(Affine) generalized associahedra, root systems, and cluster algebras

Salvatore Stella (joint with Nathan Reading)

INdAM - Marie Curie Actions fellow

Dipartimento "G. Castelnuovo" Università di Roma "La Sapienza" Roma, ITALY

stella@mat.uniroma1.it

April 4, 2016

Cluster Algebras [Fomin, Zelevinsky]

- Commutative algebra *A* defined recursively by generators (*cluster variables*) and relations (*exchange relations*).
- The generators are grouped into overlapping *n*-elements sets (*clusters*)

$$X = \{x_1, \dots, x_n\}.$$

Each cluster, together with a skew-symmetrizable matrix (*exchange matrix*) form a *seed*

• The recursion is driven by seed *mutation* from a fixed *initial seed*.

Finite type classification

Cartan companion

$$A(B)_{ij} := egin{cases} 2 & ext{if } i=j \ -|B_{ij}| & ext{otherwise} \end{cases}$$

Theorem [Fomin, Zelevinsky]

A cluster algebra A is of *finite type* (i.e. it has only finitely many cluster variables) if and only if it has a seed (X, B) with A(B) finite type Cartan matrix.

A structural result

Laurent Phenomenon

Any cluster variable x of $\mathcal A$ is a Laurent polynomial in the cluster variables $X=\{x_1,\ldots,x_n\}$ of the initial seed; i.e.

$$x = \frac{p(x_1, \dots, x_n)}{x_1^{d_1} \cdots x_n^{d_n}}$$

Definition

The integer vector $\mathbf{d}_x := (d_1, \ldots, d_n)$ is called the *denominator vector* of x with respect to the initial seed (B, X).

Key observation in the classification theorem

Definition

A seed (B,X) is said to be ${\it acyclic}$ if, up to simultaneous rows and columns permutations, the matrix B is such that

 $B_{ij} \ge 0$ if i < j (equivalently $B_{ij} \le 0$ if i > j).

Proposition

When the initial seed is acyclic and \mathcal{A} is of finite type, the cluster variables of \mathcal{A} are in bijection with the *almost positive roots* $\Phi_{\geq -1}$ in the root system Φ associated to A(B).

$$x = \frac{p(x_1, \dots, x_n)}{x_1^{d_1} \cdots x_n^{d_n}} \longmapsto \sum d_i \alpha_i$$

Compatibility degree (in finite type)

Euler matrices

$$E_{ij}^{-} := \begin{cases} 1 & \text{if } i = j \\ \min\{B_{ij}, 0\} & \text{otherwise} \end{cases}$$

$$E_{ij}^+ := egin{cases} 1 & ext{if } i=j \ \min\{-B_{ij},0\} & ext{otherwise} \end{cases}$$

Compatibility degree on $\Phi_{\geq -1}$

$$(\alpha ||\beta) := \begin{cases} \alpha \cdot \beta & \text{if either one of } \alpha \text{ and } \beta \text{ is a negative root} \\ -\min\left\{ \alpha E^{-}\beta, \ \alpha E^{+}\beta \right\} & \text{otherwise} \end{cases}$$

Proposition

Two cluster variables x and y belong to the same cluster of \mathcal{A} if and only if

$$(\mathbf{d}_x || \mathbf{d}_y) = 0.$$

The roots \mathbf{d}_x and \mathbf{d}_y are said to be *compatible*.

Cluster fans and generalized associahedra

Cluster fan Let ${\mathcal F}$ denote the collection of cones

$$\mathcal{F} := \bigcup_C \mathbb{R}_+ C$$

where ${\boldsymbol C}$ runs over all possible sets of pairwise compatible almost positive roots.

Theorem

- Each maximal (by inclusion) set of pairwaise compatible almost positive roots is a $\mathbb{Z}\text{-}\mathsf{basis}$ of the root lattice.
- \mathcal{F} is a complete simplicial fan normal to a polytope (the generalized associahedron).

In particular each point in the root lattice admits a unique *cluster expansion* and exchange relations have an interpretation in terms of linear dependencies.

Few names

Ceballos, Chapoton, Fomin, Hohlweg, Lange, Pilaud, Reading, Speyer, S., Thomas, Zelevinsky \ldots

Definition

A cluster algebra \mathcal{A} is said to be of *affine type* if it is not of finite type and it has a seed (B, X) such that A(B) is an affine type cartan matrix.

Goal

Extend the cluster fan construction to the affine case. We need to take care of two main questions before proving theorems:

- Which is the right notion of almost positive roots?
- How does one define compatibility degree in the affine case?

c-orbits: the finite type case

Let $c = s_1 \dots s_n$ be a *Coxeter element* in a finite type Weyl group with root system Φ .

Theorem

- Under the action of c the root system Φ decomposes into n distinct orbits Ω_i each containing h roots.
- There are precisely n positive roots ψ_i^+ such that $c^{-1}\left(\psi_i^+\right)$ is a negative root and precisely n positive roots ψ_i^- such that $c\left(\psi_i^-\right)$ is a negative root. Namely

$$\psi_i^+ := s_1 \dots s_{i-1} \alpha_i \qquad \psi_i^- := s_n \dots s_{i+1} \alpha_i$$

The orbit Ω_i is of the form

$$\psi_i^+ \xrightarrow{c} \cdots \xrightarrow{c} \psi_{i^*}^- \xrightarrow{c} -\psi_{i^*}^+ \xrightarrow{c} \cdots \xrightarrow{c} -\psi_i^- \xrightarrow{c} \psi_i^+$$

c-orbits: the affine type case

Let $c = s_1 \dots s_n$ be a *Coxeter element* in an affine Weyl group with root system Φ .

Theorem [Reading, S.]

Under the action of c, the root system Φ decomposes into 2n infinite orbits and, if n > 2, infinitely many c-orbits of finite length.

• There are *n* infinite orbits Ω_i^+ of the form

$$\cdots \xrightarrow{c} -\psi_i^- \xrightarrow{c} \psi_i^+ \xrightarrow{c} \ldots$$

and n infinite orbits Ω_i^- of the form

$$\cdots \xrightarrow{c} \psi_i^- \xrightarrow{c} -\psi_i^+ \xrightarrow{c} \ldots$$

• There are n-2 positive roots β_i (with $\beta - \delta$ negative) such that the roots

$$\psi_j^0 := s_{\beta_1} \dots s_{\beta_{j-1}} \beta_j$$

are all in distinct finite orbits Ω_i^0 and any other finite orbit is of the form

$$\Omega_j^k := \left\{ \gamma + k\delta \mid \gamma \in \Omega_j^0 \right\}$$

for some $k \in \mathbb{Z}$.

Pick the exchage matrix

$$B = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ -2 & 0 & 2 \\ 0 & -1 & 0 \end{array}\right)$$

So that the labeling on the corresponding Dynkin diagram is

The representatives of the infinite orbits are

$$\begin{array}{ll} \psi_1^- = \alpha_1 + 2\alpha_2 + 2\alpha_3 & \psi_1^+ = \alpha_1 \\ \psi_2^- = \alpha_2 + \alpha_3 & \psi_2^+ = \alpha_1 + \alpha_2 \\ \psi_3^- = \alpha_3 & \psi_3^+ = 2\alpha_1 + 2\alpha_2 + \alpha_3 \end{array}$$

For the finite orbits set

$$\psi_1^0 = \alpha_2$$

so that Ω_1^0 is

$$\alpha_2 \xrightarrow{c} \alpha_1 + \alpha_2 + \alpha_3 \xrightarrow{c} \alpha_2$$

· · ·

· · · · · · ·

· · · · · ·

• • •

• ٠ ٠ ٠ •

· · ·

Example $C_2^{(1)}$

Almost positive Schur roots in affine type

Definition

Let B be any acyclic affine exchange matrix. The *almost positive Schur roots* associated to B are

$$\Phi_B := \left(\Phi_+ \setminus \bigcup_{k \neq 0} \Omega_j^k \right) \cup \left\{ -\alpha_i \mid 1 \le i \le n \right\}$$

Proposition

The cluster variables of the cluster algebra having (B, X) as initial seed are in bijection with the roots in Φ_B . The bijection associates to each cluster variable its d-vector.

$$x = \frac{p(x_1, \dots, x_n)}{x_1^{d_1} \cdots x_n^{d_n}} \longmapsto \sum d_i \alpha_i$$

Example $C_2^{(1)}$

. .

Compatibility degree in affine type

Let \boldsymbol{U} be the cone

$$U := \mathbb{R}_+ \left(\bigcup_{j=1}^{n-2} \Omega_j^0 \right).$$

Note that U has dimension n-1 and is not necessarily a simplicial cone; moreover $\Phi_B\cap \mathring{U}=\emptyset.$

Compatibility degree on Φ_B

$$(\alpha ||\beta) := \begin{cases} \alpha \cdot \beta & \text{if either one of } \alpha \text{ and } \beta \text{ is a negative root} \\ \operatorname{adj}(\alpha, \beta) & \text{if } \{\alpha, \beta\} \subset U \text{ and } \alpha + \beta \in \mathring{U} \\ -\min\left\{ \alpha E^{-}\beta, \ \alpha E^{+}\beta \right\} & \text{otherwise} \end{cases}$$

As before, two almost positive Shur roots α , and β are said to be *compatible* if

 $(\alpha || \beta) = 0$

Let B be any acyclic exchange matrix of affine type and define ${\mathcal F}$ as before.

Theorem [Reading, S.]

- Each maximal (by inclusion) set of pairwaise compatible almost positive Schur roots is a $\mathbb Z\text{-}\mathsf{basis}$ of the root lattice.
- + ${\cal F}$ is a simplicial fan with infinitely many cones filling the all the space except for $\overset{\,\,0}{U}$

In particular each point in the root lattice that does not live in the interior of U admits a unique *cluster expansion*.

. .

Dangling edges and current work

- It is possible to "fill the hole" in \mathcal{F} by declaring δ to be in Φ_B . This creates *imaginary clusters* each containing n-1 roots. The corresponding cones are contained in U and are arranged according to the *tubings* of 1, 2, or 3 cycles (depending only on the type of B).
- We have a conjectural formula for exchange relations similar to the finite type formula.
- In finite type [Ceballos, Pilaud] and for surfaces [Fomin, Shapiro, Thurston] the compatibility degree actually computes the coefficients of d-vectors. Is this true also in the affine types not coming from surfaces?
- A related construction in finite type informs some structural property on the associated cluster algebra that allowed [Yang, Zelevinsky] to realize such algebras as the ring of coordinates of a specific subvariety of the associated Lie group. Together with Rupel and Williams I am currently persuing the same construction for affine types cluster algebras and the corresponding Kac-Moody groups.

Thank you