edges (by
a totally ordered set) such that for any interval I ⊆ P:

there is a unique increasingly labelled maximal chain of I

this is the lexicographically smallest among all maximal chains.

P EL-shellable ⇒ P shellable [Björner-Wachs]
⇒ nice topology: the order complex is homotopy-equivalent to a wedge of
spheres, ...

Definition

A graded poset P is shellable if its order complex is shellable, i.e.:
there is a total order on the maximal chains C1 ≺ · · · ≺ Cr such that
∀i < j , ∃k < j with Ci ∩ Cj ⊆ Ck ∩ Cj , and the chains Ck and Cj differ by
only one element.

; General question 2 : Is [e, g ]A EL-shellable?
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Motivation

W : finite Coxeter group, or well-generated complex reflection group

T : set of all reflections of W

c : Coxeter element of W

W -noncrossing partitions: interval [e, c]T in (W ,≤T ) ; NCW (c)
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Motivation

W : finite Coxeter group, or well-generated complex reflection group

T : set of all reflections of W

c : Coxeter element of W

W -noncrossing partitions: interval [e, c]T in (W ,≤T ) ; NCW (c)

Theorem (Deligne, 1974; Bessis & Corran, 2006; Bessis, 2006)

For any well-generated complex reflection group W , and any Coxeter
element c ∈W , the braid group B`T (c) acts transitively on RedT (c).

Uniform proof only for Coxeter groups!

Crucial property used to construct a nice presentation of W , via its
braid groups and its dual braid monoid [Bessis]
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Motivation

W : finite Coxeter group, or well-generated complex reflection group

T : set of all reflections of W

c : Coxeter element of W

W -noncrossing partitions: interval [e, c]T in (W ,≤T ) ; NCW (c)

Theorem (Björner & Edelman, 1980; Reiner, 1997; Athanasiadis,
Brady & Watt, 2007; Mühle, 2015)

For any well-generated complex reflection group W , and any Coxeter
element c ∈W , the poset NCW (c) is shellable.

Uniform proof only for Coxeter groups! [ABW]
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The Goal

present a general framework to relate

I transitivity of the Hurwitz action on RedA(g) (General Question 1)
I shellability of [e, g ]A (General Question 2)

help answering these questions by checking “simple” local criteria

apply this to interesting examples
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Chain-connectedness

Definition

P graded poset. Define the chain graph of P to be the graph with vertices
the maximal chains of P, and C connected to C ′ whenever they differ by
only one element.
Say P is chain-connected if the chain graph is connected.

Observations:

P shellable ⇒ P chain-connected
Hurwitz-transitivity on RedA(g) ⇒ [e, g ]A chain-connected

Proposition

Assume

[e, g ]A is chain-connected; and

for all x ∈ [e, g ]A, with `A(x) = 2, the Hurwitz action of B2 on
RedA(x) is transitive (local Hurwitz transitivity)

Then the Hurwitz action is transitive on RedA(g).
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Hurwitz action on the maximal chains

Hurwitz action corresponds to “taking detours”

x = a1 · · · ai−2ai−1aiai+1 · · · an

e

a1

a1a2

a1 · · · ai−2

a1 · · · ai−2ai−1

a1 · · · ai−2ai−1ai

x
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Hurwitz action on the maximal chains

Hurwitz action corresponds to “taking detours”

x = a1 · · · ai−2ai (a−1
i ai−1ai )ai+1 · · · an

e

a1

a1a2

a1 · · · ai−2

a1 · · · ai−2ai−1 a1 · · · ai−2ai

a1 · · · ai−2ai−1ai

x
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Compatible generator orders

G ,A, g as before

assume from now on that RedA(g) is finite

Ag := {a ∈ A | a ≤A g} generators below g .

Definition (Mühle & R, 2015)

A total order ≺ on Ag is g -compatible if for any x ≤A g with `A(x) = 2,
there exists a unique (s, t) ∈ RedA(x) with s � t.

inspired by definition of c-compatible reflection order for Coxeter
groups [Athanasiadis, Brady & Watt, 2007], but forgetting the
geometry;

gives EL-shellability in rank 2.
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Example: [e, (1 2 3 4)]T in (S4,T )

[plain]

e

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (24) (12) (23) (34) (14)

(12)

(34) (23) (14)(23)
(24)

(34)

(13)

(34)
(14)

(24)

(14)

(12)(13) (12)

(23)

(34) (14) (12) (23) (24) (13)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
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(1 2 3 4)

(13) (34) (14)

(34)
(14)

(13)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
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(1 2 3 4)
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(24)

(12)
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Example: [e, (1 2 3 4)]T in (S4,T )

[plain]
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(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(23) (14)

(14)

(23)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
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Compatible orders and Hurwitz transitivity

Proposition (Rank 2 case)

Suppose `A(g) = 2. Then:

∃ a g-compatible order on Ag ⇐⇒ the Hurwitz action of B2 on
RedA(g) is transitive.

Corollary (arbitrary rank)

∃ a g-compatible order on Ag =⇒ local Hurwitz transitivity
(i.e., for all x ∈ [e, g ]A with `A(x) = 2, the Hurwitz action of B2 on
RedA(x) is transitive).

the converse is false.

Consequence of corollary:
∃ compatible order + chain-connectedness ⇒ Hurwitz transitivity.

Note: ∃ compatible order ; Hurwitz transitivity.
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In rank 2, any Hurwitz orbit has the form
g = a1a2 = a2a3 = · · · = as−1as = asa1.
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Compatible orders and shellability

∃ a g -compatible order on Ag
?

=⇒ [e, g ]A shellable ? No!

Take G =
〈
r , s, t, u, v ,w | commutations, rst = uvw

〉
grp

e

r s t u v w

rs rt st uv uw vw

rst
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Compatible orders and shellability

Conjecture (Mühle & R, 2015)

Let G , A, g be as before. Suppose

there exists a g-compatible order on Ag ;

any interval of [e, g ]A is chain-connected.

Then [e, g ]A is EL-shellable.
(and the labelling by generators, ordered by ≺, is an EL-labelling)

We reduced the conjecture to:

Conjecture (Mühle & R, 2015)

Same hypotheses.
Then for any generator a in Ag (excepted the ≺-smallest one), there exists
another generator b in Ag such that

b ≺ a in the compatible order;

b and a have a common cover in [e, g ]A.
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Conjecture (Mühle & R, 2015)

Same hypotheses.
Then for any generator a in Ag (excepted the ≺-smallest one), there exists
another generator b in Ag such that
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b and a have a common cover in [e, g ]A.
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Further questions

Applications to specific groups:
I complex reflection groups (need to construct uniformly a compatible

order!);
I (generalized) alternating groups;
I (generalized) braid groups
I GLn(Fq) [Huang-Lewis-Reiner]
I ...

Lattice property? (holds for reflection groups)

Cyclic action on RedA(g) (by conjugation): is there a cyclic sieving
phenomenon for certain classes of posets?

Thank you!
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