On the Intersection of G-Set Colourings

Jan Simon
Lehrstuhl II für Mathematik
RWTH Aachen University

04.04.2016

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

1. Introduction - A problem for starters

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

1. Introduction - A problem for starters

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

1. Introduction - A problem for starters

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

If A is an interval with length at most $n / 2$, i.e. A consists of at most $n / 2$ consecutive elements in $\mathbb{Z} / n \mathbb{Z}$, then the answer is

1. Introduction - A problem for starters

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

If A is an interval with length at most $n / 2$, i.e. A consists of at most $n / 2$ consecutive elements in $\mathbb{Z} / n \mathbb{Z}$, then the answer is

$$
|A|+(|A|-1)+\ldots+1+0+\ldots+0+1+2+\ldots+(|A|-1)
$$

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

If A is an interval with length at most $n / 2$, i.e. A consists of at most $n / 2$ consecutive elements in $\mathbb{Z} / n \mathbb{Z}$, then the answer is

$$
\begin{aligned}
& |A|+(|A|-1)+\ldots+1+0+\ldots+0+1+2+\ldots+(|A|-1) \\
= & \frac{|A|(|A|+1)}{2}+\frac{(|A|-1)|A|}{2}
\end{aligned}
$$

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

If A is an interval with length at most $n / 2$, i.e. A consists of at most $n / 2$ consecutive elements in $\mathbb{Z} / n \mathbb{Z}$, then the answer is

$$
\begin{aligned}
& |A|+(|A|-1)+\ldots+1+0+\ldots+0+1+2+\ldots+(|A|-1) \\
= & \frac{|A|(|A|+1)}{2}+\frac{(|A|-1)|A|}{2} \\
= & |A|^{2} .
\end{aligned}
$$

Problem

If $A \subseteq \mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, what is

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}}|A \cap(i+A)|=?
$$

If A is an interval with length at most $n / 2$, i.e. A consists of at most $n / 2$ consecutive elements in $\mathbb{Z} / n \mathbb{Z}$, then the answer is

$$
\begin{aligned}
& |A|+(|A|-1)+\ldots+1+0+\ldots+0+1+2+\ldots+(|A|-1) \\
= & \frac{|A|(|A|+1)}{2}+\frac{(|A|-1)|A|}{2} \\
= & |A|^{2} .
\end{aligned}
$$

But what if A is not an interval?

1. Introduction - Definitions and notations

- Let G be a finite group and X a finite G-set, i.e. there is a group action

$$
G \times X \longrightarrow X, \quad(g, x) \longmapsto g . x .
$$

1. Introduction - Definitions and notations

- Let G be a finite group and X a finite G-set, i.e. there is a group action

$$
G \times X \longrightarrow X, \quad(g, x) \longmapsto g . x .
$$

- Let F be a set of colours. The elements $c \in F^{X}$ are called colourings of X.
- Let G be a finite group and X a finite G-set, i.e. there is a group action

$$
G \times X \longrightarrow X, \quad(g, x) \longmapsto g . x
$$

- Let F be a set of colours. The elements $c \in F^{X}$ are called colourings of X.
- The set F^{X} is a G-set as well with the induced action

$$
G \times F^{X} \longmapsto F^{X}, \quad(g, c) \longmapsto g . c
$$

where

$$
g . c: X \longrightarrow F, x \longmapsto c\left(g^{-1} \cdot x\right)
$$

- Let G be a finite group and X a finite G-set, i.e. there is a group action

$$
G \times X \longrightarrow X, \quad(g, x) \longmapsto g . x
$$

- Let F be a set of colours. The elements $c \in F^{X}$ are called colourings of X.
- The set F^{X} is a G-set as well with the induced action

$$
G \times F^{X} \longmapsto F^{X}, \quad(g, c) \longmapsto g . c
$$

where

$$
g . c: X \longrightarrow F, x \longmapsto c\left(g^{-1} \cdot x\right)
$$

- There is another induced action on the power set $\mathcal{P}(X)$ of X :

$$
G \times \mathcal{P}(X) \longrightarrow \mathcal{P}(X), \quad(g, A) \longmapsto g \cdot A:=\{g \cdot a \mid a \in A\}
$$

- For $x \in X$ the G-orbit of x is

$$
G . x:=\{g \cdot x \mid g \in G\} \subseteq X
$$

1. Introduction - Definitions and notations

- For $x \in X$ the G-orbit of x is

$$
G . x:=\{g . x \mid g \in G\} \subseteq X
$$

- The set of G-orbits of X is

$$
X / G:=\{G . x \mid x \in X\} \subseteq \mathcal{P}(X)
$$

1. Introduction - Definitions and notations

- For $x \in X$ the G-orbit of x is

$$
G . x:=\{g \cdot x \mid g \in G\} \subseteq X
$$

- The set of G-orbits of X is

$$
X / G:=\{G . x \mid x \in X\} \subseteq \mathcal{P}(X)
$$

- For $x \in X$ the stabilizer of x in G is

$$
G_{x}:=\{g \in G \mid g \cdot x=x\} \leq G .
$$

- For $x \in X$ the G-orbit of x is

$$
G . x:=\{g \cdot x \mid g \in G\} \subseteq X
$$

- The set of G-orbits of X is

$$
X / G:=\{G . x \mid x \in X\} \subseteq \mathcal{P}(X)
$$

- For $x \in X$ the stabilizer of x in G is

$$
G_{x}:=\{g \in G \mid g \cdot x=x\} \leq G .
$$

Orbit-stabilizer relation

$$
|G \cdot x| \cdot\left|G_{x}\right|=|G| \text { for all } x \in X
$$

1. Introduction - Definitions and notations

- As a G-set X is partitioned into orbits:

$$
X=\biguplus_{i=1}^{k} G \cdot x_{i},
$$

where $k:=|X / G|$ and $\left(x_{1}, \ldots, x_{k}\right)$ is a transversal of X / G.

1. Introduction - Definitions and notations

- As a G-set X is partitioned into orbits:

$$
X=\biguplus_{i=1}^{k} G \cdot x_{i}
$$

where $k:=|X / G|$ and $\left(x_{1}, \ldots, x_{k}\right)$ is a transversal of X / G.

- Also X is partitioned into colour classes (for given $c \in F^{X}$):

$$
X=\biguplus_{f \in F} c^{-1}(f)
$$

- As a G-set X is partitioned into orbits:

$$
X=\biguplus_{i=1}^{k} G \cdot x_{i}
$$

where $k:=|X / G|$ and $\left(x_{1}, \ldots, x_{k}\right)$ is a transversal of X / G.

- Also X is partitioned into colour classes (for given $c \in F^{X}$):

$$
X=\biguplus_{f \in F} c^{-1}(f)
$$

- Superimposing yields a refined partition

$$
X=\biguplus_{i=1}^{k} \biguplus_{f \in F} B_{i}^{f}=\biguplus_{f \in F} \biguplus_{i=1}^{k} B_{i}^{f}
$$

with classes

$$
B_{i}^{f}:=G \cdot x_{i} \cap c^{-1}(f) .
$$

- As a G-set X is partitioned into orbits:

$$
X=\biguplus_{i=1}^{k} G \cdot x_{i}
$$

where $k:=|X / G|$ and $\left(x_{1}, \ldots, x_{k}\right)$ is a transversal of X / G.

- Also X is partitioned into colour classes (for given $c \in F^{X}$):

$$
X=\biguplus_{f \in F} c^{-1}(f)
$$

- Superimposing yields a refined partition

$$
X=\biguplus_{i=1}^{k} \biguplus_{f \in F} B_{i}^{f}=\biguplus_{f \in F} \biguplus_{i=1}^{k} B_{i}^{f}
$$

with classes

$$
B_{i}^{f}:=G \cdot x_{i} \cap c^{-1}(f) .
$$

- In case of $B_{i}^{f} \neq \emptyset$ we write $x_{B_{i}^{f}}$ for a representative of B_{i}^{f}.

1. Introduction - Definitions and notations

1. Introduction - Definitions and notations

1. Introduction - Definitions and notations

1. Introduction - Definitions and notations

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G . x_{i} \cap A .
$$

1. Introduction - Definitions and notations

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A .
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- If $m \geq 2$ and $c_{1}, \ldots, c_{m} \in F^{X}$ are colourings then we write

$$
\left|\bigcap_{i=1}^{m} c_{i}\right|:=\left|\left\{x \in X \mid c_{1}(x)=\ldots=c_{m}(x)\right\}\right|
$$

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- If $m \geq 2$ and $c_{1}, \ldots, c_{m} \in F^{X}$ are colourings then we write

$$
\left|\bigcap_{i=1}^{m} c_{i}\right|:=\left|\left\{x \in X \mid c_{1}(x)=\ldots=c_{m}(x)\right\}\right|
$$

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- If $m \geq 2$ and $c_{1}, \ldots, c_{m} \in F^{X}$ are colourings then we write

$$
\left|\bigcap_{i=1}^{m} c_{i}\right|:=\left|\left\{x \in X \mid c_{1}(x)=\ldots=c_{m}(x)\right\}\right|
$$

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A .
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- If $m \geq 2$ and $c_{1}, \ldots, c_{m} \in F^{X}$ are colourings then we write

$$
\left|\bigcap_{i=1}^{m} c_{i}\right|:=\left|\left\{x \in X \mid c_{1}(x)=\ldots=c_{m}(x)\right\}\right|
$$

- Similarly, a subset $A \subseteq X$ is partitioned by superimposing with orbits:

$$
A=\biguplus_{i=1}^{k} A_{i}
$$

with subsets

$$
A_{i}:=G \cdot x_{i} \cap A .
$$

- In case of $A_{i} \neq \emptyset$ we write $x_{A_{i}}$ for a representative of A_{i}.
- If $m \geq 2$ and $c_{1}, \ldots, c_{m} \in F^{X}$ are colourings then we write

$$
\left|\bigcap_{i=1}^{m} c_{i}\right|:=\left|\left\{x \in X \mid c_{1}(x)=\ldots=c_{m}(x)\right\}\right|
$$

2. Main result

2. Main result

Lemma

For all $\left(g_{1}, \ldots, g_{m}\right) \in G^{m}$ we have

$$
\left|\bigcap_{i=1}^{m} g_{i} \cdot C\right|=\sum_{f \in F}\left|\bigcap_{i=1}^{m} g_{i} \cdot\left(c^{-1}(f)\right)\right| .
$$

2. Main result

2. Main result

Theorem (subset version)

Let G be a finite group, X a finite G-set and $A \subseteq X$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right|=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
$$

2. Main result

Theorem (subset version)

Let G be a finite group, X a finite G-set and $A \subseteq X$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right|=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
$$

Theorem (colouring version)
Let G be a finite group, X a finite G-set and $c \in F^{X}$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot C\right|=\sum_{f \in F} \sum_{B_{i}^{f} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G . x_{B_{i}^{f}}\right|^{m-1}} .
$$

2. Main result

Theorem (subset version)

Let G be a finite group, X a finite G-set and $A \subseteq X$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right|=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
$$

Theorem (colouring version)

Let G be a finite group, X a finite G-set and $c \in F^{X}$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right|=\sum_{f \in F} \sum_{B_{i}^{f} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G . x_{B_{i}^{\prime}}\right|^{m-1}} .
$$

Note that the right-most sum is always taken over $i \in\{1, \ldots, k\}$.

2. Main result - Proof of subset version

2. Main result - Proof of subset version

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right|
$$

2. Main result - Proof of subset version

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]
\end{aligned}
$$

2. Main result - Proof of subset version

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right]
\end{aligned}
$$

2. Main result - Proof of subset version

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} . A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h . x \in A]\right)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \left.\left.\frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m} \right\rvert\, x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h \cdot x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G \cdot x}[y \in A]\right)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h \cdot x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G \cdot x}[y \in A]\right)^{m} \\
= & \sum_{x \in X}\left(\frac{\left|G_{x}\right|}{|G|}|G \cdot x \cap A|\right)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
& =\frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
& =\frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h . x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G . x}[y \in A]\right)^{m} \\
& =\sum_{x \in X}\left(\frac{\left|G_{x}\right|}{|G|}|G . x \cap A|\right)^{m} \\
& =\sum_{i=1}^{k} \sum_{x \in G \times x_{i}}\left(\frac{|G \cdot x \cap A|}{|G \cdot x|}\right)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h \cdot x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G \cdot x}[y \in A]\right)^{m} \\
= & \sum_{x \in X}\left(\frac{\left|G G_{x}\right|}{|G|}|G \cdot x \cap A|\right)^{m}=\sum_{i=1}^{k} \sum_{x \in G \cdot x_{i}}\left(\frac{|G \cdot x \cap A|}{|G \cdot x|}\right)^{m} \\
= & \sum_{\substack{i=1 \\
G \cdot x_{i} \cap A \neq \emptyset}}^{k}\left|G \cdot x_{i}\right|\left(\frac{\left|G \cdot x_{i} \cap A\right|}{\left|G \cdot x_{i}\right|}\right)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h \cdot x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G \cdot x}[y \in A]\right)^{m} \\
= & \sum_{x \in X}\left(\frac{\left|G_{x}\right|}{|G|}|G \cdot x \cap A|\right)^{m}=\sum_{i=1}^{k} \sum_{x \in G \cdot x_{i}}\left(\frac{|G \cdot x \cap A|}{|G \cdot x|}\right)^{m} \\
= & \sum_{\substack{i=1 \\
G}}^{k}\left|G \cdot x_{i}\right|\left(\frac{\left|G \cdot x_{i} \cap A\right|}{\left|G \cdot x_{i}\right|}\right)^{m}=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}} \sum_{x \in X} \prod_{i=1}^{m}\left[x \in g_{i} \cdot A\right]=\frac{1}{|G|^{m}} \sum_{x \in X} \sum_{g \in G^{m}} \prod_{i=1}^{m}\left[g_{i}^{-1} \cdot x \in A\right] \\
= & \frac{1}{|G|^{m}} \sum_{x \in X}\left(\sum_{h \in G}[h \cdot x \in A]\right)^{m}=\frac{1}{|G|^{m}} \sum_{x \in X}\left(\left|G_{x}\right| \sum_{y \in G \cdot x}[y \in A]\right)^{m} \\
= & \sum_{x \in X}\left(\frac{\left|G_{x}\right|}{|G|}|G \cdot x \cap A|\right)^{m}=\sum_{i=1}^{k} \sum_{x \in G \cdot x_{i}}\left(\frac{|G \cdot x \cap A|}{|G \cdot x|}\right)^{m} \\
= & \sum_{\substack{i=1 \\
G}}^{k}\left|G \cdot x_{i}\right|\left(\frac{\left|G \cdot x_{i} \cap A\right|}{\left|G \cdot x_{i}\right|}\right)^{m}=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
\end{aligned}
$$

2. Main result

Theorem (subset version)

Let G be a finite group, X a finite G-set and $A \subseteq X$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot A\right|=\sum_{A_{i} \neq \emptyset} \frac{\left|A_{i}\right|^{m}}{\left|G \cdot x_{A_{i}}\right|^{m-1}}
$$

Theorem (colouring version)

Let G be a finite group, X a finite G-set and $c \in F^{X}$. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right|=\sum_{f \in F} \sum_{B_{i}^{f} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G . x_{B_{i}^{\prime}}\right|^{m-1}} .
$$

Note that the right-most sum is always taken over $i \in\{1, \ldots, k\}$.

3. Applications - Self-avoidance of subsets in finite groups

3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of $A \subseteq G$ is

$$
G_{A}:=\{g \in G \mid g \cdot A=A\} \leq G .
$$

3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of $A \subseteq G$ is

$$
G_{A}:=\{g \in G \mid g \cdot A=A\} \leq G .
$$

Let us assume that $A \neq G$. Then $G_{A} \neq G$ and we may define

$$
|A|_{G}:=\max _{g \in G \backslash G_{A}}|A \cap g . A|<|A| .
$$

3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of $A \subseteq G$ is

$$
G_{A}:=\{g \in G \mid g \cdot A=A\} \leq G .
$$

Let us assume that $A \neq G$. Then $G_{A} \neq G$ and we may define

$$
|A|_{G}:=\max _{g \in G \backslash G_{A}}|A \cap g . A|<|A| .
$$

Proposition

Let G be a finite group, $A \subsetneq G$ a proper subset and $I \in \mathbb{N}$ with $I \leq|A|$ such that

$$
\frac{(|A|-1)^{I-1}}{\left(|A|_{G}-1\right)^{I-1}} \geq \frac{|A|}{\left|G_{A}\right|} .
$$

Then A has an l-element subset B with $g . B \nsubseteq A$ for all $g \in G \backslash G_{A}$.

3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of $A \subseteq G$ is

$$
G_{A}:=\{g \in G \mid g \cdot A=A\} \leq G .
$$

Let us assume that $A \neq G$. Then $G_{A} \neq G$ and we may define

$$
|A|_{G}:=\max _{g \in G \backslash G_{A}}|A \cap g . A|<|A| .
$$

Proposition

Let G be a finite group, $A \subsetneq G$ a proper subset and $I \in \mathbb{N}$ with $I \leq|A|$ such that

$$
\frac{(|A|-1)^{I-1}}{\left(|A|_{G}-1\right)^{I-1}} \geq \frac{|A|}{\left|G_{A}\right|} .
$$

Then A has an l-element subset B with $g . B \nsubseteq A$ for all $g \in G \backslash G_{A}$.
For example, if $|A|=100,|A|_{G}=85$ and $\left|G_{A}\right|=2$ then the actual movement of A by means of $G \backslash G_{A}$ is already reflected in a subset $B \subseteq A$ with at most $I=23$ elements.

3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of $A \subseteq G$ is

$$
G_{A}:=\{g \in G \mid g \cdot A=A\} \leq G .
$$

Let us assume that $A \neq G$. Then $G_{A} \neq G$ and we may define

$$
|A|_{G}:=\max _{g \in G \backslash G_{A}}|A \cap g . A|<|A| .
$$

Proposition

Let G be a finite group, $A \subsetneq G$ a proper subset and $I \in \mathbb{N}$ with $I \leq|A|$ such that

$$
\frac{(|A|-1)^{I-1}}{\left(|A|_{G}-1\right)^{I-1}} \geq \frac{|A|}{\left|G_{A}\right|} .
$$

Then A has an l-element subset B with $g . B \nsubseteq A$ for all $g \in G \backslash G_{A}$.
For example, if $|A|=100,|A|_{G}=85$ and $\left|G_{A}\right|=2$ then the actual movement of A by means of $G \backslash G_{A}$ is already reflected in a subset $B \subseteq A$ with at most $I=23$ elements. (If $\left|G_{A}\right|=1$ then $I=26$ works.)
2. Main result - Injective colourings

2. Main result - Injective colourings

If $c \in F^{X}$ is injective (i.e. all colour classes are one-element sets) then we may use our theorem (colouring version) to deduce

2. Main result - Injective colourings

If $c \in F^{X}$ is injective (i.e. all colour classes are one-element sets) then we may use our theorem (colouring version) to deduce

A generalization of Burnside's lemma

Let G be a finite group and X a finite G-set. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right|=\sum_{B \in X / G}|B|^{2-m} .
$$

2. Main result - Injective colourings

If $c \in F^{X}$ is injective (i.e. all colour classes are one-element sets) then we may use our theorem (colouring version) to deduce

A generalization of Burnside's lemma

Let G be a finite group and X a finite G-set. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right|=\sum_{B \in X / G}|B|^{2-m}
$$

This is precisely Burnside's lemma if we choose $m=2$:

2. Main result - Injective colourings

If $c \in F^{X}$ is injective (i.e. all colour classes are one-element sets) then we may use our theorem (colouring version) to deduce

A generalization of Burnside's lemma

Let G be a finite group and X a finite G-set. Then

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right|=\sum_{B \in X / G}|B|^{2-m}
$$

This is precisely Burnside's lemma if we choose $m=2$:

Burnside's lemma (also Cauchy-Frobenius lemma)

Let G be a finite group and X a finite G-set. Then

$$
\frac{1}{|G|} \sum_{g \in G}|\underbrace{\{x \in X \mid g \cdot x=x\}}_{=: f i x(g)}|=|X / G| .
$$

2. Main result - Injective colourings - Proof

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right|
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|=\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right|
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|=\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right|
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|=\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right|
\end{aligned}=\sum_{f \in F} \sum_{B_{i}^{f} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G \cdot x_{B_{i}^{f}}\right|^{m-1}}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|=\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right| \\
= & \sum_{f \in c(X)} \frac{1}{\left|G \cdot x_{f}\right|^{m-1}}
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|= \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right| \\
= & \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
f \in c(X) & \sum_{f \in F} \frac{1}{\left|G \cdot x_{f}\right|^{m-1}} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G \cdot x_{B_{i}^{f}}\right|^{m-1}} \\
& =\sum_{x \in X}|G \cdot x|^{1-m}
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| \\
& =\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right|=\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
& =\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right| \\
& =\sum_{f \in c(X)} \frac{1}{\left|G \cdot x_{f}\right|^{m-1}} \\
& =\sum_{B \in X / G} \sum_{x \in B}|G \cdot x|^{1-m} \\
& =\sum_{f \in F} \sum_{B_{i}^{f} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left|G \cdot x_{B_{i}^{f}}\right|^{m-1}} \\
& =\sum_{x \in X}|G \cdot x|^{1-m}
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| & \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right| & =\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right| & =\sum_{f \in F} \sum_{B_{i} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left.\left|G \cdot x_{B}\right|^{f}\right|^{m-1}} \\
= & \sum_{f \in c(X)} \frac{1}{\left|G \cdot x_{f}\right|^{m-1}} & =\sum_{x \in X}|G \cdot x|^{1-m} \\
= & \sum_{B \in X / G} \sum_{x \in B}|G \cdot x|^{1-m} & =\sum_{B \in X / G}|B|^{2-m} .
\end{aligned}
$$

2. Main result - Injective colourings - Proof

We write $c^{-1}(f)=:\left\{x_{f}\right\}$ for each $f \in c(X)$ (thus $c\left(x_{f}\right)=f$) and apply the colouring version of our theorem to get

$$
\begin{aligned}
& \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid g_{1} \cdot x=\ldots=g_{m} \cdot x\right\}\right| & \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\left\{x \in X \mid c\left(g_{1} \cdot x\right)=\ldots=c\left(g_{m} \cdot x\right)\right\}\right| & =\frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i}^{-1} \cdot c\right| \\
= & \frac{1}{|G|^{m}} \sum_{g \in G^{m}}\left|\bigcap_{i=1}^{m} g_{i} \cdot c\right| & =\sum_{f \in F} \sum_{B_{i} \neq \emptyset} \frac{\left|B_{i}^{f}\right|^{m}}{\left.\left|G \cdot x_{B}\right|^{f}\right|^{m-1}} \\
= & \sum_{f \in c(X)} \frac{1}{\left|G \cdot x_{f}\right|^{m-1}} & =\sum_{x \in X}|G \cdot x|^{1-m} \\
= & \sum_{B \in X / G} \sum_{x \in B}|G \cdot x|^{1-m} & =\sum_{B \in X / G}|B|^{2-m} .
\end{aligned}
$$

2. Main result - Injective colourings

2. Main result - Injective colourings

For the number of orbits of size d on X we write

$$
n_{d}:=|\{B \in X / G| | B \mid=d\}|,
$$

where d is a divisor of $|G|$.

2. Main result - Injective colourings

For the number of orbits of size d on X we write

$$
n_{d}:=|\{B \in X / G| | B \mid=d\}|,
$$

where d is a divisor of $|G|$.
A generalization of Burnside's lemma (alternative formulation)
Let G be a finite group and X a finite G-set. Then

$$
\sum_{d| | G \mid} n_{d} d^{2-m}=\underbrace{\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right|}_{=: \operatorname{Fix}(G, m)}
$$

3. Applications - On a theorem by Jordan

3. Applications - On a theorem by Jordan

Theorem (Jordan, 1872)
Let G be a finite group and X a finite transitive G-set with $|X|>1$. Then there is some $g \in G$ with $\operatorname{fix}(g)=\emptyset$.

Theorem (Jordan, 1872)
Let G be a finite group and X a finite transitive G-set with $|X|>1$. Then there is some $g \in G$ with $\operatorname{fix}(g)=\emptyset$.

Generalization

Let G be a finite group and X a finite G-set with $|X|>1$. If

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} \leq 1
$$

then there is some $g \in G^{m-1}$ with $\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)=\emptyset$.

Theorem (Jordan, 1872)
Let G be a finite group and X a finite transitive G-set with $|X|>1$. Then there is some $g \in G$ with $\operatorname{fix}(g)=\emptyset$.

Generalization

Let G be a finite group and X a finite G-set with $|X|>1$. If

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} \leq 1
$$

then there is some $g \in G^{m-1}$ with $\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)=\emptyset$.

Theorem (Jordan, 1872)

Let G be a finite group and X a finite transitive G-set with $|X|>1$. Then there is some $g \in G$ with $\operatorname{fix}(g)=\emptyset$.

Generalization

Let G be a finite group and X a finite G-set with $|X|>1$. If

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} \leq 1
$$

then there is some $g \in G^{m-1}$ with $\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)=\emptyset$.

This is precisely Jordan's theorem if we choose $m=2$.
3. Applications - On a theorem by Jordan - Proof

3. Applications - On a theorem by Jordan - Proof

Let us assume that

$$
|X|>1 \text { and fix }\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right) \neq \emptyset \text { for all } g \in G^{m-1}
$$

Let us assume that

$$
|X|>1 \text { and fix }\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right) \neq \emptyset \text { for all } g \in G^{m-1}
$$

Then our generalization of Burnside's lemma (in its alternative formulation) tells us that

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}}=\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right|
$$

Let us assume that

$$
|X|>1 \text { and fix }\left(g_{1}\right) \cap \ldots \cap \text { fix }\left(g_{m-1}\right) \neq \emptyset \text { for all } g \in G^{m-1}
$$

Then our generalization of Burnside's lemma (in its alternative formulation) tells us that

$$
\begin{aligned}
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} & =\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right| \\
& \geq \frac{1}{|G|^{m-1}}\left(|X|+|G|^{m-1}-1\right)
\end{aligned}
$$

Let us assume that

$$
|X|>1 \text { and fix }\left(g_{1}\right) \cap \ldots \cap \text { fix }\left(g_{m-1}\right) \neq \emptyset \text { for all } g \in G^{m-1}
$$

Then our generalization of Burnside's lemma (in its alternative formulation) tells us that

$$
\begin{aligned}
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} & =\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right| \\
& \geq \frac{1}{|G|^{m-1}}\left(|X|+|G|^{m-1}-1\right)
\end{aligned}
$$

Thus,

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} \geq 1+\frac{|X|-1}{|G|^{m-1}}>1
$$

contradicting our assumption.

Let us assume that

$$
|X|>1 \text { and fix }\left(g_{1}\right) \cap \ldots \cap \text { fix }\left(g_{m-1}\right) \neq \emptyset \text { for all } g \in G^{m-1}
$$

Then our generalization of Burnside's lemma (in its alternative formulation) tells us that

$$
\begin{aligned}
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} & =\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right| \\
& \geq \frac{1}{|G|^{m-1}}\left(|X|+|G|^{m-1}-1\right)
\end{aligned}
$$

Thus,

$$
\sum_{d| | G \mid} \frac{n_{d}}{d^{m-2}} \geq 1+\frac{|X|-1}{|G|^{m-1}}>1
$$

contradicting our assumption.

3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan's original theorem has been extended. For example:

Since 1872, the mere existence statement of Jordan's original theorem has been extended. For example:

Cameron, Cohen (1992)

If G is a finite group and X a finite transitive G-set then

$$
\frac{|\{g \in G \mid \operatorname{fix}(g)=\emptyset\}|}{|G|} \geq \frac{1}{|X|}
$$

3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan's original theorem has been extended. For example:

Cameron, Cohen (1992)

If G is a finite group and X a finite transitive G-set then

$$
\frac{|\{g \in G \mid \operatorname{fix}(g)=\emptyset\}|}{|G|} \geq \frac{1}{|X|} .
$$

In 2003, Serre wrote an article on applications of Jordan's,
Cameron's and Cohen's results to number theory and topology.

3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan's original theorem has been extended. For example:

Cameron, Cohen (1992)

If G is a finite group and X a finite transitive G-set then

$$
\frac{|\{g \in G \mid \operatorname{fix}(g)=\emptyset\}|}{|G|} \geq \frac{1}{|X|} .
$$

In 2003, Serre wrote an article on applications of Jordan's, Cameron's and Cohen's results to number theory and topology. However, all these advances still correspond to the transitive case (i.e. to $m=2$ in our context).

3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan's original theorem has been extended. For example:

Cameron, Cohen (1992)

If G is a finite group and X a finite transitive G-set then

$$
\frac{|\{g \in G \mid \operatorname{fix}(g)=\emptyset\}|}{|G|} \geq \frac{1}{|X|} .
$$

In 2003, Serre wrote an article on applications of Jordan's,
Cameron's and Cohen's results to number theory and topology. However, all these advances still correspond to the transitive case (i.e. to $m=2$ in our context).

Task: Generalize the results by Cameron, Cohen and Serre to the non-transitive case!

3. Applications - Refined enumeration of necklaces

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations.

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{n} \sum_{i=0}^{n-1} \operatorname{fix}(i)
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{n} \sum_{i=0}^{n-1} \mathrm{fix}(i)=\frac{1}{n} \sum_{i=0}^{n-1} a^{\operatorname{gcd}(i, n)}
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
\begin{aligned}
|X / G| & =\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{n} \sum_{i=0}^{n-1} \operatorname{fix}(i)=\frac{1}{n} \sum_{i=0}^{n-1} a^{\operatorname{gcd}(i, n)} \\
& =\frac{1}{n} \sum_{d \mid n} a^{d}|\{i \in\{1, \ldots, n\} \mid \operatorname{gcd}(i, n)=d\}|
\end{aligned}
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
\begin{aligned}
|X / G| & =\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)=\frac{1}{n} \sum_{i=0}^{n-1} \operatorname{fix}(i)=\frac{1}{n} \sum_{i=0}^{n-1} a^{\operatorname{gcd}(i, n)} \\
& =\frac{1}{n} \sum_{d \mid n} a^{d}|\{i \in\{1, \ldots, n\} \mid \operatorname{gcd}(i, n)=d\}|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right) .
\end{aligned}
$$

Let $n, a \in \mathbb{N}$. The necklaces with n beads and a colours are defined as the orbits of $G=\mathbb{Z} / n \mathbb{Z}$ acting on $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$ via cyclic permutations. Their number equals

$$
|X / G|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right)
$$

because by Burnside's lemma

$$
\begin{aligned}
|X / G| & =\frac{1}{|G|} \sum_{g \in G} \mathrm{fix}(g)=\frac{1}{n} \sum_{i=0}^{n-1} \mathrm{fix}(i)=\frac{1}{n} \sum_{i=0}^{n-1} a^{\operatorname{gcd}(i, n)} \\
& =\frac{1}{n} \sum_{d \mid n} a^{d}|\{i \in\{1, \ldots, n\} \mid \operatorname{gcd}(i, n)=d\}|=\frac{1}{n} \sum_{d \mid n} a^{d} \varphi\left(\frac{n}{d}\right) .
\end{aligned}
$$

Let us see if it is possible to refine necklace enumeration using our generalization of Burnside's lemma.

3. Applications - Refined enumeration of necklaces

Generalization of Burnside's lemma

Let G be a finite group and X a finite G-set. Then

$$
\sum_{d| | G \mid} n_{d} d^{2-m}=\underbrace{\frac{1}{|G|^{m-1}} \sum_{g \in G^{m-1}}\left|\operatorname{fix}\left(g_{1}\right) \cap \ldots \cap \operatorname{fix}\left(g_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)}
$$

Generalization of Burnside's lemma
Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)} .
$$

Generalization of Burnside's lemma

Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)}
$$

Strategy: Evaluate $\operatorname{Fix}(G, m)$ for suitable choices of m to obtain a system of linear equations for the variables n_{d}.

Generalization of Burnside's lemma
Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)} .
$$

Generalization of Burnside's lemma
Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\text {Fix }(G, m)} .
$$

$\operatorname{Fix}(G, m)=\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}} a^{\operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)}$

Generalization of Burnside's lemma

Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)} .
$$

$\operatorname{Fix}(G, m)=\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}} a^{\operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)}$

$$
=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{d}\left|\left\{i \in\{1, \ldots, n\}^{m-1} \mid \operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)=d\right\}\right|
$$

Generalization of Burnside's lemma

Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)} .
$$

$\operatorname{Fix}(G, m)=\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}} a^{\operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)}$

$$
=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{d} \underbrace{\left|\left\{i \in\{1, \ldots, n\}^{m-1} \mid \operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)=d\right\}\right|}_{=J_{m-1}\left(\frac{n}{d}\right)}
$$

Generalization of Burnside's lemma

Let $G=\mathbb{Z} / n \mathbb{Z}$ and $X=\{1, \ldots, a\}^{\{0, \ldots, n-1\}}$. Then

$$
\sum_{d \mid n} n_{d} d^{2-m}=\underbrace{\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}}\left|\operatorname{fix}\left(i_{1}\right) \cap \ldots \cap \operatorname{fix}\left(i_{m-1}\right)\right|}_{=\operatorname{Fix}(G, m)}
$$

$\operatorname{Fix}(G, m)=\frac{1}{n^{m-1}} \sum_{i \in\{0, \ldots, n-1\}^{m-1}} a^{\operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)}$

$$
=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{d} \underbrace{\left|\left\{i \in\{1, \ldots, n\}^{m-1} \mid \operatorname{gcd}\left(i_{1}, \ldots, i_{m-1}, n\right)=d\right\}\right|}_{=J_{m-1}\left(\frac{n}{d}\right)}
$$

$$
J_{k}(x):=\left|\left\{r \in\{1, \ldots, x\}^{k} \mid \operatorname{gcd}\left(r_{1}, \ldots, r_{k}, x\right)=1\right\}\right|=x^{k} \prod_{\substack{p \mid x \\ p \text { prime }}}\left(1-\frac{1}{p^{k}}\right)
$$

3. Applications - Refined enumeration of necklaces

3. Applications - Refined enumeration of necklaces

We obtain the following linear equations for the variables n_{d} :
3. Applications - Refined enumeration of necklaces

We obtain the following linear equations for the variables n_{d} :

$$
\sum_{d \mid n} n_{d} d^{2-m}=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\ p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)
$$

We obtain the following linear equations for the variables n_{d} :

$$
\left.\sum_{d \mid n} n_{d} d^{2-m}=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\ p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2
$$

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n}
\end{aligned}
$$

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.
For $m=2$ and $m=3$ the system reads

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.
For $m=2$ and $m=3$ the system reads

$$
n_{1}+n_{2}+\quad n_{5}+\quad n_{10}=5934
$$

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.
For $m=2$ and $m=3$ the system reads

$$
\begin{array}{llllll}
n_{1}+ & n_{2}+ & n_{5}+ & n_{10} & = & 5934 \\
n_{1} & +1 / 2 & n_{2}+1 / 5 & n_{5}+1 / 10 & n_{10} & = \\
6021 / 10
\end{array}
$$

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.
For $m=2$ and $m=3$ the system reads

We obtain the following linear equations for the variables n_{d} :

$$
\begin{aligned}
\sum_{d \mid n} n_{d} d^{2-m} & \left.=\frac{1}{n^{m-1}} \sum_{d \mid n} a^{n / d} d^{m-1} \prod_{\substack{p \mid d \\
p \text { prime }}}\left(1-\frac{1}{p^{m-1}}\right)\right\} m \geq 2 \\
\sum_{d \mid n} n_{d} d & =a^{n} \\
n_{1} & =a
\end{aligned}
$$

If $n=10$ and $a=3$, say, then $\left(n_{1}, n_{2}, n_{5}, n_{10}\right)$ must be determined.
For $m=2$ and $m=3$ the system reads

| $n_{1}+$ | $n_{2}+$ | $n_{5}+$ | n_{10} | $=$ | 5934 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n_{1}+1 / 2$ | n_{2} | $+1 / 5$ | $n_{5}+1 / 10$ | n_{10} | $=$ | $6021 / 10$ |
| $n_{1}+2$ | $n_{2}+5$ | $n_{5}+10$ | n_{10} | $=$ | 59049 | |
| n_{1} | | | | | | |

3. Applications - Refined enumeration of necklaces

3. Applications - Refined enumeration of necklaces

The unique solution is

$$
\left(n_{1}, n_{2}, n_{5}, n_{10}\right)=(3,3,48,5880)
$$

The unique solution is

$$
\left(n_{1}, n_{2}, n_{5}, n_{10}\right)=(3,3,48,5880)
$$

An orbit of length d means a symmetry group of order n / d by the orbit-stabilizer relation.

The unique solution is

$$
\left(n_{1}, n_{2}, n_{5}, n_{10}\right)=(3,3,48,5880)
$$

An orbit of length d means a symmetry group of order n / d by the orbit-stabilizer relation.
For example, we read off that among the $3+3+48+5880=5934$ necklaces on $n=10$ points with up to $a=3$ colours there are precisely 48 which possess a two-element symmetry group.

4. Conclusion remarks

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.
- The proof of the main evaluation formula resembles the proof of Pólya's enumeration theorem.

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.
- The proof of the main evaluation formula resembles the proof of Pólya's enumeration theorem.
- By choosing an injective colouring c we were able to derive a generalization of Burnside's lemma.

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.
- The proof of the main evaluation formula resembles the proof of Pólya's enumeration theorem.
- By choosing an injective colouring c we were able to derive a generalization of Burnside's lemma.
- This in turn enabled us to generalize an old theorem by Jordan.

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.
- The proof of the main evaluation formula resembles the proof of Pólya's enumeration theorem.
- By choosing an injective colouring c we were able to derive a generalization of Burnside's lemma.
- This in turn enabled us to generalize an old theorem by Jordan.
- Further generalizations of the results by Cameron, Cohen and Serre - all based on Jordan's theorem - might be possible.

4. Conclusion remarks

- Evaluating intersection numbers of subsets or colourings of G-sets is a fundamental and interesting task in combinatorial group theory.
- The proof of the main evaluation formula resembles the proof of Pólya's enumeration theorem.
- By choosing an injective colouring c we were able to derive a generalization of Burnside's lemma.
- This in turn enabled us to generalize an old theorem by Jordan.
- Further generalizations of the results by Cameron, Cohen and Serre - all based on Jordan's theorem - might be possible.
- As we have demonstrated, applications of our results are varied. It would be interesting to find even more of them.
- P. J. Cameron, A. M. Cohen, On the number of fixed point free elements in a permutation group. Discrete Mathematics 106/107 (1992), 135-138.
- J-P. Serre. On a theorem of Jordan, Bulletin of the American Mathematical Society 40 (2003), 429-440.

Thank you very much!

