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Symmetry and unimodality

Definition

A polynomial f (x) ∈ R[x ] is

• symmetric (or palindromic) and
• unimodal

if for some n ∈ N,

f (x) = p0 + p1x + p2x
2 + · · ·+ pnx

n

with

• pk = pn−k for 0 ≤ k ≤ n and
• p0 ≤ p1 ≤ · · · ≤ pbn/2c.

The number n/2 is called the center of symmetry.
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Example: Eulerian polynomial

We let

• Sn be the group of permutations of [n] := {1, 2, . . . , n}

and for w ∈ Sn

• des(w) := # {i ∈ [n − 1] : w(i) > w(i + 1)}
• exc(w) := # {i ∈ [n − 1] : w(i) > i}

be the number of descents and excedances of w , respectively. The
polynomial

An(x) :=
∑
w∈Sn

xdes(w) =
∑
w∈Sn

xexc(w)

is the nth Eulerian polynomial.
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Example

An(x) =



1, if n = 1

1 + x , if n = 2

1 + 4x + x2, if n = 3

1 + 11x + 11x2 + x3, if n = 4

1 + 26x + 66x2 + 26x3 + x4, if n = 5

1 + 57x + 302x2 + 302x3 + 57x4 + x5, if n = 6.

Note: The Eulerian polynomial An(x) is well known to be symmetric and
unimodal. Is there a simple combinatorial proof?
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Gamma-nonnegativity

Proposition (Bränden, 2004, Gal, 2005)

Suppose f (x) ∈ R[x ] has nonnegative coefficients and only real roots and
that it is symmetric, with center of symmetry n/2. Then

f (x) =

bn/2c∑
i=0

γi x
i (1 + x)n−2i

for some nonnegative real numbers γ0, γ1, . . . , γbn/2c.

Definition

The polynomial f (x) is called γ-nonnegative if there exist nonnegative real
numbers γ0, γ1, . . . , γbn/2c as above, for some n ∈ N.
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Example

An(x) =



1, if n = 1

1 + x , if n = 2

(1 + x)2 + 2x , if n = 3

(1 + x)3 + 8x(1 + x), if n = 4

(1 + x)4 + 22x(1 + x)2 + 16x2, if n = 5

(1 + x)5 + 52x(1 + x)3 + 186x2(1 + x), if n = 6.

Note: Every γ-nonnegative polynomial (even if it has nonreal roots) is
symmetric and unimodal.
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An index i ∈ [n] is called a double descent of a permutation w ∈ Sn if

w(i − 1) > w(i) > w(i + 1),

where w(0) = w(n + 1) = n + 1.

Theorem (Foata–Schützenberger, 1970)

We have

An(x) =

b(n−1)/2c∑
i=0

γn,i x
i (1 + x)n−1−2i ,

where γn,i is the number of w ∈ Sn which have no double descent and
des(w) = i . In particular, An(x) is symmetric and unimodal.
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Elegant proof by Foata–Schützenberger (1970) and Foata–Strehl (1974):
They partition Sn into equivalence classes, so that for each class K,∑

w∈K
xdes(w) = x i (1 + x)n−1−2i

for some i . The permutations within each class have the same peaks and
valleys.
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Example

For the class of w = (2, 4, 6, 3, 1, 5) ∈ S6 we have n = 6 and i = 1,
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so ∑
w∈K

xdes(w) = x(1 + x)3.
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Recall that a permutation w ∈ Sn is said to be up-down if

w(1) < w(2) > w(3) < · · · .

Corollary

We have

An(−1) =

{
0, if n is even,

(−1)(n−1)/2 γn,(n−1)/2, if n is odd,

where γn,(n−1)/2 is the number of up-down permutations in Sn.
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Recently, gamma-nonnegativity attracted attention after the work of

• Bränden (2004, 2008) on P-Eulerian polynomials,
• Gal (2005) on flag triangulations of spheres.

A book exposition can be found in:

• T.Kyle Petersen, Eulerian Numbers, Birkhaüser, 2015.
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Part I

I. Gamma-nonnegativity in combinatorics
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P-Eulerian polynomials

We let

• P be a poset with n elements,
• ω : P → [n] be an order preserving bijection.

Definition (Stanley, 1972)

The P-Eulerian polynomial is defined as

WP(x) =
∑

w∈L(P,ω)

xdes(w),

where L(P, ω) consists of all permutations (a1, a2, . . . , an) ∈ Sn with the
property

ω−1(ai ) <P ω−1(aj) ⇒ i < j .
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Example

For

(P, ω) = s
s

s
s

1 2

3 4

�
�
�

we have

L(P, ω) = {(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (1, 3, 2, 4)}

and

WP(x) = 1 + 3x + x2.
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Example

For an n-element antichain P (no two elements are comparable)

(P, ω) = s s s s
1 2 3 4

we have

L(P, ω) = Sn

and hence

WP(x) = An(x).
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Note: The polynomial WP(x):

• plays a role in Stanley’s theory of P-partitions,
• does not depend on ω,
• is symmetric, provided P is graded,
• can have non-real roots, as shown by Bränden and Stembridge.
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Theorem (Reiner–Welker, 2005)

The polynomial WP(x) is unimodal for every graded poset P.

Their proof uses deep results from geometric combinatorics. Bränden gave
two elementary proofs of the following:

Theorem (Bränden, 2004, 2008)

The polynomial WP(x) is γ-nonnegative for every graded poset P.
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Derangement polynomials

We let Dn be the set of derangements in Sn. The polynomial

dn(x) :=
∑
w∈Dn

xexc(w)

is the nth derangement polynomial.

Example

dn(x) =



0, if n = 1

x , if n = 2

x + x2, if n = 3

x + 7x2 + x3, if n = 4

x + 21x2 + 21x3 + x4, if n = 5

x + 51x2 + 161x3 + 51x4 + x5, if n = 6,

x + 113x2 + 813x3 + 813x4 + 113x5 + x6, if n = 7.
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Note: The unimodality of dn(x) follows from deep results of Stanley on
local h-polynomials of triangulations of simplices. Other proofs of uni-
modality were given by:

• Brenti (1990),
• Stembridge (1992),
• Zhang (1995).

Note:

dn(x) =



0, if n = 1

x , if n = 2

x(1 + x), if n = 3

x(1 + x)2 + 5x2, if n = 4

x(1 + x)3 + 18x2(1 + x), if n = 5

x(1 + x)4 + 47x2(1 + x)2 + 61x3, if n = 6

x(1 + x)5 + 108x2(1 + x)3 + 479x3(1 + x), if n = 7.
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A descending run of a permutation w ∈ Sn is a maximal string of indices
{a, a + 1, . . . , b} such that w(a) > w(a + 1) > · · · > w(b). An index i ∈
[n − 1] is a double excedance of w if w(i) > i > w−1(i).

Theorem

We have

dn(x) =

bn/2c∑
i=0

ξn,i x
i (1 + x)n−2i ,

where ξn,i equals the number of:

• permutations w ∈ Sn with i runs and no run of size one,
• derangements w ∈ Dn with i excedances and no double excedance.
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Example

For n = 4 the permutations

(4, 3, 2, 1) (4, 2, 3, 1) (4, 1, 3, 2) (3, 2, 4, 1)

(3, 1, 4, 2) (2, 1, 4, 3)

have no run of size one and the derangements

(2, 1, 4, 3) (3, 4, 1, 2) (4, 3, 2, 1) (3, 4, 2, 1)

(4, 3, 1, 2) (4, 1, 2, 3)

have no double excedance, in agreement with

d4(x) = x(1 + x)2 + 5x2.
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This statement, along with several q-analogues and generalizations, was
discovered independently (using different methods) by:

• A–Savvidou (2012),
• Shareshian–Wachs (2010),
• Linusson–Shareshian–Wachs (2012),
• Shin–Zeng (2012),
• Sun–Wang (2014).

For instance:
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We denote by c(w) the number of cycles of w ∈ Sn.

Theorem (Shin–Zeng, 2012)

We have

∑
w∈Dn

qc(w)xexc(w) =

bn/2c∑
i=0

ξn,i (q) x i (1 + x)n−2i ,

where

ξn,i (q) =
∑

w∈Dn(i)

qc(w)

and Dn(i) consists of all elements of Dn with exactly i excedances and no
double excedance.
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Recall that

maj(w) =
∑

i∈Des(w)

i

is the major index of w ∈ Sn.

Theorem (Shareshian–Wachs, 2010)

We have

∑
w∈Dn

pdes(w)qmaj(w)−exc(w)xexc(w) =

bn/2c∑
i=0

ξn,i (p, q) x i (1 + x)n−2i

for some polynomials ξn,i (p, q) in p, q with nonnegative coefficients.

Note: A combinatorial interpretation for ξn,i (p, q) will be given the day a-
fter tomorrow.
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Corollary

We have

dn(−1) =

{
0, if n is odd,

(−1)n/2 ξn,n/2, if n is even,

where ξn,n/2 is the number of up-down permutations in Sn.
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Involutions

We let In be the set of permutations w ∈ Sn with w = w−1 and let

In(x) :=
∑
w∈In

xdes(w).

Example

In(x) =



1, if n = 1

1 + x , if n = 2

1 + 2x + x2, if n = 3

1 + 4x + 4x2 + x3, if n = 4

1 + 6x + 12x2 + 6x3 + x4, if n = 5

1 + 9x + 28x2 + 28x3 + 9x4 + x5, if n = 6,

1 + 12x + 57x2 + 92x3 + 57x4 + 12x5 + x6, if n = 7.
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Note: The polynomial In(x) was first considered by Strehl (1980).

Theorem (Guo–Zeng, 2006)

The polynomial In(x) is symmetric and unimodal for every n.

The proof uses generating functions and recursions.

Conjecture (Guo–Zeng, 2006)

The polynomial In(x) is γ-nonnegative for every n.
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Example

In(x) =



1, if n = 1

1 + x , if n = 2

(1 + x)2, if n = 3

(1 + x)3 + x(1 + x), if n = 4

(1 + x)4 + 2x(1 + x)2 + 2x2, if n = 5

(1 + x)5 + 4x(1 + x)3 + 6x2(1 + x), if n = 6

(1 + x)6 + 6x(1 + x)4 + 18x2(1 + x)2, if n = 7.
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Note: The symmetry of In(x) is evident from the following statements; it
was also shown in a more general context by Hultman.

Proposition (Strehl, 1980)

Let SYT(n) denote the set of standard Young tableaux of size n. Then

In(x) =
∑

Q∈SYT(n)

xdes(Q),

where des(Q) is the number of entries i ∈ [n − 1] for which i + 1 lies in a
row in Q lower than i does.
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Example

1 2 3 , 1 2
3

, 1 3
2

,
1
2
3

I2(x) = 1 + 2x + x2

Proposition (A, 2015)

For n ≥ 1,

In(x) =
1

n!

∑
w∈Sn

Ac(w2)(x) (1− x)n−c(w2),

where c(w) is the number of cycles of w ∈ Sn.
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W -Eulerian polynomials

We let

• (W ,S) be a Coxeter system
• `(w) be the Coxeter length of w ∈W ,

so that W = 〈S : (st)m(s,t) = e〉 for some positive integers m(s, t) with
m(s, t) = m(t, s) and m(s, t) = 1⇔ s = t for s, t ∈ S , and for w ∈W

• des(w) := # {s ∈ S : `(ws) < `(w)}.

Definition

The W -Eulerian polynomial is defined as

W (x) =
∑
w∈W

xdes(w)

for every finite Coxeter group W .
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Note: Finite Coxeter groups include Sn, as well as the group of signed
permutations Bn = {w = (w(1),w(2), . . . ,w(n)) : |w | ∈ Sn}. Then

Bn(x) =
∑
w∈Bn

xdesB(w)

where

• desB(w) := # {i ∈ {0, 1, . . . , n − 1} : w(i) > w(i + 1)}

for w ∈ Bn as above, with w(0) := 0.
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Example

Bn(x) =



1 + x , if n = 1

1 + 6x + x2, if n = 2

1 + 23x + 23x2 + x3, if n = 3

1 + 76x + 230x2 + 76x3 + x4, if n = 4

1 + 237x + 1682x2 + 1682x3 + 237x4 + x5, if n = 5.
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Note:

Bn(x) =



1 + x , if n = 1

(1 + x)2 + 4x , if n = 2

(1 + x)3 + 20x(1 + x), if n = 3

(1 + x)4 + 72x(1 + x)2, if n = 4

(1 + x)5 + 232x(1 + x)3 + 976x2(1 + x), if n = 5

(1 + x)6 + 716x(1 + x)4 + 7664x2(1 + x)2, if n = 6.
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Note: The unimodality of W (x) follows from a deep result of Stanley on
h-polynomials of simplicial convex polytopes.

Theorem (Stembridge, 2007)

The polynomial W (x) is γ-nonnegative for every finite Coxeter group W .

Problem: Find a proof which does not depend on the classification of finite
Coxeter groups.

Note: More information about the γ-coefficients can be given:
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For w ∈ Sn let

pk(w) := # {i ∈ [n − 1] : w(i − 1) < w(i) > w(i + 1)}

be the number of left peaks of w , where w(0) := 0.

Theorem (Petersen, 2007)

We have

Bn(x) =

bn/2c∑
i=0

γBn,i x
i (1 + x)n−2i ,

where
γBn,i = 4i · # {w ∈ Sn : pk(w) = i}.

Note: There is a similar result for Dn(x).
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Narayana polynomials

The Catalan number

Cn :=
1

n + 1

(
2n

n

)
has the interesting q-analogue

Cn(q) =
n−1∑
i=0

1

i + 1

(
n

i

)(
n − 1

i

)
qi ,

known as the nth Narayana polynomial, in the sense that Cn(1) = Cn. The
coefficients of Cn(q) count

• Dyck paths of length 2n, by the number of peaks,
• noncrossing partitions of [n], by the number of blocks,

among many other families of combinatorial objects.
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Note: The polynomial Cn(q) is γ-nonnegative; in fact, as it follows, for
instance, from work of Simion–Ullman,

Cn(q) =

b(n−1)/2c∑
k=0

Ck

(
n − 1

2k

)
qk(1 + q)n−1−2k .

Note: There is an interesting Coxeter group analogue of Cn(q):
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We let

• W be a finite Coxeter group
• T be the set of reflections,
• `T (w) be the length of w ∈W with respect to T ,
• c be a Coxeter element.

Definition (Bessis, Brady–Watt, 2001)

The set of W -noncrossing partitions is defined as

NCW = {w ∈W : `T (w) + `T (w−1c) ≤ `T (c)}.
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We let

CW (q) =
∑

w∈NCW

q`T (w).

Note: We have

CW (1) =
∏̀
i=1

ei + h + 1

ei + 1

for every irreducible Coxeter group W , where e1, e2, . . . , e` are the expo-
nents of W and h is the Coxeter number.
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We have

CW (q) =



n∑
i=0

1

i + 1

(
n

i

)(
n − 1

i

)
qi , if W = Sn

n∑
i=0

(
n

i

)2

qi , if W = Bn

n∑
i=0

(
n

i

)((
n − 1

i

)
+

(
n − 2

i − 2

))
qi , if W = Dn.

Note that CSn(q) = Cn(q), as expected.
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Theorem

The polynomial CW (q) is γ-nonnegative for every finite Coxeter group W .

Problem: Find a proof which does not depend on the classification of finite
Coxeter groups.

Note: The theorem was extended to all well-generated complex reflection
groups by Mühle.
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More examples

There is an endless list of generalizations and similar results, including:

• q-analogues,
• various refinements,
• analogues for colored permutations,
• results for other interesting classes of permutations.
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An example from symmetric functions

We define polynomials Tλ(t) by

∑
λ

Tλ(t) sλ(x) =

∑
k≥1

(1 + t + · · ·+ tk−1) sk(x)

1−
∑
k≥2

(t + t2 + · · ·+ tk−1) sk(x)
,

where the sum on the left ranges over all integer partitions λ and sλ(x) is
a Schur function.

Note: The Tλ(t) are symmetric, with nonnegative coefficients, and satisfy∑
λ`n

f λTλ(t) = An(t),

where f λ is the number of standard Young tableaux of shape λ.
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Theorem (Brenti, 1989)

The polynomial Tλ(t) is real-rooted for every λ.

Note: As a result, the Tλ(t) are γ-nonnegative and their γ-nonnegativity
refines that of the Eulerian polynomials. We will see the day after tomor-
row what the γ-coefficients count.
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Two-sided Eulerian polynomials

Let W be a finite Coxeter group. The two-sided W -Eulerian polynomial is
defined as

W (x , y) =
∑
w∈W

xdes(w)ydes(w
−1).

Conjecture (Gessel, 2005, Petersen)

There exist nonnegative integers γi , j = γWi , j such that

W (x , y) =
∑

2i+j≤n
γi , j(xy)i (x + y)j(1 + xy)n−2i−j ,

where n is the rank of W .

Note: This has been proved for the symmetric and hyperoctahedral groups
by Zhicong Lin. It is an open probelm to find a combinatorial interpretati-
on to the γ-coefficients.
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More examples tomorrow...
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Part II

II. Gamma-nonnegativity in geometry
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Face enumeration of simplicial complexes

We let

• ∆ be a simplicial complex of dimension n − 1,
• fi (∆) be the number of i-dimensional faces.

Definition

The h-polynomial of ∆ is defined as

h(∆, x) =
n∑

i=0

fi−1(∆) x i (1− x)n−i =
n∑

i=0

hi (∆) x i .

The sequence h(∆) = (h0(∆), h1(∆), . . . , hn(∆)) is the h-vector of ∆.

Note: h(∆, 1) = fn−1(∆).
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Example

For the 2-dimensional complex

∆ =

s s
s

s
s
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we have f0(∆) = 8, f1(∆) = 15 and f2(∆) = 8 and hence

h(∆, x) = (1− x)3 + 8x(1− x)2 + 15x2(1− x) + 8x3

= 1 + 5x + 2x2.
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Theorem (Klee, Reisner, Stanley)

The polynomial h(∆, x):

• has nonnegative coefficients if ∆ triangulates a ball or a sphere,

• is symmetric if ∆ triangulates a sphere,

• is unimodal if ∆ is the boundary complex of a simplicial polytope.
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Example

We let

• V be an n-element set,
• 2V be the simplex on the vertex set V ,
• Γ be the first barycentric subdivision of the boundary complex of 2V .

Then h(Γ, x) = An(x). For n = 3

Γ = s s
s

s
s

s�
�
�
�
�@

@
@
@
@

h(∆, x) = (1− x)2 + 6x(1− x) + 6x2 = 1 + 4x + x2.
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Flag complexes and Gal’s conjecture

Definition

A simplicial complex ∆ is called flag if it contains every simplex whose
1-skeleton is a subcomplex of ∆.

Example
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Example

For a 1-dimensional sphere ∆ with m vertices we have

h(∆, x) = 1 + (m − 2)x + x2.

Note that h(∆, x) is γ-nonnegative ⇔ m ≥ 4 ⇔ ∆ is flag.

Conjecture (Gal, 2005)

The polynomial h(∆, x) is γ-nonnegative for every flag triangulation ∆ of
the sphere.

Note: This extends a conjecture of Charney–Davis (1995).
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Example

The boundary complex Σn of the n-dimensional cross-polytope is a flag
triangulation of the (n − 1)-dimensional sphere:

We have

h(Σn, x) = (1 + x)n

for every n ≥ 1.
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Note: Let us write

h(∆, x) =

bn/2c∑
i=0

γi (∆) x i (1 + x)n−2i .

Then Gal’s conjecture asserts that γi (∆) ≥ γi (Σn) for every i and implies
that h2(∆) is bounded below by the coefficient of x2 in

(1 + x)n + γ1(∆)x(1 + x)n−2,

which means the following:

Conjecture

Among all flag triangulations of the (n − 1)-dimensional sphere with given
number m of vertices, the (n− 2)-fold double suspension over the bounda-
ry complex of an (m − 2n + 4)-gon has the smallest possible number of e-
dges.
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Note: By a result of Karu (2006), Gal’s conjecture holds for barycentric
subdivisions of regular CW-spheres.
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The Coxeter complex

For every finite Coxeter group W there exists a flag triangulation Cox(W )
of the sphere, known as the Coxeter complex, such that

h(Cox(W ), x) = W (x) :=
∑
w∈W

xdes(w).

Note: The Coxeter complex Cox(Sn) is isomorphic to the first barycentric
subdivision of the boundary complex of the simplex with n vertices.
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Example

s s s
s
s s s

s

The Coxeter complex for B2

Note: As a result, the γ-nonnegativity of the W -Eulerian polynomial is an
instance of Gal’s conjecture.
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The cluster complex

For every finite Coxeter group W there exists a flag triangulation ∆W of
the sphere, namely the cluster complex of Fomin–Zelevinsky, such that

h(∆W , x) = CW (x) :=
∑

w∈NCW

x`T (w).

s
s
s

s
s

@
@@

�
��

α1 + α2

α1

α2

−α2

−α1

The cluster complex for S2

Note: As a result, the γ-nonnegativity of the CW (x) is an instance of Gal’s
conjecture as well. 62 / 131



The local h-polynomial

We let

• V be an n-element set,
• Γ be a triangulation of the simplex 2V on the vertex set V .

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V ) is defined as

`V (Γ, x) =
∑
F⊆V

(−1)n−|F | h(ΓF , x),

where ΓF is the restriction of Γ to the face F of the simplex 2V .

Note: This polynomial plays a major role in Stanley’s theory of subdivisi-
ons of simplicial (and more general) complexes.
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Example

For the 2-dimensional triangulation

Γ =
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we have

`V (Γ, x) = (1 + 5x + 2x2) − (1 + 2x) − (1 + x) − 1

+ 1 + 1 + 1 − 1 = 2x + 2x2.
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Theorem (Stanley, 1992)

The polynomial `V (Γ, x)

• is symmetric,
• has nonnegative coefficients,
• is unimodal for every regular triangulation Γ of 2V .

Conjecture (A, 2012)

The polynomial `V (Γ, x) is γ-nonnegative, if Γ is a flag triangulation of 2V .

Note: This is stronger than Gal’s conjecture. There is considerable eviden-
ce for both conjectures. For instance:
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Proposition

• (Gal, 2005) h(∆, x) is γ-nonnegative for every (necessarily flag) trian-
gulation ∆ of the sphere which can be obtained from Σn by succes-
sive edge subdivisions,

• (A, 2012) `V (Γ, x) is γ-nonnegative for every (necessarily flag) trian-
gulation Γ which can be obtained from the trivial triangulation of 2V

by successive edge subdivisions.
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Example
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An edge subdivision

67 / 131



Recall that we denote by Σn the boundary complex of the n-dimensional
cross-polytope.

Theorem (A, 2012)

Every flag triangulation ∆ of the (n − 1)-dimensional sphere is a flag, ve-
rtex-induced homology subdivision Γ of Σn. Moreover,

h(∆, x) =
∑
F∈Σn

`F (ΓF , x) (1 + x)n−|F |,

hence the γ-nonnegativity of h(∆, x) is implied by that of the `F (ΓF , x).
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Corollary

For every flag triangulation ∆ of the (n − 1)-dimensional sphere,

h(∆, x) ≥ (1 + x)n

holds coefficientwise.

Note: This holds, more generally, for doubly Cohen–Macaulay flag comple-
xes of dimension n − 1.
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Barycentric subdivision

For the barycentric subdivision Γ of the simplex 2V on the vertex set V

s s s

s
s ss

�
�
�
�
�
�
�
�
�

�
�
�
�
�
��

A
A
A
A
A
A
A
A
A

Q
Q
Q
Q
Q
QQ

Stanley showed that

`V (Γ, x) =
n∑

k=0

(−1)n−k
(
n

k

)
Ak(x) =

∑
w∈Dn

xexc(w) = dn(x),

whose γ-nonnegativity has already been discussed.
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Edgewise subdivision

The r -fold edgewise subdivision esdr (2V ) is a standard way to triangulate
a simplex 2V so that each face F ∈ 2V is subdivided into rdim(F ) simplices
of the same dimension.

Example

s s s s
s
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s
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�
�

The 3-fold edgewise subdivision of a 2-simplex
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To be more precisely, we let

• e1, e2, . . . , ed be the unit coordinate vectors in Rd ,
• V = {0, re1, r(e1 + e2), . . . , r(e1 + e2 + · · ·+ ed)}.

Then esdr (2V ) is realized as the triangulation of the geometric simplex
with vertex set V whose maximal faces are the d-dimensional simplices
into which that simplex is dissected by the hyperplanes of the form

• xi = k,
• xi − xj = k ,

with k ∈ Z.

Note: The triangulation esdr (2V ) is flag.
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Note: The edgewise subdivision has appeared in several mathematical
contexts, including:

• algebraic topology (Freudenthal, 1942)
• toric geometry (Kempf–Knudsen–Mumford–Saint-Donat, 1972)
• algebraic K -theory (Grayson, 1989)
• topological cyclic homology (Bökstedt–Hsiang–Madsen, 1993)
• combinatorial commutative algebra (Brun–Römer, 2005)
• combinatorial commutative algebra (Brenti–Welker, 2009)
• discrete geometry (Haase–Paffenholz–Piechnik–Santos, 2014).
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We let

• S(n, r) denote the set of sequences

w = (w0,w1, . . . ,wn) ∈ {0, 1, . . . , r − 1}n+1

having no two consecutive entries equal and satisfying w0 = wn = 0

and for such w ∈ S(n, r) we set

• asc(w) := # {i ∈ {0, 1, . . . , n − 1} : wi < wi+1}.

We say that an index i ∈ [n − 1] is a

• double ascent of w if wi−1 < wi < wi+1 and
• double descent of w if wi−1 > wi > wi+1.
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Theorem (A, 2014)

For every n-element set V ,

`V (esdr (2V ), x) =
∑

w∈S(n,r)

xasc(w)

=

bn/2c∑
i=0

ξn,r ,i x
i (1 + x)n−2i ,

where ξn,r ,i is the number of (w0,w1, . . . ,wn) ∈ S(n, r) which have exactly
i ascents and satisfy the following: for every double ascent k there exists a
double descent ` > k such that wk = w` and wk ≤ wj for k < j < `.
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Note: One can define the r -fold edgewise subdivision for any simplicial
complex.

Example

The 4-fold edgewise subdivision of the 2-simplex and the 3-fold edgewise
subdivision of its barycentric subdivision
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More barycentric subdivisions

Consider the barycentric subdivision K of the cubical barycentric subdivi-
sion of the simplex 2V .

Note: The sum of the coefficients of `V (K , x) is equal to the number of

• even derangements in Bn,
• derangements in Dn,

where Bn is the group of signed permutations of [n] and Dn is the sub-
group of even signed permutations.
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Example

`V (K , x) =



0, if n = 1

3x , if n = 2

7x + 7x2, if n = 3

15x + 87x2 + 15x3, if n = 4

31x + 551x2 + 551x3 + 31x4, if n = 5

63x + 2803x2 + 8243x3 + 2803x4 + 63x5, if n = 6.

Conjecture

The polynomial `V (K , x) has only real roots.
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For w = (w1,w2, . . . ,wn) ∈ Bn we let

• excA(w) := # {i ∈ [n − 1] : w(i) > i},
• neg(w) := # {i ∈ [n] : w(i) < 0}.

Definition (Bagno–Garber, 2006)

The flag-excedance number of w ∈ Bn is defined as

fex(w) = 2 · excA(w) + neg(w).

Example: For

• w = (3,−5, 1, 4,−2)

we have excA(w) = 1 and neg(w) = 2, so fex(w) = 4.
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Theorem (A, 2014)

We have

`V (K , x) =
∑
w

x fex(w)/2

=

bn/2c∑
i=0

ξ+
n,i x

i (1 + x)n−2i ,

where the first sum runs over all derangements w ∈ Dn and ξ+
n,i is the

number of elements of Bn with i descending runs, none of size one, and
positive last coordinate.

Problem: Find a simple combinatorial proof of the second expression.
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Consider the second barycentric subdivision Γ2 of the simplex 2V .

Note: The sum of the coefficients of `V (Γ2, x) equals the number of pairs
(u, v) ∈ Sn ×Sn of permutations with no common fixed point.

Problem: Find a combinatorial interpretation for:

• the coefficients of `V (Γ2, x),
• the coefficients in the expansion

`V (Γ2, x) =
∑

γi x
i (1 + x)n−2i .

Problem: Study the barycentric subdivision of more general polyhedral
subdivisions of the simplex.
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Generalization to r -colored permutations

We let Λ denote the 2-fold edgewise subdivision of the barycentric subdi-
vision of the simplex 2V .

Proposition (A–Savvidou, 2012)

For every n-element set V ,

`V (K , x) = `V (Λ, x).

This makes it natural to consider the r -fold edgewise subdivision Λr of the
barycentric subdivision of the simplex 2V .
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Example

The subdivision Λ3 of the 2-simplex on the right.
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Recall that a permutation w = (w1,w2, . . . ,wn) ∈ Sn is r -colored if each
wi has been colored with one of the elements of {0, 1, . . . , r − 1}. We let

• Sr
n be the group of r -colored permutations of [n]

and for w ∈ Sr
n as above

• excA(w) := # {i ∈ [n − 1] : w(i) > i has zero color},
• csum(w) be the sum of the colors of the entries of w .

The flag-excedance number of w is defined by Bagno–Garber as

fex(w) = r · excA(w) + csum(w).

We call w balanced if fex(w) is divisible by r .
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Theorem (A, 2014)

We have

`V (Λr , x) =
∑
w

x fex(w)/r

=

bn/2c∑
i=0

ξ+
n,r ,i x

i (1 + x)n−2i ,

where the first sum runs over all balanced derangements w ∈ Sr
n and ξ+

n,r ,i

is the number of elements of Sr
n with i descending runs, none of size one,

and last coordinate of zero color.
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Cluster subdivision

We let

• W be a finite Coxeter group of rank n,
• S be a genarating set of simple reflections,
• WJ be the standard parabolic subgroup corresponding to J ⊆ S .

The cluster complex ∆W has a positive part ∆+
W which naturally defines a

triangulation of the simplex 2S , called the cluster subdivision and denoted
by ΓW .

Note: The cluster subdivision is flag.
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Example

The cluster subdivision for S3:

α
2

3

2

α  +  α

α   +   α   +   α
1 3

α
1

α
3

2
α   +   α

21
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Note: By definition, we have

`S(ΓW , x) =
∑
J⊆S

(−1)|SrJ| h(∆+
WJ
, x)

where

h(∆+
W , x) =



n∑
i=0

1

i + 1

(
n

i

)(
n − 1

i

)
x i , if W = Sn+1

n∑
i=0

(
n

i

)(
n − 1

i

)
x i , if W = Bn

n∑
i=0

((
n

i

)(
n − 2

i

)
+

(
n − 2

i − 2

)(
n − 1

i

))
x i , if W = Dn.
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Theorem (A–Savvidou, 2012)

The local h-polynomial of the cluster subdivision ΓW is γ-nonnegative for
every finite Coxeter group W .

Problem: Find a proof which does not depend on the classification of finite
Coxeter groups.
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Note: Writing

γ(W , x) =

bn/2c∑
i=0

γi (W )x i , ξ(W , x) =

bn/2c∑
i=0

ξi (W )x i ,

where

CW (x) =

bn/2c∑
i=0

γi (W ) x i (1 + x)n−2i ,

`S(ΓW , x) =

bn/2c∑
i=0

ξi (W ) x i (1 + x)n−2i ,

we have

γ(W , x) =
∑
J⊆S

ξ(WJ , x).
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Let us also write

`S(ΓW , x) =
n∑

i=0

`i (W )x i .

We call a singleton block {b} of a noncrossing partition π of [n] nested if
some block of π contains elements a and c such that a < b < c ; otherwise
the block {b} is nonnested.

Example

A noncrossing partition of [9] with nested singleton block {3} and a non-
nested singleton block {7}:

5 6 7431 2 98

Note: An analogous definition exists for type B noncrossing partitions.
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Theorem (A–Savvidou, 2012)

The coefficient `i (W ) is equal to:

• the number of noncrossing partitions π of [n] with i blocks, such that
every singleton block of π is nested, if W = Sn+1,

• the number of noncrossing partitions π of type Bn with no zero block
and i pairs {B,−B} of nonzero blocks, such that every positive sin-
gleton block of π is nested, if W = Bn,

• n − 2 times the number of noncrossing partitions of [n − 1] having i
blocks, if W = Dn.
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Theorem (A–Savvidou, 2012)

The coefficient ξi (W ) is equal to:

• the number of noncrossing partitions of [n] which have no singleton
blocks and a total of i blocks, if W = Sn+1,

• the number of noncrossing partitions of type Bn which have no zero
block, no singleton blocks and a total of i pairs {B,−B} of nonzero
blocks, if W = Bn.
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Corollary (A–Savvidou, 2012)

We have ξ0(W ) = 0 and

ξi (W ) =



1

n − i + 1

(
n

i

)(
n − i − 1

i − 1

)
, if W = Sn+1

(
n

i

)(
n − i − 1

i − 1

)
, if W = Bn

n − 2

i

(
2i − 2

i − 1

)(
n − 2

2i − 2

)
, if W = Dn

for 1 ≤ i ≤ bn/2c.
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For a summery of these results see

• C.A. Athanasiadis, A survey of subdivisions and local h-vectors, in
“The Mathematical Legacy of Richard P. Stanley”, AMS, 2016.
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Part III

III. Methods
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Methods

Methods to prove γ-nonnegativity include:

• valley hopping (Foata–Schützenberger–Strehl)
• combinatorial expansions (Bränden, Shin–Zeng, Stembridge)
• symmetric functions (Shareshian–Wachs)
• poset decompositions (Simion–Ullman, Petersen, Mühle)
• poset homology, shellability (Linusson–Shareshian–Wachs)
• enriched P-partitions (Stembridge, Petersen)
• combinatorics of subdivisions (A–Savvidou).
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Valley hopping

We have seen several applications of valley hopping. For more see, for in-
stance:

• P. Bränden, Actions on permutations and unimodality of descent poly-
nomials, European J. Combin. 29 (2008), 514–531.

• A. Postnikov, V. Reiner and L. Williams, Faces of generalized permu-
tohedra, Doc. Math. 13 (2008), 207–273.

• Z. Lin and J. Zeng, The γ-positivity of basic Eulerian polynomials via
group actions, J. Combin. Theory Series A 135 (2015), 112–129.
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Symmetric functions

For Θ ⊆ Z we let

• Stab(Θ) be the set of subsets of Θ which do not contain two successi-
ve integers.

Theorem (Shareshian–Wachs, 2010)

We have

∑
w∈Sn

qmaj(w)−exc(w)texc(w) =

b(n−1)/2c∑
i=0

γn,i (q) t i (1 + t)n−1−2i

where
γn,i (q) =

∑
qmaj(w−1),

the sum running over all permutations w ∈ Sn with i descents, such that
Des(w) ∈ Stab([n − 2]).
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The proof of Shareshian–Wachs uses symmetric functions. Recall the
polynomials Tλ(t) defined by

∑
λ

Tλ(t) sλ(x) =

∑
k≥1

(1 + t + · · ·+ tk−1) sk(x)

1−
∑
k≥2

(t + t2 + · · ·+ tk−1) sk(x)

and define the Rλ(t) similarly by the equality

∑
λ

Rλ(t) sλ(x) =
1

1−
∑
k≥2

(t + t2 + · · ·+ tk−1) sk(x)
.
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Note: We have ∑
λ`n

f λTλ(t) = An(t)

and ∑
λ`n

f λRλ(t) = dn(t),

where f λ is the number of standard Young tableaux of shape λ.

Note: The symmetry and unimodality of the polynomials Rλ(t) and Tλ(t)
was shown by Brenti (1990).
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Note: We have ∑
λ

Tλ(t) sλ(x) =
(1− t)H(x , 1)

H(x , t)− tH(x ; 1)

and ∑
λ

Rλ(t) sλ(x) =
1− t

H(x , t)− tH(x ; 1)
,

where

H(x , z) =
∑
n≥0

sn(x)zn =
1∏

i≥1

(1− xiz)
.

Note: The generating functions on the right-hand sides have several impor-
tant algebraic-geometric and combinatorial interpretations.
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The proof uses the following result. For a word w = a1a2 · · · an on the
alphabet Z>0 = {1, 2, . . . } we set xw = xa1xa2 · · · xan .

Theorem (Gessel, unpublished)

We have

(1− t)H(x , 1)

H(x , t)− tH(x ; 1)
=
∑
n≥1

∑
w∈Un

xw tdes(w)(1 + t)n−1−2des(w),

where Un stands for the set of words w of length n on the alphabet Z>0

such that Des(w) ∈ Stab([n − 2]), and

1− t

H(x , t)− tH(x ; 1)
= 1 +

∑
n≥2

∑
w∈Ũn

xw tdes(w)+1(1 + t)n−2−2des(w),

where Ũn stands for the set of words w of length n on the alphabet Z>0

such that Des(w) ∈ Stab({2, . . . , n − 2}).
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Corollary

We have

Tλ(t) =
∑

tdes(Q)(1 + t)n−1−2des(Q),

where the sum ranges over all standard Young tableaux Q ∈ SYT(λ) such
that Des(Q) ∈ Stab([n − 2]), and

Rλ(t) =
∑

tdes(Q)+1(1 + t)n−2des(Q)−2,

where the sum ranges over all standard Young tableaux Q ∈ SYT(λ) such
that Des(Q) ∈ Stab({2, . . . , n − 2}).

104 / 131



Sketch of proof. Use Gessel’s result, interpret the elements of Un and Ũn

as reading words of semistandard ribbon skew tableaux, express the result-
ing ribbon skew Schur functions in terms of ordinary skew Schur functions
and extract the coefficient of sλ(x) to get the desired expressions for Tλ(t)
and Rλ(t).

Sketch of proof of Shareshian–Wachs. Let us write

An(q, t) :=
∑
w∈Sn

qmaj(w)−exc(w)texc(w).

The “Eulerian quasisymmetric function” expansion of

(1− t)H(x , 1)

H(x , t)− tH(x ; 1)
=
∑
λ

Tλ(t) sλ(x),

due to Shareshian–Wachs (2010), gives∑
w∈Sn

Fn,DEX(w)(x) texc(w) =
∑
λ`n

Tλ(t) sλ(x).
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Taking the stable principal specialization of both hand sides, we get

An(q, t)

(1− q)(1− q2) · · · (1− qn)
=
∑
λ`n

Tλ(t)
f λ(q)

(1− q)(1− q2) · · · (1− qn)

and conclude that

An(q, t) =
∑
λ`n

Tλ(t) f λ(q),

where

f λ(q) :=
∑

Q∈SYT(λ)

qmaj(Q).

The γ-expansion of Tλ(t), given in the corollary, as well as standard mani-
pulations and properties of the Robinson–Schensted correspondence, yield
the desired expansion for An(q, t).
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Note. Similarly, the quasisymmetric function expansion

1− t

H(x , t)− tH(x ; 1)
=
∑
n≥0

∑
w∈Dn

Fn,DEX(w)(x) texc(w),

due to Shareshian–Wachs (2010), gives∑
w∈Dn

Fn,DEX(w)(x) texc(w) =
∑
λ`n

Rλ(t) sλ(x).

Taking the stable principal specialization yields the following result:
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Theorem

We have

∑
w∈Dn

qmaj(w)−exc(w)texc(w) =
∑
λ`n

Rλ(t) f λ(q),

=

b(n−2)/2c∑
i=0

ξn,i (q) t i+1(1 + t)n−2i−2,

where

ξn,i (q) =
∑

qmaj(w−1),

the sum running over all permutations w ∈ Sn with i descents, such that
Des(w) ∈ Stab({2, . . . , n − 2}).
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Using nonstable principal specialization instead yields the following refine-
ment:

Theorem

We have

∑
w∈Dn

pdes(w)qmaj(w)−exc(w)texc(w) = p ·
∑
λ`n

Rλ(t) f λ(p, q),

=

b(n−2)/2c∑
i=0

ξn,i (p, q) t i+1(1 + t)n−2i−2

where

f λ(p, q) :=
∑

Q∈SYT(λ)

pdes(Q)qmaj(Q)
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Theorem

and

ξn,i (p, q) = p ·
∑

pdes(w
−1)qmaj(w−1),

the sum running over all permutations w ∈ Sn with i descents, such that
Des(w) ∈ Stab({2, . . . , n − 2}).

Similarly:
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Theorem

We have∑
w∈Sn

pdes
∗(w)qmaj(w)−exc(w)texc(w) =

∑
λ`n

Tλ(t) f λ(p, q),

=

b(n−1)/2c∑
i=0

γn,i (p, q) t i (1 + t)n−1−2i ,

where

des∗(w) =


des(w), if w(1) = 1

des(w)− 1, if w(1) 6= 1

for w ∈ Sn and

γn,i (p, q) =
∑

pdes(w
−1)qmaj(w−1),

the sum running over all permutations w ∈ Sn with i descents, such that
Des(w) ∈ Stab([n − 2]).
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Combinatorics of subdivisions

Consider again the polynomial

f +
n (x) =

∑
w

x fex(w)/2,

where the first sum runs over all derangements w ∈ Bn with an even num-
ber of negative signs. Let us use the fact that

f +
n (x) = `V (K , x)

to find a formula for f +
n (x) which implies γ-nonnegativity.
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Let us recall the definition of `V (Γ, x). We let

• V be an n-element set,
• Γ be a triangulation of the simplex 2V on the vertex set V .

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V ) is defined as

`V (Γ, x) =
∑
F⊆V

(−1)n−|F | h(ΓF , x),

where ΓF is the restriction of Γ to the face F of the simplex 2V .
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We also recall that the link of a simplicial complex ∆ at a face F ∈ ∆ is
defined as link∆(F ) := {G r F : F ⊆ G ∈ ∆}.

Proposition (Stanley, 1992)

For every triangulation ∆′ of a pure simplicial complex ∆,

h(∆′, x) =
∑
F∈∆

`F (∆′F , x) h(link∆(F ), x).

114 / 131



Corollary

For every triangulation ∆ of the boundary complex Σn of the n-dimensi-
onal cross-polytope we have

h(∆, x) =
∑
F∈Σn

`F (∆F , x) (1 + x)n−|F |.

In particular, if `F (∆F , x) is γ-nonnegative for every F ∈ Σn, then so is
h(∆, x).

Example

The polynomial h(esdr (Σn), x) is γ-nonnegative for all n, r .
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We let

• V be an n-element set,
• Γ be a triangulation of the simplex 2V on the vertex set V ,
• E be a face of Γ.

Definition (A, 2012)

The relative local h-polynomial of Γ (with respect to V ) at E ∈ Γ is defi-
ned as

`V (Γ,E , x) =
∑

σ(E)⊆F⊆V

(−1)d−|F | h(linkΓF
(E ), x),

where σ(E ) is the smallest face of 2V containing E .

Note: `V (Γ,∅, x) = `V (Γ, x).
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Example

We let

• Γ be the barycentric subdivision of 2V ,
• E be a face of Γ given by the chain S1 ⊂ S2 ⊂ · · · ⊂ Sk of nonempty

subsets of V .

Then

`V (Γ,E , x) = dn0(x)An1(x)An2(x) · · ·Ank (x),

where d0(x) := 1, n0 = |V r Sk | and ni = |Si r Si−1| for 1 ≤ i ≤ k .
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Theorem (A, 2012)

The polynomial `V (Γ,E , x)

• is symmetric, and
• has nonnegative coefficients.

Theorem (Katz–Stapledon, 2016)

The polynomial `V (Γ,E , x) is unimodal for every regular triangulation Γ of
2V and every E ∈ Γ.
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Proposition (A, 2012)

For every triangulation Γ of the simplex 2V and every triangulation Γ′ of Γ,

`V (Γ′, x) =
∑
E∈Γ

`E (Γ′E , x) `V (Γ,E , x).
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We now note that K is a subdivision of the simplicial barycentric subdivi-
sion of 2V

and apply the previous formula when

• Γ is the simplicial barycentric subdivision of 2V ,
• Γ′ = K .
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Note: Each face E ∈ Γ is subdivided by Γ′ into 2dim(E) simplices of the
same dimension. This implies that

`E (Γ′E , x) =

{
x |E |/2, if |E | is even

0, otherwise.

We deduce the following formula for `V (K , x) = f +
n (x), which implies its

γ-nonnegativity.

Proposition

f +
n (x) =

∑(
n

r0, r1, . . . , r2k

)
xk dr0(x)Ar1(x) · · ·Ar2k

(x),

where the sum ranges over all k ≥ 0 and over all sequences (r0, r1, . . . , r2k)
of integers which satisfy r0 ≥ 0, r1, . . . , r2k ≥ 1 and sum to n.
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Example

Applying the same formula to the second barycentric subdivision Γ2 of 2V

we get

`V (Γ2, x) =
∑(

n

r0, r1, . . . , rk

)
dk(x) dr0(x)Ar1(x) · · ·Ark (x),

where the sum ranges over all k ≥ 0 and over all sequences (r0, r1, . . . , rk)
of integers which satisfy r0 ≥ 0, r1, . . . , rk ≥ 1 and sum to n.

Note: This implies the γ-nonnegativity of `V (Γ2, x).
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Poset homology

We let

• P be a finite graded poset with rank function ρP ,
• Q be a finite graded poset with rank function ρQ .

Definition (Björner–Welker, 2005)

The Rees product of P and Q is defined as

P ∗ Q = {(p, q) ∈ P × Q : ρP(p) ≥ ρQ(q)},

with partial order defined by setting (p1, q1) ≤ (p2, q2) if and only if:

• p1 ≤ p2 holds in P,
• q1 ≤ q2 holds in Q, and
• ρP(p2)− ρP(p1) ≥ ρQ(q2)− ρQ(q1).
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Note: Equivalently, (p1, q1) is covered by (p2, q2) if and only if

• p1 is covered by p2 in P, and
• either q1 = q2, or q1 is covered by q2 in Q.

Example
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Example
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For a graded poset P of rank n + 1 with minimum element 0̂, maximum
element 1̂ and rank function ρ : P → {0, 1, . . . , n + 1}, we let

• P̄ = P r {0̂, 1̂},

• µ(P̄) = µP(0̂, 1̂),

where µP is the Möbius function of P. For S ⊆ [n] we set

• βP(S) = (−1)|S|−1µ(P̄S),

where
P̄S = {x ∈ P : ρ(x) ∈ S}

is a rank-selected subposet.
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For positive integers n, x we let

• Tx ,n be the poset whose Hasse diagram is a complete x-ary tree of
height n − 1, with root at the bottom.

Theorem (Linusson–Shareshian–Wachs, 2012)

For every EL-shellable poset P of rank n + 1 and every positive integer x
we have

|µ(P̄ ∗ Tx ,n)| =
∑

S∈Stab({2,...,n−1})

βP([n] r S) x |S | (1 + x)n−1−2|S| +

∑
S∈Stab({2,...,n−2})

βP([n − 1] r S) x |S|+1 (1 + x)n−2−2|S |,

where Stab(Θ) denotes the set of all subsets of Θ which do not contain
two consecutive integers.
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We will apply this to the set

• B r
n of subsets of [n], with each element r -colored, partially ordered by

inclusion, with a maximum element 1̂ attached

Example
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to prove the following result, mentioned yesterday:

Theorem (A, 2014)

We have

f +
n,r (x) :=

∑
w

x fex(w)/r

=

bn/2c∑
i=0

ξ+
n,r ,i x

i (1 + x)n−2i ,

where the first sum runs over all balanced derangements w ∈ Sr
n and ξ+

n,r ,i

is the number of elements of Sr
n with i descending runs, none of size one,

and last coordinate of zero color.
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Using the definition of the Möbius function and a result of Shareshian–
Wachs (2009), one can show that

|µ(B̄ r
n ∗ Tx ,n)| = xnd r

n(1/x),

where

d r
n(x) = f +

n,r (x) +
∑

xd
fex(w)

r
e,

the sum ranging over all nonbalanced derangements w ∈ Sr
n. Comparing

with the expression provided by the result of Linusson–Shareshian–Wachs,
one can conclude that

xn f +
n,r (1/x) =

∑
S∈Stab({2,...,n−1})

βP([n] r S) x |S| (1 + x)n−1−2|S |,

where P = B r
n. An easy EL-labeling for P gives a combinatorial interpre-

tation to the numbers βP(S) and yields the desired γ-expansion for f +
n,r (x).
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Thank you for your attention!
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