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A BIJECTIVE STUDY OF BASKETBALL WALKS

JÉRÉMIE BETTINELLI, ÉRIC FUSY, CÉCILE MAILLER, AND LUCAS RANDAZZO

ABSTRACT. The Catalan numbers count many classes of combinatorial objects.
The most emblematic such objects are probably the Dyck walks and the binary
trees, and, whenever another class of combinatorial objects is counted by the Cata-
lan numbers, it is natural to search for an explicit bijection between the latter ob-
jects and one of the former objects. In most cases, such a bijection happens to be
relatively simple but it might sometimes be more intricate.

In this paper, we focus on so-called basketball walks, which are integer-valued
walks with step-set {−2,−1,+1,+2}. We give an explicit bijection that maps, for
each n ≥ 2, n-step basketball walks from 0 to 0 that visit 1 and are positive except
at their extremities to n-leaf binary trees. Moreover, we can partition the steps of a
walk into±1-steps, odd +2-steps or even−2-steps, and odd−2-steps or even +2-
steps, and these three types of steps are mapped through our bijection to double
leaves, left leaves, and right leaves of the corresponding tree.

We also prove that basketball walks from 0 to 1 that are positive except at the
origin are in bijection with increasing unary-binary trees with associated permu-
tation avoiding 213. We furthermore give the refined generating function of these
objects with an extra variable accounting for the unary nodes.

1. INTRODUCTION

An integer-valued walk is a finite sequence of integers, usually starting at 0. Its
steps are the differences of two consecutive values it takes. Walks with a given
possible step-set have been the focus of many studies [Ges80, LY90, Duc00, BF02,
BM08, Kra15] and so-called Łukasiewicz walks (walks whose step-set S satisfies
−1 ∈ S ⊆ {−1, 0, 1, 2, . . .}) are of particular interest as they encode plane trees
whose vertex outdegrees (or arities) all lie in S + 1 [Lot97, Chapter 11].

In this paper, we consider the simplest case of walks that are not Łukasiewicz
walks, namely basketball walks. These are walks with step-set {−2,−1,+1,+2};
they were named by Ayyer and Zeilberger [AZ07] from the fact that they record
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the score difference between two teams playing a basketball game at a time where
three-pointers did not exist. Basketball excursions, that is, nonnegative basket-
ball walks starting and ending at 0, were first counted by Labelle and Yeh [LY89,
LY90] (they are called Dyck paths of knight moves in this reference). The au-
thors give an explicit algebraic (quartic) expression for their generating function.
Motivated by their connections with constrained polymers problems, Ayyer and
Zeilberger [AZ07] studied the generating function of bounded basketball excur-
sions. Basketball walks were also later considered by Bousquet-Mélou [BM08],
who looked at the structure of the algebraic equations satisfied by the generating
function of excursions, as well as that of bounded excursions. The latter has also
been studied recently [Bac13].

More recently, with the use of the so-called kernel method, Banderier, Kratten-
thaler, Krinik, Kruchinin, Kruchinin, Nguyen and Wallner [BKK+16] showed that
the generating function of basketball walks from 0 to 1 that are positive except at
the origin, counted with weight z per step, is given1 by

G(z) = −1

2
+

1

2

√
2− 3z − 2

√
1− 4z

z
.

They also derived sum expressions for the number of such walks of given length,
and for the number of basketball excursions of a given length, as well as asymp-
totics for these numbers. Finally, they noted, and this was the starting point of
the present paper, that the generating function G is related to the Catalan gener-
ating function Cat, characterized by Cat(z) = 1 + zCat(z)2, by the simple equa-
tion [BKK+16, Equation (3.14)]:

(1) 1 +G(z) +G2(z) = Cat(z).

Instead of consideringG-walks, we will rather focus on basketball walks from 0
to 0 that visit 1 and are positive except at the extremities: we call them C-walks
and denote by C their generating function. A first step decomposition of C-walks
yields that C(z) = zG(z) + zG2(z) as a C-walk is either a +1-step followed by a
reversedG-walk or a +2-step followed by a reversedG-walk and another reversed
G-walk (recall that C-walks have to visit 1). Expressed in terms of C, Equation (1)
becomes

(2) C(z) = z
(
Cat(z)− 1

)
,

which is the generating function of nontrivial binary trees counted with weight z
per leaf. This is the equation to which we give a bijective interpretation. As a

1In [BKK+16], the authors use the notation G0,1. We removed the subscript in order to lighten
the notation.
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byproduct of our bijection, we obtain the following proposition. We say that a
step of a walk is even (resp. odd) if it starts at even (resp. odd) height.

Proposition 1. The number of basketball walks from 0 to 0 that visit 1 and are positive
except at the extremities, with 2d ±1-steps, ` odd +2-steps or even −2-steps, and r odd
−2-steps or even +2-steps is equal to

1

d

(
2d− 2

d− 1

)(
`+ r + 2d− 2

`+ r

)(
`+ r

`

)
.

In the second half of this article, we show how basketball walks are related to
increasing unary-binary trees with associated permutation avoiding 213. Recall
that a unary-binary tree of size n ≥ 1 is a plane tree with n vertices, each having 0,
1 or 2 children. It is increasing if its vertices are bijectively labeled with 1, . . . , n in
such a way that any vertex receives a label larger than its parent’s. In other words,
the sequence of labels read along any branch of the tree from the root to a leaf is
increasing. With an increasing tree, we associate the permutation obtained by
reading the labels of the tree in breadth-first search order, from left to right. Recall
that a permutation σ = (σ1, . . . , σn) is said to avoid the pattern π = (π1, . . . , πk) if,
for any 1 ≤ i1 < i2 < . . . < ik ≤ n, the permutation obtained from (σi1 , . . . , σik)
after relabeling with 1, . . . , k in the same relative order is different from π. (Note
that, in particular, a permutation of size n avoids any pattern of size strictly larger
than n.)

The study of increasing trees whose associated permutation avoids a given pat-
tern was initiated by Riehl (see for instance [LPRS16]). By computer program-
ming, she observed that the first terms of the sequence of increasing unary-binary
trees with associated permutation avoiding 213 coincide with those of the se-
quence referenced A166135 in the On-Line Encyclopedia of Integer Sequences,
which was later proved in [BKK+16] to be the sequence with generating func-
tion G. We show in the present paper that this is indeed the case and thus answer
[BKK+16, Conjecture 5.2].

Theorem 2. For any n ≥ 0, the number of n-step basketball walks from 0 to 1 that are
positive except at the origin is equal to the number of n-vertex increasing unary-binary
trees with associated permutation avoiding 213.

We will furthermore explain how to obtain an explicit bijection between the
classes of objects appearing in Theorem 2. It is well known that permutations
avoiding 213 are yet another class of combinatorial objects counted by Catalan
numbers. We are thus interested in a family of trees carrying an extra combina-
torial structure counted by Catalan. Of course, both structures are strongly de-
pendent because of the condition of being increasing. We will however see in

https://oeis.org/A166135
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Lemma 7 that the two structures can be separated and the conditions the permu-
tation has to fulfill are completely encoded in the sequence of bits obtained by
reading the tree in breadth-first search order and recording whether the vertices
encountered are nodes or leaves2.

As an immediate consequence of this theorem, for n ≥ 1, the following expres-
sions found in [BKK+16, Proposition 3.5]

[zn]G(z) =
1

n

n∑
k=1

(−1)k+1

(
2k − 2

k − 1

)(
2n

n− k

)
=

1

n

n∑
i=0

(
n

i

)(
n

2n+ 1− 3i

)
also give the number of n-vertex increasing unary-binary trees with associated
permutation avoiding 213. Moreover, [BKK+16, Theorem 3.8] gives an asymptotic
estimate of this number.

Finally, we study a refinement of the previous formula, which takes as an extra
parameter the number of unary nodes, that is, nodes with only one child.

Proposition 3. For n ≥ 1 and 0 ≤ k ≤ b(n− 1)/2c, the number of n-vertex increasing
unary-binary trees with associated permutation avoiding 213 that have exactly n−1−2k
unary nodes is equal to

1

n

(
2n

k

)(
n− k
k + 1

)
.

In particular, we obtain yet another expression for [zn]G(z):

[zn]G(z) =
1

n

∑
k≥0

(
2n

k

)(
n− k
k + 1

)
.

In the light of Theorem 2, it is natural to try and find the statistics corresponding
to unary nodes on basketball walks: it is the number of what we call staggered ±2-
steps (see Figure 1).

Definition 1. Let (w0, w1, . . . , wn) be the successive heights taken by a basketball walk
and let, for all integers 1 ≤ i ≤ n, ui := wi − wi−1 be the value of its i-th step. For i < j,
we say that ui and uj are paired if ui = +2, uj = −2, wj = wi−1, and for all i < k < j,
we have wk ≥ wi−1 + 1. A staggered ±2-step is a ±2-step that is not paired with any
other ±2-step.

Proposition 4. For n ≥ 1 and m ≥ 0, the number of n-step basketball walks from 0
to 1 that are positive except at the origin and that contain exactly m staggered ±2-steps is
equal to the number of n-vertex increasing unary-binary trees with associated permutation
avoiding 213 that have exactly m unary nodes.

2Recall that a vertex is called a node if it has at least one child and a leaf otherwise.
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i j

wi−1 wj

wi wj−1

Figure 1. The i-th and j-th steps of this walk are paired (the open gray area
must not be intersected by the walk). A staggered ±2-step is a ±2-step that
is not paired with any other ±2-step.

Proposition 3 gives a closed formula for these numbers. Along the same lines,
we obtain a similar expression for basketball excursions instead of G-walks.

Proposition 5. For n ≥ 2, the number of (n − 1)-step nonnegative basketball walks
from 0 to 0 is equal to

1

n

∑
k≥0

(
2n

k

)(
n− k − 2

k − 1

)
and, for k ≥ 0, the term of index k in the previous sum is the number of walks with exactly
n− 1− 2k staggered ±2-steps.

The remainder of the paper is organized in two sections. In Section 2, we present
and study the bijection between C-walks and binary trees. In Section 3, we inves-
tigate the link betweenG-walks and increasing unary-binary trees with associated
permutation avoiding 213.

Acknowledgment. We thank the ALEA in Europe Young Researcher’s Workshop,
which enabled us to start working on this problem. We thank Michael Wallner for
mentioning this problem to us during this meeting and the other participants that
initiated the discussion on this topic. J.B. also acknowledges partial support from
the GRAAL grant ANR-14-CE25-0014.

2. BASKETBALL WALKS AND BINARY TREES

2.1. Generalities. Throughout this paper, we will denote generating functions by
capital letters. The class of combinatorial objects counted by a generating func-
tion will be denoted by the same letter with a calligraphic font. For instance, the
generating function A will count the objects of the combinatorial class A. More-
over, we denote by 1 (resp. Z) the combinatorial class whose only element has
size 0 (resp. size 1), that is, the combinatorial class corresponding to the generat-
ing function z 7→ 1 (resp. z 7→ z). Finally, for a class X with no object of size 0, we
denote by Seq(X ) the combinatorial class of sequences of elements of X , that is
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1+X +X 2 + . . ., and by Seq≥k(X ) = X k Seq(X ) the class of sequences of at least k
elements of X .

Let us start by introducing the following combinatorial classes of basketball
walks (recall that this means walks with steps in {−2,−1,+1,+2}):

� C is the set of walks from 0 to 0 that visit 1 and are positive except at the ex-
tremities (“C” stands for Catalan as these objects are counted by the Catalan
numbers);
� A is the set of excursions, that is, nonnegative walks from 0 to 0;
� B is the set of walks from 0 to 1 that visit 0 and 1 only at the extremities.

The corresponding generating functions C, A and B count walks of these classes
with a weight z per step. We also call X-walk an element of a class X of walks.

In this section, we will obtain a decomposition grammar (in the spirit of [LY90,
Duc00]) relating the classes of basketball walks introduced above. By a few ma-
nipulations we will deduce from the grammar that the class C satisfies C = (Z +
C)2, and is thus a Catalan class.

Notation. It will sometimes be convenient to see walks as sequences of steps.
Note that there is a slight abuse in such a notation, as we forget the value of the
origin of the walks; anywhere we use this notation, the initial value of the walk
will be implicit or irrelevant. We will denote by ā := (−an, . . . ,−a1) the reverse of
a walk a = (a1, . . . , an) and by ab := (a1, . . . , an, b1, . . . , bm) the concatenation of a
and b = (b1, . . . , bm).

We may notice right away that the class G of basketball walks from 0 to 1 that
are positive except at the origin, introduced in Section 1, satisfies G = BA by
splitting any G-walk at the first time it reaches height 1. Moreover, we can see
that B = Z Seq(ZA) as follows (see Figure 2b). A B-walk is either trivial, that is,
reduced to a single +1-step, or starts with a +2-step, forms anA-walk between the
first and last time it visits 2, and then forms a reversed B-walk from its last visit
of 2 to its end. As a result, B = Z +ZAB, and the claim follows. This implies that

(3) G = ZA+ ZAG , so that G = Seq≥1(ZA).

In the remainder of Section 2, we will focus on C and no longer on G. We will come
back to G and use (3) in Section 3. Decomposing A-walks, we obtain the following
identity (see Figure 2a)

(4) A = 1 + ZAZA+ BABA,
which corresponds to the fact that an A-walk is either empty, or does not visit 1
before its first return to 0, or does visit 1 before its first return to 0.
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c

b

a

= +B BZ

B BAC

AZ

=

A = +1 Z ZA A B A+ B A

Figure 2. Decomposition of an A-walk (a), a B-walk (b) and a C-walk (c).
The horizontal lines are here to emphasize the facts that A-walks are non-
negative, B-walks only visit 0 and 1 at their extremities and C-walks only
visit 0 at their extremities. Beware, however, that the walk (+1) is a B-
walk.

Splitting a C-walk at the first and last time it visits 1, we see that C = BAB (see
Figure 2c). We claim that the three identities B = Z Seq(ZA), (2), and C = BAB
suffice to show that C satisfies C = (Z + C)2 and thus is the Catalan class whose
generating function is given by (2). Indeed, if we multiply (4) by B2, we obtain

BAB = B2 + (ZAB)2 + (BAB)2 and thus C = B2 + (ZAB)2 + C2.
Now observe that, for an arbitrary combinatorial class R with no object of size 0,
we have

Seq(R)2 +
(
R Seq(R)

)2
= Seq(R) Seq(R) + Seq≥1(R) Seq≥1(R)

= 1·1 + Seq≥1(R)·1 + Seq(R) Seq≥1(R) + Seq≥1(R) Seq≥1(R)

= 1 + Seq≥1(R) Seq(R) + Seq(R) Seq≥1(R) = 1 + 2R Seq(R)2,

To obtain the second equality, we split Seq(R)2 into three terms and we recom-
bined the second and forth terms in order to obtain the third equality. As B =
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Z Seq(ZA), the latter identity applied toR = ZA yields

B2 + (ZAB)2 = Z2
(
1 + 2ZA Seq(ZA)2

)
= Z2 + 2ZAB2 = Z2 + 2ZC,

so that we obtain C = Z2 + 2ZC + C2 = (Z + C)2 as claimed.

If we now mark each ±1-step by Z1 and each ±2-step by Z2, then it is easy to
see that the identities above become

A = 1 + Z2AZ2A+ BABA , B = Z1 Seq(Z2A) , C = BAB ,
so that C now satisfies

C = B2 +
(
Z2AB

)2
+ C2 = Z2

1 + 2Z2 C + C2.
In a binary tree, we define a double leaf to be a leaf whose sibling is also a leaf and a
simple leaf to be a leaf whose sibling is a node. The previous identity corresponds
to the decomposition grammar of binary trees where each double leaf is marked
by Z1 and each simple leaf is marked by Z2.

Note that a simple leaf is either the left child or the right child of its parent;
it is called a left leaf of a right leaf accordingly. In the next section, we present
a recursive bijection between C and binary trees that essentially implements the
above decomposition, (thus mapping ±1-steps to double leaves and ±2-steps to
simple leaves), along with suitable reversal operations in order to further map
the two types of simple leaves (left or right) of the binary tree to explicit (parity-
dependent) types of ±2-steps on the corresponding C-walk.

2.2. The bijection. We will now rewrite the grammar of the basketball walks we
consider in a way that reflects more faithfully the Catalan decomposition. Recall
from Figure 2c that C = BAB. This decomposition will be intensively used in
what follows.

As a C-walk starts and ends at 0, is positive in between and has steps of height
at most 2, it makes sense to focus on the sequence of heights it reaches, restricted to
the set {1, 2}. For instance, the sequence corresponding to the walk taking the con-
secutive values (0, 2, 3, 4, 2, 3, 1, 2, 3, 5, 4, 2, 3, 1, 3, 1, 2, 0) is (2, 2, 1, 2, 2, 1, 1, 2). We
classify C-walks into 4 classes according to this sequence of values as follows (the
boxed values are mandatory3, each x can be either 1 or 2). See Figure 3.

(i) 1 ;
(ii) 2 . . . 2 1 2 2 . . . 2 1 x . . . x ;

(iii) 2 . . . 2 1 2 2 . . . 2 ;

3For instance, a walk in class (ii) will visit 2 a nonnegative number of times, then 1 for the first
time, then 2 at least once before it visits 1 for the second time and then is free to visit 1 and 2 an
arbitrary number of times and in any order.
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(iv) 2 . . . 2 2 1 or 2 . . . 2 1 1 x . . . x .
Let us analyze more closely these different classes and, at the same time, define

a function Φ : C → (C ∪ {ε})2, where ε is a formal symbol. The function Φ will be
the starting point of the bijection. We refer the reader to Figure 3 for a visual aid.

(+2)

b1 b̄2

b1 b̄2

c a

a1 a2

(+1,−1)

(−2)

c̄ b1 b̄2a
, )

)

, ε)
(−2)a1b1 ā2b2

(i)

(ii)

(iii)

(iv)

Φ7→ (ε, ε)

Φ7→ (

Φ7→ (ε,

Φ7→ (

b1 b2 a (−2) b1 b̄2ā

(+2) b̄a (−1) b ā (−1)

, ε)
Φ7→ (

Figure 3. The four different classes and the definition of the function Φ.
The reversal operation on some C-walks and A-walks was done in order
to preserve the statistics of Proposition 1. For the purposes of Section 2.2,
an alternate definition of Φ without these reversal operations also works.
However, the choices of reversals we made will be crucial for Section 2.3.

Class (i). The only walk in class (i) is (+1,−1); we define Φ
(
(+1,−1)

)
:= (ε, ε).

Class (ii). Such a walk is the concatenation of 3 subwalks: a B-walk b1
(
2 . . . 2 1

)
,

a C-walk c
(

1 2 2 . . . 2 1
)
, and the concatenation of an A-walk a and a reversed
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B-walk b̄2
(

1 x . . . x
)
. We set Φ(b1cab̄2) := (c̄, b1ab̄2). (At this point, it might seem

odd to have chosen c̄ instead of c; this choice will only have bearings in Section 2.3.
See the caption of Figure 3 for more details.)
Class (iii). Such a walk is composed of a B-walk b1

(
2 . . . 2 1

)
, another B-walk b2(

1 2
)
, an A-walk a and a −2-step

(
2 2 . . . 2

)
. We set Φ(b1b2a(−2)) := (ε, b1āb̄2).

Class (iv). A walk in the first subclass is composed of a 2-step and an A-walk a(
2 . . . 2 2

)
, then a reversed B-walk b̄ and a −1-step

(
2 1

)
. In this case, we set

Φ
(
(+2)ab̄(−1)

)
:=
(
bā(−1), ε

)
.

A walk in the second subclass can be decomposed into a B-walk b1
(
2 . . . 2 1

)
,

a +2-step, an A-walk a1 and a −2-step
(

1 1
)
, and the concatenation of an A-

walk a2 and a reversedB-walk b̄2
(

1 x . . . x
)
. We forget the−2-step and rearrange

the remaining parts as follows: we set Φ
(
b1(+2)a1(−2)a2b̄2

)
:=
(
b1a1b2ā2(−2), ε

)
.

Observe that the walks in the two previous subclasses together yield an even
+2-step or an odd −2-step, as well as a C-walk whose final step is −1 or −2 de-
pending on the subclass.

We recover from the previous classification that C = Z2 + C2 +ZC +ZC = (Z +
C)2. To make the parallel with Section 2.1, the classes we considered correspond
to decomposing C as

C = Z2︸︷︷︸
(i)

+Z·Z Seq≥1(ZA)︸ ︷︷ ︸
(iv).1

+Z Seq≥1(ZA)·Z Seq(ZA)︸ ︷︷ ︸
(iii)

+ Z2A2
(
Z Seq(ZA)

)2︸ ︷︷ ︸
(iv).2

+ C2︸︷︷︸
(ii)

.

The mapping Φ amounts to rearranging (iii) asZZA Seq(ZA)Z Seq(ZA) = ZBAB
= ZC and (iv) as Z3A Seq(ZA)

(
1 + ZA Seq(ZA)

)
= Z3A Seq(ZA)2 = ZBAB =

ZC. Now, the previous analysis can be turned into a (recursive) bijection between
C-walks and binary trees. We take aC-walk and recursively build the correspond-
ing tree as follows. We start from the one-vertex tree and assign to its unique node
the C-walk. Then, recursively, we do the following for every node with an as-
signed walk. We denote by (w1,w2) the value of Φ on the assigned walk and glue
to the considered node two new vertices. If w1 = ε, then we let the left vertex as
a leaf; otherwise we assign to it the walk w1. We proceed similarly with the right
vertex and w2. See Figure 4 for an example.

Denoting by Φ1 and Φ2 the coordinate projections of Φ and by | · | the number
of steps in a walk, it is easy to check from the definition of Φ that |w| = |Φ1(w)| +
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Figure 4. The bijection between a 14-step C-walk and a 14-leaf binary tree.
The original C-walk is represented at the root of the tree and the walks
assigned to the nodes of the tree are represented. We used the same color
scheme as on the left of Figure 3 and marked by purple crosses the even
+2-steps and odd −2-steps of the walks; observe that these are preserved
at every stage except when a right leaf is created (these are also marked by
purple crosses on the figure), in which case one such step disappears. The
other ±2-steps satisfy a similar property with left leaves and the ±1-steps
correspond to double leaves.

|Φ2(w)|, if we use the convention that |ε| := 1. As a consequence, we see that the
number of leaves in the binary tree corresponding to a walk w is |w|. We thus
obtain, for each n ≥ 1, a bijection between C-walks of length n + 1 and binary
trees with n+ 1 leaves, which are counted by the n-th Catalan number.
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2.3. Matched statistics. Let us now see which quantities are matched by our bi-
jection.

Proposition 6. We consider a C-walk and a binary tree corresponding to each other
through the bijection. Then

� the number of ±1-steps of the walk is equal to the number of double leaves of the
tree;
� the sum of the numbers of odd +2-steps and even −2-steps of the walk is equal to

the number of left leaves of the tree;
� the sum of the numbers of odd −2-steps and even +2-steps of the walk is equal to

the number of right leaves of the tree.

Proof. We proceed recursively. We denote by d(w) the number of ±1-steps of a
walk w. As all transformations involved in the definition of Φ can only change
a k-step into a k-step or a −k-step, we see that, for w ∈ C \ {(+1,−1)}, we have
d(w) = d(Φ1(w)) + d(Φ2(w)), with the convention that d(ε) := 0. Moreover, the
walk (+1,−1) has two±1-steps and creates two double leaves, whereas any other
walk does not create any double leaves. The first statement of the proposition
follows.

Now remember that both A-walks and C-walks start and end at height 0, and
that B-walks start at height 0 and end at height 1. Moreover, denoting by `(w)
the sum of the numbers of odd +2-steps and even −2-steps of a walk w, we have
`(w+2k) = `(w̄+2k+1) = `(w) for any integer k (where w+p denotes the path with
same step sequence as w and shifted by p). In other words, the quantity ` remains
unchanged after a shift of even height or after a shift of odd height and a reversal.
Bearing this in mind, observe that Φ was chosen in such a way that, in class (i),
`(w) = 0, in class (ii), `(w) = `(Φ1(w))+`(Φ2(w)), in class (iii), `(w) = 1+`(Φ2(w)),
and in class (iv), `(w) = `(Φ1(w)). The second statement follows from the fact that
walks of class (iii) create exactly one left leaf whereas walks of other classes do not
create any.

The third statement follows by a similar reasoning or by noticing that the sum
of the three considered statistics pertaining to a walk is equal to its length and that
the sum of the three considered statistics pertaining to a tree is equal to its number
of leaves, as we already observed that the length of a walk was matched by the
bijection to the number of leaves of the corresponding tree. �

Proposition 1 is a direct consequence of Proposition 6, as the desired number is
then equal to the number of binary trees with d double leaves, ` left leaves and r
right leaves. This number can easily be obtained from [MS00, Theorem 4] (which
gives the number of non-embedded rooted binary trees with n labeled leaves,
and k pairs of double leaves, called cherries), or from counting unary-binary trees;
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we provide here a short line of proof for the sake of self-containedness (note that
one can also obtain the expression through the Lagrange inversion formula, as in
the proof of Proposition 3).

Proof of Proposition 1. A binary tree with 2d double leaves, ` left leaves and r right
leaves can be obtained as follows. We start from a binary tree with a root of de-
gree 1 and d leaves and we add ` + r extra vertices on its 2d − 1 edges. We graft
two new edges to each of the d original leaves. Among the added vertices, we
select ` vertices to the left of which we graft an edge and we graft an edge to the
right of the unselected vertices. As this operation is clearly bijective, we obtain
that the desired number is equal to the (d− 1)-th Catalan number, times the num-
ber of ways to put ` + r extra vertices on 2d− 1 edges, times the number of ways
to select ` vertices among `+ r. �

2.4. Walks without large steps. Let us restrict our attention to C-walks without
±2-steps. Such walks are in direct bijection with A-walks without ±2-steps by
removing the first and last steps (recall that a C-walk may not visit 0 more than
twice, whereas an A-walk may) and the latter are exactly Dyck walks. If w is such
a C-walk, it can only be in the classes (i) or (ii). Moreover, the only B-walk with-
out ±2-steps is the trivial walk (+1), so that, if w is of class (ii), it is of the form
(+1,+1)a1(−1)a2(−1) where a1 and a2 are A-walks without ±2-steps. As a con-
sequence, we see that Φ

(
(+1,+1)a1(−1)a2(−1)

)
=
(
(+1)ā1(−1), (+1)a2(−1)

)
and

our bijection is in this case a slight modification of the classical bijection between
Dyck walks and binary trees.

The classical bijection may be constructed in a similar way as ours with a func-
tion Ψ defined on nonempty Dyck walks by Ψ

(
(+1)a1(−1)a2

)
:= (a1, a2). Then,

from a Dyck walk, we recursively construct the tree by starting with a vertex
tree and assigning to its vertex the walk. Then, we split every vertex with an
assigned nonempty walk a into two new vertices to which we assign the coor-
dinates of Ψ(a). Through this bijection, the length of the Dyck walk is twice the
number of leaves minus 2.

Plainly, our bijection gives the same result with two double leaves grafted onto
each leaf (as the empty Dyck walk yields a leaf in the classical bijection and the
corresponding C-walk (+1,−1) yields two double leaves in our construction) and
where each left subtree is mirrored at each step (because of the reversal of a1).

Summing up, we see that the restriction of our bijection to C-walks without
±2-steps gives a bijection between such walks and binary trees, which is a slight
alteration of the classical encoding of binary trees by Dyck walks. Note that, here,
the length of theC-walk is twice the number of leaves of the corresponding binary
tree (equivalently, it is the number of leaves of the tree obtained by adding two
double leaves to each original leaf).
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3. LINK WITH INCREASING UNARY-BINARY TREES

3.1. Proof of Theorem 2. Let us now investigate the connection between basket-
ball walks and increasing unary-binary trees with associated permutation avoid-
ing 213. We start by giving a more convenient characterization of the permuta-
tions allowed on a given (unlabeled) unary-binary tree. We say that a permuta-
tion σ = (σ1, . . . , σn) is valid for a unary-binary tree if the labeled tree obtained by
labeling the vertices by σ1, . . . , σn in (left-to-right) breadth-first search order is an
increasing unary-binary tree with associated permutation avoiding 213. In other
words, the labeled tree is increasing and σ avoids 213.

Lemma 7. We consider an n-vertex unary-binary tree and denote by N ⊆ {1, 2, . . . , n}
the set of indices of its nodes when reading its vertices in breadth-first search order. The
permutation σ is valid for the tree if and only if it avoids 213 and, for all i ∈ N , σi =
mini≤j≤n σj ; in other words, the elements of N are indices of right-to-left minimums.

Remark. This observation was already made in the very particular case of com-
plete unary-binary trees, for which the vertices have a very simple structure as
they are arranged by nodes first and leaves last; see [LPRS16, Theorem 4].

Proof. Let us denote by v1, . . . , vn the vertices of the tree read in breadth-first search
order. By definition, σ is valid for the tree if and only if it avoids 213 and, for all
i ∈ N and all j ∈ {1, . . . , n} such that vj is a child of vi, we have σi < σj . By
definition of the breadth-first search order, if i and j are as above, then i < j. As
a result, a permutation for which the elements of N are indices of right-to-left
minimums is immediately valid.

Conversely, let us take a valid permutation σ and an index i ∈ N ; it is sufficient
to show that i is the index of a right-to-left minimum, that is, σi < σk for all
k ∈ {i + 1, . . . , n}. Let j ∈ {1, . . . , n} be the largest integer such that vj is a child
of vi. First, σi < σj as the labeled tree is increasing. Second, we must have σi < σk
for all k ∈ {i + 1, . . . , j − 1} as σi < σj and (σi, σk, σj) must avoid 213. Last, if
k ∈ {j + 1, . . . , n}, then vk must have an ancestor vk′ for some k′ ∈ {i + 1, . . . , j}
and we see that σk > σk′ > σi by the above observation. �

Lemma 8. For n ≥ 1, let Pn be the set of 213-avoiding permutations of size n and, for
each nonempty subset E ⊆ {1, . . . , n− 1}, let

P(E )
n := {σ ∈ Pn : each a ∈ E is the index of a right-to-left minimum of σ}.

Then, for such a subset E = {a1 < . . . < ak}, we have

P(E )
n ' Pa1 × Pa2−a1 × · · · × Pak−ak−1

× Pn−ak .

Proof. The mapping from σ ∈ P(E )
n to (σ(0), . . . , σ(k)) ∈ Pa1×Pa2−a1×· · ·×Pak−ak−1

×
Pn−ak is very simple: for i ∈ {0, . . . , k}, we let σ(i) be the renormalized permutation
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induced by σ on the index-set {ai + 1, . . . , ai+1} (with the convention a0 = 0 and
ak+1 = n).

σ(0) σ(1) σ(2) σ(3) σ

a1 a2 a3

7→

Figure 5. From a sequence (σ(0), . . . , σ(k)) of nonempty 213-avoiding per-
mutations (k = 3 in the example) to a 213-avoiding permutation σ of size
|σ(0)|+ · · ·+ |σ(k)|. If we let ai := |σ(0)|+ · · ·+ |σ(i−1)| for each i ∈ {1, . . . , k},
then ai is the index of a right-to-left minimum of σ. On the figure, the right-
to-left minimums are circled and the (nonempty) blocks are framed.

To inverse the mapping we rely on the crucial property that a permutation
σ ∈ Pn with p right-to-left minimums is of the form σ = (σ〈0〉, 1, σ〈1〉, 2, σ〈2〉, 3, . . . ,
σ〈p−1〉, p) where 1, . . . , p are the right-to-left minimums and σ〈0〉, . . . , σ〈p−1〉 are (pos-
sibly empty) subpermutations of {p + 1, . . . , n} avoiding 213 with disjoint ranges
arranged in decreasing order (that is, minσ〈i〉 > maxσ〈j〉 whenever i < j and σ〈i〉,
σ〈j〉 6= ∅); these subpermutations are called the blocks of σ.

Starting from (σ(0), . . . , σ(k)) ∈ Pa1 × Pa2−a1 × · · · × Pak−ak−1
× Pn−ak , we get to

σ ∈ P(E )
n as follows: we concatenate σ(0), . . . , σ(k) and renormalize the values in

the unique way so that the right-to-left minimums of σ are those of σ(0), . . . , σ(k)

in increasing order (with consecutive values) and the blocks of σ are those of σ(0),
. . . , σ(k), with ranges in decreasing order; see Figure 5 for an example. Note that,
for each i ∈ {0, . . . , k − 1}, since the last index in σ(i) is necessarily the index of
a right-to-left minimum for σ(i), the corresponding index ai+1 is the index of a
right-to-left minimum for σ. �
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Using the previous two lemmas, we may now give a more convenient encoding
of unary-binary trees with associated permutation avoiding 213. Recall that a
Motzkin walk is a walk with step-set {−1, 0,+1}. We call descending sequence of
a Motzkin walk a maximal run of −1’s, that is, a sequence of consecutive steps
of the form (−1, . . . ,−1) that is either initial or preceded by a +1- or 0-step and
is either final or succeeded by a +1- or 0-step. We finally say that a Motzkin
walk is decorated if each of its descending sequences is marked with a permutation
avoiding 213 whose size is the length of the descending sequence (its number
of −1’s) plus one.

Lemma 9. For n ≥ 1, n-vertex increasing unary-binary trees with associated permuta-
tion avoiding 213 are bijectively encoded by n-step decorated Motzkin walks from 0 to 1
that are positive except at the origin.

Figure 6 gives an example of this encoding.

19 8 9 10

12 15

13 14

18 11 17

16

7654

2 3

1 1 2 3 4 5 6 7 19 8 9 10 18 11 17 16 12 15 13 14
2 1 21323415

21

51432

312

Figure 6. Left: an increasing unary-binary tree with associated permuta-
tion avoiding 213. Right: its encoding as a decorated Motzkin walk. The
nodes and the last leaf are colored brown and the other right-to-left mini-
mums are colored green. Up to a slight modification at its extremities, the
Motzkin walk is the classical Łukasiewicz encoding of the tree. The dec-
orations are the renormalized permutations corresponding to the labels of
the maximal sequences of leaves when reading the vertices of the tree in
breadth-first search order. The full permutation is recovered from the dec-
orations by the mapping of Figure 5, after assigning the permutation 1 to
each 0- or (non-initial) +1-step that does not directly follows a descending
sequence.

Proof. Let T be a unary-binary tree with n vertices and associated permutation σ
avoiding the pattern 213. As above, we denote by v1, . . . , vn the vertices of T in
the (left to right) breadth-first search order. We classically encode T as a Motzkin
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walk as follows: if we denote by c(v) ∈ {0, 1, 2} the number of children of the
vertex v, the walk w associated with T starts at zero and follows the step sequence
(+1, c(v1)− 1, c(v2)− 1, . . . , c(vn−1)− 1). The usual description4 follows a slightly
different step sequence; namely the first +1 is omitted and a final step c(vn)− 1 =
−1 is added. This only changes the fact that we obtain a positive walk from 0 to 1
instead of a nonnegative walk from 0 to −1.

Let us now take into account the labels of the tree. Let N = {a1 < . . . < ak}
be the set of indices of the nodes of T (note that a1 = 1). According to Lemma 7,
each a ∈ N is the index of a right-to-left minimum of σ. Hence, σ ∈ P(N )

n and,
by Lemma 8, σ can be identified with the (k + 1)-tuple (σ(0), . . . , σ(k)), where σ(i)

is the renormalized permutation induced by σ on the index-set {ai + 1, . . . , ai+1}
(with the convention a0 = 0 and ak+1 = n).

In the Motzkin walk w, the initial +1-step corresponds to the last leaf of T, the
other +1- and 0-steps correspond to the nodes of T and the −1-steps correspond
to the leaves of T except for the last one. This entails that, for each i ∈ {0, . . . , k}
such that ai+1 − ai ≥ 2, the steps of w between indices ai + 1 and ai+1 − 1 form
a descending sequence of length ai+1 − ai − 1. To the descending sequence corre-
sponding to such an i, we assign the permutation σ(i) (of size ai+1 − ai). We thus
obtain a decorated Motzkin walk that encodes the tree T with no loss of informa-
tion, as σ(i) = (1) whenever ai+1 − ai = 1. See Figure 6 for an example. �

We now introduce two new generating functions of walks, counting them with
weight z per step:

� T counts decorated Motzkin walks from 0 to 1 that are positive except at
the origin;
� M counts decorated Motzkin walks from 0 to 1 that are positive except at

the origin and whose last 0- or +1-step is a +1-step. In other words, M
counts the trivial walk (+1) and T -walks ending with a +1-step followed
by a descending sequence.

Proof of Theorem 2. In order to conclude, it suffices to show that T = G. We will
first show that T = Seq≥1(M) and then that M = zA. This will be sufficient as we
already noticed in Equation (3) that G = Seq≥1(ZA).

First step: We claim that T = Seq≥1(M). Indeed, a T -walk is either anM -walk or a
T -walk whose last 0- or +1-step is a 0-step. In the latter case, let us denote by k ≥ 0
the number of −1-steps after the last 0-step (which is necessarily at height k + 1),
and by n the length of the walk. We do some kind of last passage decomposition

4Note that there is also a classical encoding using the depth-first search order instead of the
breadth-first search order. Both constructions give bijections between the same sets and the proofs
are similar.
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at height k: the walk is composed of three parts as follows. Between time 0 and the
last time the walk hits height k before the last 0-step, we have a decorated Motzkin
walk from 0 to k that stays positive except at its origin; then until time n−k−1, we
have a T -walk; and, finally, we have a decorated walk of the form (0,−1, . . . ,−1)
with k + 1 steps. See Figure 7. We change the 0-step of the last part into a +1-step
and we concatenate the first part with it in order to obtain an M -walk. Note that
this construction also works for k = 0, in which case the first part (colored purple
on Figure 7) is the empty walk and the outcome of the above operation is the pair
consisting of the original walk with last step removed, together with the trivial
M -walk (+1). As a result, we see that a T -walk whose last 0- or +1-step is a 0-step
can be bijectively decomposed into a pair made of a T -walk and an M -walk. This
yields T =M+ TM, so that T = Seq≥1(M) as claimed.

7→

Figure 7. Proof that T -walks whose last 0- or +1-step is a 0-step are
counted by TM . We extract a T -walk (in green) and what remains makes
an M -walk by changing the last 0-step into a +1-step.

Second step: Let us now show that M = zA. Recall from Section 2.2 the defini-
tions of A and B. Recall from the discussion before (3) that B = z/(1 − zA) and
from (4) that A = 1 + (zA)2 + (BA)2. As a result,

zA = z

(
1 + (zA)2 +

(zA)2

(1− zA)2

)
.

We now turn to M . We consider an M -walk and, for the sake of convenience,
we suppose for the time being that it is not the trivial walk (+1). Let k ≥ 1 denote
the length of its last descending sequence and σ denote the permutation of size
k + 1 associated with it. We use the standard Catalan decomposition and split σ
into two permutations avoiding 213, σ′ and σ′′, of respective sizes i and k− i. This
means that the first right-to-left minimum of σ (which is necessarily equal to 1)
has index i + 1 and that σ′ and σ′′ correspond to (σ1, . . . , σi) and (σi+2, . . . , σk+1),
up to relabeling. Let us suppose furthermore that 1 ≤ i ≤ k − 1 for the moment.
We split the M -walk at the last time it hits i before the last +1-step and at time
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n − k − 1 (that is, before the last +1-step); see Figure 8. We concatenate the first
part with the i-sequence (0,−1, . . . ,−1) and we associate with the last descending
sequence the permutation σ′. Similarly, we add to the second part a 0-step and a
descending sequence of size k− i−1 with which we associate the permutation σ′′.
We thus decomposed our original walk into a single step counted by z and a pair
of T -walks whose last 0- or +1-steps are both 0-steps, which we saw in the first
step above to be counted by TM . Now, if i = k, we do the same construction for
the first walk and obtain an empty second walk. If i = 0, we obtain an empty first
walk and a second walk counted by TM . Finally, if the original walk is trivial, it
is counted by z. Putting all this together, we obtain M = z (1 + TM)2, which can
be rewritten as

M = z

(
1 +

M2

1−M

)2

= z

(
1−M +

M

1−M

)2

= z

(
1 +M2 +

M2

(1−M)2

)
.

Since zA and M satisfy the same Lagrangian equation of the form X = zϕ(X),
they must be equal. This concludes the proof. �

7→

Figure 8. Recursive decomposition of an M -walk. We split the permuta-
tion associated with the last descending sequence into two permutations
by the standard Catalan decomposition and we split the walk at the heights
corresponding to the sizes of the sub-permutations.

Note. Using more thorough decompositions, we will show in Section 3.2 that the
identity M = zA holds in the more general setting of bivariate generating func-
tions, with an extra parameter counting 0-steps in M and staggered ±2-steps in
zA. This will provide an alternate yet slightly longer proof of the second step
above.
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We end this section with the following observation. We just showed that T = G,
so that (1) also reads 1+T+T 2 = Cat. Let us give an interpretation to this identity.

Proposition 10. For any n ≥ 1, the (n − 1)-th Catalan number counts the number
of n-vertex increasing unary-binary trees with associated permutation avoiding 213 that
satisfy the following property: if we let `1, . . . , `k denote the leaves read after the last node
in breadth-first search order, then the last leaf has the smallest label among the labels of `1,
. . . , `k.

Proof. Let us consider the decorated Motzkin walk of a tree satisfying the condi-
tion of the statement. We consider its last step.

� If it is a +1-step, then the walk is the trivial walk (+1) and the correspond-
ing tree is the vertex-tree with a leaf labeled 1.
� If it is a 0-step, then the decorated Motzkin walk does not satisfy any fur-

ther constraints (it is just a decorated Motzkin walk to which a final 0-step
is added); the corresponding tree ends with a single leaf after a unary node.
� If it is a −1-step, we let σ = (σ1, . . . , σk) be the permutation assigned to the

last descending sequence. The condition of the statement merely translates
into σk = 1. By considering the last hitting time of 1 before the end, the
Motzkin walk can be decomposed into two successive Motzkin walks and
a final−1-step. These Motzkin walks naturally inherit the decorations from
the original Motzkin walk, with the last descending sequence of the second
Motzkin walk being assigned the permutation (σ1 − 1, . . . , σk−1 − 1).

The previous classification shows that the generating function of the objects we
consider is z + z T + z T 2 = zCat, as desired. �

3.2. Unary nodes and staggered steps. In this section, we focus on the number
of n-vertex increasing unary-binary trees with associated permutation avoiding
213 that have a given number of unary nodes. We prove Proposition 3 and then
identify the statistic on the basketball walks that corresponds to the number of
unary nodes in an increasing unary-binary tree. Throughout this section, we will
consider bivariate generating function of walks, with a weight z per step as above
and with an extra weight u for some steps that will be specified later on. For the
sake of clarity, we still denote by A, B, G, M and T these bivariate functions.

Proof of Proposition 3. Recall that unary nodes of a unary-binary tree correspond to
0-steps of the encoding Motzkin walk. By this observation and Lemma 9, the num-
ber of n-vertex increasing unary-binary trees with associated permutation avoid-
ing 213 having exactly n−1−2k unary nodes is equal to [un−1−2kzn]T (z, u), where
the variable u marks the number of 0-steps in the Motzkin walks.
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Redoing the proof of Theorem 2 with bivariate functions counting decorated
Motzkin walks with an extra weight u per 0-step, we obtain T = M + uTM and
M = z (1 + TM)2, hence T = ψ(M) and M = z φ(M), where

(5) ψ(y) :=
y

1− uy and φ(y) :=

(
1 +

y2

1− uy

)2

.

Applying the Lagrange inversion formula, we obtain

[zn]T (z, u) =
1

n
[yn−1]ψ′(y)φ(y)n =

1

n
[yn−1]

1

(1− uy)2

(
1 +

y2

1− uy

)2n

=
1

n

b(n−1)/2c∑
k=0

(
2n

k

)
[yn−1−2k]

1

(1− uy)k+2

=
1

n

b(n−1)/2c∑
k=0

(
2n

k

)(
n− k
k + 1

)
un−1−2k

and the result follows. �

We now turn to the proof of Proposition 4. Recall Definition 1 and that A is the
class of nonnegative basketball walks from 0 to 0.

Proof of Proposition 4. We denote by A(z, u) the bivariate generating function of A,
where z marks the number of steps and u the number of staggered ±2-steps. A
walk in A is

(i) either empty;
(ii) or is the concatenation of a +2-step, an A-walk, a −2-step and an A-walk;

(iii) or visits 1 (at least once) before its first return to 0. In that latter case, the
walk is the concatenation of a B-walk, an A-walk, a reversed B-walk and
an A-walk. We distinguish three subcases:
(a) the two B-walks are trivial, that is, equal to (+1),
(b) exactly one of the two B-walks is trivial,
(c) both B-walks have length 2 or more.

Now observe that, in case (i), (ii), (iii)(a) and (iii)(b), each staggered ±2-step of the
original walk remains a staggered ±2-step in one of its subwalks. In case (iii)(c),
both B-walks are composed of a first +2-step that is not staggered in the original
walk, then an A-walk and a reversed B-walk. The previous decomposition thus
gives the following identity in terms of bivariate generating functions:

A = 1︸︷︷︸
(i)

+ (zA)2︸ ︷︷ ︸
(ii)

+ (zA)2︸ ︷︷ ︸
(iii)(a)

+ 2zA2(B − z)︸ ︷︷ ︸
(iii)(b)

+ (zAB)2A2︸ ︷︷ ︸
(iii)(c)

.
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Let us express B in terms of A. Following the discussion that led to (3), a B-walk
is either the trivial walk (+1), or a staggered +2-step followed by an A-walk then
a reversed B-walk. As a result, B = z + uzAB, so that B = z/(1− uzA). We thus
obtain

zA = z

(
1 + 2(zA)2 + 2u

(zA)3

1− uzA +
(zA)4

(1− uzA)2

)
= z

(
1 +

2(zA)2

1− uzA +
(zA)4

(1− uzA)2

)
= z

(
1 +

(zA)2

1− uzA

)2

,

which is also the Lagrangian equation (5) verified by M . In order to conclude the
proof, it is enough to note that G = AB = zA/(1 − uzA), and that T = M/(1 −
uM). �

Proof of Proposition 5. We obtained during the proof of Proposition 4 that zA =
zφ(zA) where φ is defined by (5). By the Lagrange inversion formula, we have,
for n ≥ 2,

[zn−1]A(z, u) = [zn] zA(z, u) =
1

n
[yn−1]φ(y)n =

1

n
[yn−1]

(
1 +

y2

1− uy

)2n

=
1

n

∑
k≥0

(
2n

k

)
[yn−1−2k]

1

(1− uy)k

=
1

n

∑
k≥0

(
2n

k

)(
n− k − 2

k − 1

)
un−1−2k

and the result follows. Note that the formula [ya](1 − y)−b =

(
a+ b− 1

b− 1

)
is not

valid for a = 0 and b = 0; this is why we assumed n ≥ 2. �

3.3. Turning Theorem 2 into an explicit bijection. Recall that we obtained in
Section 2.1 a first formal proof (via a decomposition grammar on which a few ma-
nipulations were performed) that the class C of basketball walks is a Catalan class.
Then, in Section 2.2, we turned this into an explicit recursive bijection with binary
trees, by realizing the formal grammar manipulations as explicit walk manipula-
tions.

We can do the same thing in order to obtain an explicit recursive bijection be-
tween G-walks and increasing unary-binary trees with associated permutation
avoiding 213. In fact, we have already done in the previous sections all the neces-
sary operations. Moreover, the study we did with bivariate generating functions
in Section 3.2 will yield that the statistics counted by u in G will correspond to the
statistics counted by u in T .
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Recall Equation (3) and the proof of Theorem 2. We showed that G = ZA+ZAG
and that T =M +MT in a combinatorially tractable way. We mean by this that
we can explicitly write an object of G as either an object ofZA or a pair of an object
of ZA and one of G and the same holds withM instead of ZA and T instead of G.
Moreover, these equations hold indifferently for univariate or bivariate generating
functions. As a result, it suffices to explain how ZA andM can be decomposed
in an isomorphic way. But this was actually done in Section 3.2. Indeed, we com-
binatorially obtained

ZA = Z
(
1 + 2(ZA)2 + 2u(ZA)3 Seq(uZA) + (ZA)4

(
Seq(uZA)

)2)
,

as well as

M = Z
(
1 +M2 Seq(uM)

)2
.

The latter equation can be rewritten as the first one by expanding the square,
which, combinatorially, means distinguishing whether each element of the pair
is empty or not and by using the identity Seq(uM) = 1 + uM Seq(uM), which
translates into saying that a sequence is empty or is composed of a first element
and another sequence.
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