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But what if A is not an interval?
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o Let F be a set of colours. The elements ¢ € FX are called
colourings of X.

@ The set FX is a G-set as well with the induced action
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where
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@ For x € X the G-orbit of x is
Gx :={gx|lge G} CX.
@ The set of G-orbits of X is
X/G:={Gx|x € X} C P(X).
o For x € X the stabilizer of x in G is

Gy :={g€Glgx=x}<G.

Orbit-stabilizer relation

|G.x| - |Gx| = |G| for all x € X.
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where k := |X/G| and (xi, ..., xx) is a transversal of X/G.

@ Also X is partitioned into colour classes (for given ¢ € FX):

X = |+ c7(F).
feF

@ Superimposing yields a refined partition
k k
x= B - o b of
i=1feF fEF i=1
with classes
Bf .= G.x;nc71(f).
@ In case of B,-f # () we write Xpf for a representative of B,f.
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orbits: ;
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2. Main result

For all (g1, ...,8m) € G™ we have

)ﬁg;.c‘ — Z‘ﬁ g,-.(c_l(f))‘.
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For example, if |A| = 100, |A|c = 85 and |Ga| = 2 then the actual
movement of A by means of G\ G is already reflected in a subset
BC A with at most /=23 elements. (If |Ga|=1 then /=26 works.)
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This is precisely Burnside's lemma if we choose m = 2:

Burnside's lemma (also Cauchy-Frobenius lemma)

Let G be a finite group and X a finite G-set. Then
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For the number of orbits of size d on X we write
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2. Main result - Injective colourings

For the number of orbits of size d on X we write
ng == |{B € X/G||B| = d},

where d is a divisor of |G].

A generalization of Burnside's lemma (alternative formulation)

Let G be a finite group and X a finite G-set. Then

—m 1 : ,
Z ngd>=m= G Z | fix(g1) N ... N fix(gm-1)| -

dl|6] geGmt

=:Fix(G,m)
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3. Applications - On a theorem by Jordan

Theorem (Jordan, 1872)

Let G be a finite group and X a finite transitive G-set with | X|>1.
Then there is some g € G with fix(g) = 0.

Generalization
Let G be a finite group and X a finite G-set with |X| > 1. If

> <l

then there is some g € G™~1 with fix(g1) N ... N fix(gm_1) = 0.

This is precisely Jordan's theorem if we choose m = 2.
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3. Applications - On a theorem by Jordan

Since 1872, the mere existence statement of Jordan's original
theorem has been extended. For example:

Cameron, Cohen (1992)

If G is a finite group and X a finite transitive G-set then

{g € Glfix(g) =0} _ T
|G| =X

In 2003, Serre wrote an article on applications of Jordan's,
Cameron’s and Cohen’s results to number theory and topology.
However, all these advances still correspond to the transitive case
(i.e. to m =2 in our context).

Task: Generalize the results by Cameron, Cohen and Serre to the
non-transitive case!
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The necklaces with n beads and a colours are defined

Let n,a € N.
2}H{0n=1) yig

as the orbits of G = Z/nZ acting on X = {1, ...,
cyclic permutations. Their number equals
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because by Burnside's lemma
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3. Applications - Refined enumeration of necklaces

Let n,a € N. The necklaces with n beads and a colours are defined
as the orbits of G = Z/nZ acting on X = {1, ..., a}{%"1} yia
cyclic permutations. Their number equals

1 Jd (N
/6=, S o% (5): |

because by Burnside's lemma

n—1
IX/G| = Zﬁx %Zﬁx( Z ged(7n)

geG i=0 =0
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Let us see if it is possible to refine necklace enumeration using our
generalization of Burnside's lemma.
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3. Applications - Refined enumeration of necklaces
Generalization of Burnside's lemma

Let G be a finite group and X a finite G-set. Then
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3. Applications - Refined enumeration of necklaces
Generalization of Burnside's lemma

Let G =Z/nZ and X = {1,...,a}{%"=1} Then

1
> ngd* "= pre > | fix(i) O ... O fix(im—1)] -
d|n

i€{0,...,n—1}m—1

=Fix(G,m)

Strategy: Evaluate Fix(G, m) for suitable choices of m to obtain a
system of linear equations for the variables ngy.
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3. Applications - Refined enumeration of necklaces
Generalization of Burnside's lemma

Let G =Z/nZ and X = {1,...,a}{%"=1} Then
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3. Applications - Refined enumeration of necklaces

We obtain the following linear equations for the variables ng:

1 1
2—m __ d -1
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p prime
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If n =10 and a = 3, say, then (n1, n2, ns, n1p) must be determined.
For m = 2 and m = 3 the system reads
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3. Applications - Refined enumeration of necklaces

We obtain the following linear equations for the variables ng:

1 1

S ngd?m = — S amdgm1 ] (1 _ pm_l) } m> 2
d|n

d|n pld
p prime
Z nyg d=2a"
d|n
n =a

If n =10 and a = 3, say, then (n1, n2, ns, n1p) must be determined.
For m = 2 and m = 3 the system reads

nm + n + ng + no = 5934
n —+ 1/2 n -+ 1/5 ns + 1/10 no = 6021/10
nn + 2 n + 5 ng 4+ 10 mg = 59049
ny = 3.
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3. Applications - Refined enumeration of necklaces

The unique solution is
(n1, m2, ns, n1o) = (3, 3, 48,5880).

An orbit of length d means a symmetry group of order n/d by the
orbit-stabilizer relation.

For example, we read off that among the 3 4 3 + 48 4 5880 = 5934
necklaces on n = 10 points with up to a = 3 colours there are
precisely 48 which possess a two-element symmetry group.
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@ Evaluating intersection numbers of subsets or colourings of
G-sets is a fundamental and interesting task in combinatorial
group theory.

@ The proof of the main evaluation formula resembles the proof
of Pdlya's enumeration theorem.

@ By choosing an injective colouring ¢ we were able to derive a
generalization of Burnside's lemma.

@ This in turn enabled us to generalize an old theorem by
Jordan.

@ Further generalizations of the results by Cameron, Cohen and
Serre - all based on Jordan's theorem - might be possible.

@ As we have demonstrated, applications of our results are
varied. It would be interesting to find even more of them.

Jan Simon On the Intersection of G-Set Colourings 23 /24



References

e P. J. Cameron, A. M. Cohen, On the number of fixed point

free elements in a permutation group. Discrete Mathematics
106/107 (1992), 135-138.

@ J-P. Serre. On a theorem of Jordan, Bulletin of the American
Mathematical Society 40 (2003), 429-440.

Thank you very much!

Jan Simon On the Intersection of G-Set Colourings 24 /24



