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1. Introduction - A problem for starters

Problem
If A ⊆ Z/nZ, n ∈ N, what is∑

i∈Z/nZ
|A ∩ (i + A)| =?

n=12
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1. Introduction - A problem for starters

Problem
If A ⊆ Z/nZ, n ∈ N, what is∑

i∈Z/nZ
|A ∩ (i + A)| =?

n=12

If A is an interval with length at most n/2, i.e. A
consists of at most n/2 consecutive elements in
Z/nZ, then the answer is

|A|+ (|A| − 1) + ... + 1 + 0 + ... + 0 + 1 + 2 + ... + (|A| − 1)

=
|A|(|A|+ 1)

2 +
(|A| − 1)|A|

2
=|A|2.

But what if A is not an interval?
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1. Introduction - Definitions and notations

Let G be a finite group and X a finite G-set, i.e. there is a
group action

G × X −→ X , (g , x) 7−→ g .x .

Let F be a set of colours. The elements c ∈ F X are called
colourings of X .
The set F X is a G-set as well with the induced action

G × F X 7−→ F X , (g , c) 7−→ g .c

where
g .c : X −→ F , x 7−→ c(g−1.x).

There is another induced action on the power set P(X ) of X :

G × P(X ) −→ P(X ) , (g , A) 7−→ g .A := {g .a|a ∈ A}.
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1. Introduction - Definitions and notations

For x ∈ X the G-orbit of x is

G .x := {g .x |g ∈ G} ⊆ X .

The set of G-orbits of X is

X/G := {G .x |x ∈ X} ⊆ P(X ).

For x ∈ X the stabilizer of x in G is

Gx := {g ∈ G |g .x = x} ≤ G .

Orbit-stabilizer relation

|G .x | · |Gx | = |G | for all x ∈ X .
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1. Introduction - Definitions and notations

As a G-set X is partitioned into orbits:

X =
k⊎

i=1
G .xi ,

where k := |X/G | and (x1, ..., xk) is a transversal of X/G .
Also X is partitioned into colour classes (for given c ∈ F X ):

X =
⊎

f ∈F
c−1(f ).

Superimposing yields a refined partition

X =
k⊎

i=1

⊎
f ∈F

Bf
i =

⊎
f ∈F

k⊎
i=1

Bf
i

with classes
Bf

i := G .xi ∩ c−1(f ).
In case of Bf

i 6= ∅ we write xBf
i

for a representative of Bf
i .
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1. Introduction - Definitions and notations

G .x1

· · ·

G .xi

· · ·

G .xk
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1. Introduction - Definitions and notations

Bf
i

. . .

. . .c−1(f )

G .x1

· · ·

G .xi

· · ·

G .xk
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1. Introduction - Definitions and notations

Similarly, a subset A ⊆ X is partitioned by superimposing with
orbits:

A =
k⊎

i=1
Ai ,

with subsets
Ai := G .xi ∩ A.

In case of Ai 6= ∅ we write xAi for a representative of Ai .

If m ≥ 2 and c1, ..., cm ∈ F X are colourings then we write∣∣∣ m⋂
i=1

ci
∣∣∣ := |{x ∈ X |c1(x) = ... = cm(x)}|.

c1 c2
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2. Main result

Lemma
For all (g1, ..., gm) ∈ Gm we have

∣∣∣ m⋂
i=1

gi .c
∣∣∣ = ∑

f ∈F

∣∣∣ m⋂
i=1

gi .
(
c−1(f )

)∣∣∣.
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2. Main result

Theorem (subset version)
Let G be a finite group, X a finite G-set and A ⊆ X . Then

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .A
∣∣∣ = ∑

Ai 6=∅

|Ai |m

|G .xAi |m−1 .

Theorem (colouring version)
Let G be a finite group, X a finite G-set and c ∈ F X . Then

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .c
∣∣∣ = ∑

f ∈F

∑
Bf

i 6=∅

|Bf
i |m

|G .xBf
i
|m−1 .

Note that the right-most sum is always taken over i ∈ {1, ..., k}.
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2. Main result - Proof of subset version

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .A
∣∣∣

=
1
|G |m

∑
g∈Gm

∑
x∈X

m∏
i=1

[x ∈ gi .A] =
1
|G |m

∑
x∈X

∑
g∈Gm

m∏
i=1

[g−1
i .x ∈ A]

=
1
|G |m

∑
x∈X

(∑
h∈G

[h.x ∈ A]
)m

=
1
|G |m

∑
x∈X

(
|Gx |

∑
y∈G.x

[y ∈ A]
)m

=
∑
x∈X

(
|Gx |
|G | |G .x ∩ A|

)m

=
k∑

i=1

∑
x∈G.xi

(
|G .x ∩ A|
|G .x |

)m

=
k∑

i=1
G.xi∩A6=∅

|G .xi |
(
|G .xi ∩ A|
|G .xi |

)m

=
∑

Ai 6=∅

|Ai |m

|G .xAi |m−1
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2. Main result

Theorem (subset version)
Let G be a finite group, X a finite G-set and A ⊆ X . Then

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .A
∣∣∣ = ∑

Ai 6=∅

|Ai |m

|G .xAi |m−1 .

Theorem (colouring version)
Let G be a finite group, X a finite G-set and c ∈ F X . Then

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .c
∣∣∣ = ∑

f ∈F

∑
Bf

i 6=∅

|Bf
i |m

|G .xBf
i
|m−1 .

Note that the right-most sum is always taken over i ∈ {1, ..., k}.
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3. Applications - Self-avoidance of subsets in finite groups

The set stabilizer of A ⊆ G is

GA := {g ∈ G |g .A = A} ≤ G .

Let us assume that A 6= G . Then GA 6= G and we may define

|A|G := max
g∈G\GA

|A ∩ g .A| < |A|.

Proposition
Let G be a finite group, A ( G a proper subset and l ∈ N with
l ≤ |A| such that

(|A| − 1)l−1

(|A|G − 1)l−1 ≥
|A|
|GA|

.

Then A has an l-element subset B with g .B*A for all g ∈G\GA.

For example, if |A| = 100, |A|G = 85 and |GA| = 2 then the actual
movement of A by means of G \ GA is already reflected in a subset
B⊆A with at most l =23 elements. (If |GA|=1 then l =26 works.)
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2. Main result - Injective colourings

If c ∈ F X is injective (i.e. all colour classes are one-element sets)
then we may use our theorem (colouring version) to deduce

A generalization of Burnside’s lemma
Let G be a finite group and X a finite G-set. Then

1
|G |m

∑
g∈Gm

|{x ∈ X |g1.x = ... = gm.x}| =
∑

B∈X/G
|B|2−m.

This is precisely Burnside’s lemma if we choose m = 2:

Burnside’s lemma (also Cauchy-Frobenius lemma)
Let G be a finite group and X a finite G-set. Then

1
|G |

∑
g∈G
| {x ∈ X |g .x = x}︸ ︷︷ ︸

=:fix(g)

| = |X/G |.
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2. Main result - Injective colourings - Proof

We write c−1(f ) =: {xf } for each f ∈ c(X ) (thus c(xf ) = f ) and
apply the colouring version of our theorem to get

1
|G |m

∑
g∈Gm

|{x ∈ X |g1.x = ... = gm.x}|

=
1
|G |m

∑
g∈Gm
|{x ∈X |c(g1.x)= ...=c(gm.x)}| = 1

|G |m
∑

g∈Gm

∣∣∣ m⋂
i=1

g−1
i .c

∣∣∣
=

1
|G |m

∑
g∈Gm

∣∣∣ m⋂
i=1

gi .c
∣∣∣ =

∑
f ∈F

∑
Bf

i 6=∅

|Bf
i |m

|G .xBf
i
|m−1

=
∑

f ∈c(X)

1
|G .xf |m−1 =

∑
x∈X
|G .x |1−m

=
∑

B∈X/G

∑
x∈B
|G .x |1−m =

∑
B∈X/G

|B|2−m.

�
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2. Main result - Injective colourings

For the number of orbits of size d on X we write

nd := |{B ∈ X/G | |B| = d}|,

where d is a divisor of |G |.

A generalization of Burnside’s lemma (alternative formulation)
Let G be a finite group and X a finite G-set. Then

∑
d | |G|

nd d2−m =
1

|G |m−1

∑
g∈Gm−1

| fix(g1) ∩ ... ∩ fix(gm−1)|︸ ︷︷ ︸
=:Fix(G,m)

.
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3. Applications - On a theorem by Jordan

Theorem (Jordan, 1872)
Let G be a finite group and X a finite transitive G-set with |X |>1.
Then there is some g ∈ G with fix(g) = ∅.

Generalization
Let G be a finite group and X a finite G-set with |X | > 1. If∑

d | |G|

nd
dm−2 ≤ 1

then there is some g ∈ Gm−1 with fix(g1) ∩ ... ∩ fix(gm−1) = ∅.
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3. Applications - On a theorem by Jordan - Proof

Let us assume that

|X | > 1 and fix(g1) ∩ ... ∩ fix(gm−1) 6= ∅ for all g ∈ Gm−1.

Then our generalization of Burnside’s lemma (in its alternative
formulation) tells us that

∑
d | |G|

nd
dm−2 =

1
|G |m−1

∑
g∈Gm−1

| fix(g1) ∩ ... ∩ fix(gm−1)|

≥ 1
|G |m−1

(
|X |+ |G |m−1 − 1

)
.

Thus, ∑
d | |G|

nd
dm−2 ≥ 1 +

|X | − 1
|G |m−1 > 1,

contradicting our assumption.
�
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3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan’s original
theorem has been extended. For example:

Cameron, Cohen (1992)
If G is a finite group and X a finite transitive G-set then

|{g ∈ G | fix(g) = ∅}|
|G | ≥ 1

|X | .

In 2003, Serre wrote an article on applications of Jordan’s,
Cameron’s and Cohen’s results to number theory and topology.
However, all these advances still correspond to the transitive case
(i.e. to m = 2 in our context).

Task: Generalize the results by Cameron, Cohen and Serre to the
non-transitive case!
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3. Applications - Refined enumeration of necklaces

Let n, a ∈ N. The necklaces with n beads and a colours are defined
as the orbits of G = Z/nZ acting on X = {1, ..., a}{0,...,n−1} via
cyclic permutations.Their number equals

|X/G | = 1
n
∑
d |n

adϕ

(n
d

)
,

because by Burnside’s lemma

|X/G | = 1
|G |

∑
g∈G

fix(g) = 1
n

n−1∑
i=0

fix(i) = 1
n

n−1∑
i=0

agcd(i ,n)

=
1
n
∑
d |n

ad |{i ∈ {1, ..., n}| gcd(i , n) = d}| = 1
n
∑
d |n

adϕ

(n
d

)
.

Let us see if it is possible to refine necklace enumeration using our
generalization of Burnside’s lemma.
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3. Applications - Refined enumeration of necklaces

Strategy: Evaluate Fix(G , m) for suitable choices of m to obtain a
system of linear equations for the variables nd .
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3. Applications - Refined enumeration of necklaces

We obtain the following linear equations for the variables nd :

∑
d |n

nd d2−m =
1

nm−1

∑
d |n

an/d dm−1 ∏
p|d

p prime

(
1− 1

pm−1

) }
m ≥ 2

∑
d |n

nd d = an

n1 = a

If n = 10 and a = 3, say, then (n1, n2, n5, n10) must be determined.
For m = 2 and m = 3 the system reads

n1 + n2 + n5 + n10 = 5934
n1 + 1/2 n2 + 1/5 n5 + 1/10 n10 = 6021/10
n1 + 2 n2 + 5 n5 + 10 n10 = 59049
n1 = 3.
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3. Applications - Refined enumeration of necklaces

The unique solution is

(n1, n2, n5, n10) = (3, 3, 48, 5880).

An orbit of length d means a symmetry group of order n/d by the
orbit-stabilizer relation.
For example, we read off that among the 3+ 3+ 48+ 5880 = 5934
necklaces on n = 10 points with up to a = 3 colours there are
precisely 48 which possess a two-element symmetry group.
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4. Conclusion remarks

Evaluating intersection numbers of subsets or colourings of
G-sets is a fundamental and interesting task in combinatorial
group theory.
The proof of the main evaluation formula resembles the proof
of Pólya’s enumeration theorem.
By choosing an injective colouring c we were able to derive a
generalization of Burnside’s lemma.
This in turn enabled us to generalize an old theorem by
Jordan.
Further generalizations of the results by Cameron, Cohen and
Serre - all based on Jordan’s theorem - might be possible.
As we have demonstrated, applications of our results are
varied. It would be interesting to find even more of them.
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