Gamma-Nonnegativity in Combinatorics and Geometry

Christos Athanasiadis
University of Athens
September 12-14, 2016

Outline

(1) Introduction
(2) Gamma-nonnegativity in combinatorics
(3) Gamma-nonnegativity in geometry
(4) Methods

Part \varnothing

Introduction

Symmetry and unimodality

Definition

A polynomial $f(x) \in \mathbb{R}[x]$ is

- symmetric (or palindromic) and
- unimodal
if for some $n \in \mathbb{N}$,

$$
f(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n}
$$

with

- $p_{k}=p_{n-k}$ for $0 \leq k \leq n$ and
- $p_{0} \leq p_{1} \leq \cdots \leq p_{\lfloor n / 2\rfloor}$.

The number $n / 2$ is called the center of symmetry.

Example: Eulerian polynomial

We let

- \mathfrak{S}_{n} be the group of permutations of $[n]:=\{1,2, \ldots, n\}$
and for $w \in \mathfrak{S}_{n}$
- $\operatorname{des}(w):=\#\{i \in[n-1]: w(i)>w(i+1)\}$
- $\operatorname{exc}(w):=\#\{i \in[n-1]: w(i)>i\}$
be the number of descents and excedances of w, respectively. The polynomial

$$
A_{n}(x):=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{exc}(w)}
$$

is the nth Eulerian polynomial.

Example

$$
A_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ 1+4 x+x^{2}, & \text { if } n=3 \\ 1+11 x+11 x^{2}+x^{3}, & \text { if } n=4 \\ 1+26 x+66 x^{2}+26 x^{3}+x^{4}, & \text { if } n=5 \\ 1+57 x+302 x^{2}+302 x^{3}+57 x^{4}+x^{5}, & \text { if } n=6\end{cases}
$$

Note: The Eulerian polynomial $A_{n}(x)$ is well known to be symmetric and unimodal. Is there a simple combinatorial proof?

Gamma-nonnegativity

Proposition (Bränden, 2004, Gal, 2005)

Suppose $f(x) \in \mathbb{R}[x]$ has nonnegative coefficients and only real roots and that it is symmetric, with center of symmetry $n / 2$. Then

$$
f(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \gamma_{i} x^{i}(1+x)^{n-2 i}
$$

for some nonnegative real numbers $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\lfloor n / 2\rfloor}$.

Definition

The polynomial $f(x)$ is called γ-nonnegative if there exist nonnegative real numbers $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\lfloor n / 2\rfloor}$ as above, for some $n \in \mathbb{N}$.

Example

$$
A_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ (1+x)^{2}+2 x, & \text { if } n=3 \\ (1+x)^{3}+8 x(1+x), & \text { if } n=4 \\ (1+x)^{4}+22 x(1+x)^{2}+16 x^{2}, & \text { if } n=5 \\ (1+x)^{5}+52 x(1+x)^{3}+186 x^{2}(1+x), & \text { if } n=6\end{cases}
$$

Note: Every γ-nonnegative polynomial (even if it has nonreal roots) is symmetric and unimodal.

An index $i \in[n]$ is called a double descent of a permutation $w \in \mathfrak{S}_{n}$ if

$$
w(i-1)>w(i)>w(i+1)
$$

where $w(0)=w(n+1)=n+1$.

Theorem (Foata-Schützenberger, 1970)

We have

$$
A_{n}(x)=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, i} x^{i}(1+x)^{n-1-2 i}
$$

where $\gamma_{n, i}$ is the number of $w \in \mathfrak{S}_{n}$ which have no double descent and $\operatorname{des}(w)=i$. In particular, $A_{n}(x)$ is symmetric and unimodal.

Elegant proof by Foata-Schützenberger (1970) and Foata-Strehl (1974): They partition \mathfrak{S}_{n} into equivalence classes, so that for each class \mathcal{K},

$$
\sum_{w \in \mathcal{K}} x^{\operatorname{des}(w)}=x^{i}(1+x)^{n-1-2 i}
$$

for some i. The permutations within each class have the same peaks and valleys.

Example

For the class of $w=(2,4,6,3,1,5) \in \mathfrak{S}_{6}$ we have $n=6$ and $i=1$,

SO

$$
\sum_{w \in \mathcal{K}} x^{\operatorname{des}(w)}=x(1+x)^{3} .
$$

Recall that a permutation $w \in \mathfrak{S}_{n}$ is said to be up-down if

$$
w(1)<w(2)>w(3)<\cdots
$$

Corollary

We have

$$
A_{n}(-1)= \begin{cases}0, & \text { if } n \text { is even } \\ (-1)^{(n-1) / 2} \gamma_{n,(n-1) / 2}, & \text { if } n \text { is odd }\end{cases}
$$

where $\gamma_{n,(n-1) / 2}$ is the number of up-down permutations in \mathfrak{S}_{n}.

Recently, gamma-nonnegativity attracted attention after the work of

- Bränden $(2004,2008)$ on P-Eulerian polynomials,
- Gal (2005) on flag triangulations of spheres.

A book exposition can be found in:

- T.Kyle Petersen, Eulerian Numbers, Birkhaüser, 2015.

Part I

I. Gamma-nonnegativity in combinatorics

P-Eulerian polynomials

We let

- P be a poset with n elements,
- $\omega: P \rightarrow[n]$ be an order preserving bijection.

Definition (Stanley, 1972)

The P-Eulerian polynomial is defined as

$$
W_{P}(x)=\sum_{w \in \mathcal{L}(P, \omega)} x^{\operatorname{des}(w)}
$$

where $\mathcal{L}(P, \omega)$ consists of all permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathfrak{S}_{n}$ with the property

$$
\omega^{-1}\left(a_{i}\right)<p \omega^{-1}\left(a_{j}\right) \Rightarrow i<j .
$$

Example

For

we have

$$
\mathcal{L}(P, \omega)=\{(1,2,3,4),(1,2,4,3),(2,1,3,4),(2,1,4,3),(1,3,2,4)\}
$$

and

$$
W_{P}(x)=1+3 x+x^{2}
$$

Example

For an n-element antichain P (no two elements are comparable)

$$
(P, \omega) \quad=\quad \begin{array}{llll}
\bullet & \bullet & \bullet \\
1 & 2 & \\
3
\end{array}
$$

we have

$$
\mathcal{L}(P, \omega)=\mathfrak{S}_{n}
$$

and hence

$$
W_{P}(x)=A_{n}(x)
$$

Note: The polynomial $W_{P}(x)$:

- plays a role in Stanley's theory of P-partitions,
- does not depend on ω,
- is symmetric, provided P is graded,
- can have non-real roots, as shown by Bränden and Stembridge.

Theorem (Reiner-Welker, 2005)

The polynomial $W_{P}(x)$ is unimodal for every graded poset P.

Their proof uses deep results from geometric combinatorics. Bränden gave two elementary proofs of the following:

Theorem (Bränden, 2004, 2008)

The polynomial $W_{P}(x)$ is γ-nonnegative for every graded poset P.

Derangement polynomials

We let \mathcal{D}_{n} be the set of derangements in \mathfrak{S}_{n}. The polynomial

$$
d_{n}(x):=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{exc}(w)}
$$

is the nth derangement polynomial.

Example

$$
d_{n}(x)= \begin{cases}0, & \text { if } n=1 \\ x, & \text { if } n=2 \\ x+x^{2}, & \text { if } n=3 \\ x+7 x^{2}+x^{3}, & \text { if } n=4 \\ x+21 x^{2}+21 x^{3}+x^{4}, & \text { if } n=5 \\ x+51 x^{2}+161 x^{3}+51 x^{4}+x^{5}, & \text { if } n=6, \\ x+113 x^{2}+813 x^{3}+813 x^{4}+113 x^{5}+x^{6}, & \text { if } n=7 .\end{cases}
$$

Note: The unimodality of $d_{n}(x)$ follows from deep results of Stanley on local h-polynomials of triangulations of simplices. Other proofs of unimodality were given by:

- Brenti (1990),
- Stembridge (1992),
- Zhang (1995).

Note:

$$
d_{n}(x)= \begin{cases}0, & \text { if } n=1 \\ x, & \text { if } n=2 \\ x(1+x), & \text { if } n=3 \\ x(1+x)^{2}+5 x^{2}, & \text { if } n=4 \\ x(1+x)^{3}+18 x^{2}(1+x), & \text { if } n=5 \\ x(1+x)^{4}+47 x^{2}(1+x)^{2}+61 x^{3}, & \text { if } n=6 \\ x(1+x)^{5}+108 x^{2}(1+x)^{3}+479 x^{3}(1+x), & \text { if } n=7 .\end{cases}
$$

A descending run of a permutation $w \in \mathfrak{S}_{n}$ is a maximal string of indices $\{a, a+1, \ldots, b\}$ such that $w(a)>w(a+1)>\cdots>w(b)$. An index $i \in$ [$n-1$] is a double excedance of w if $w(i)>i>w^{-1}(i)$.

Theorem

We have

$$
d_{n}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, i} x^{i}(1+x)^{n-2 i}
$$

where $\xi_{n, i}$ equals the number of:

- permutations $w \in \mathfrak{S}_{n}$ with i runs and no run of size one,
- derangements $w \in \mathcal{D}_{n}$ with i excedances and no double excedance.

Example

For $n=4$ the permutations

$$
\begin{array}{cccc}
(4,3,2,1) & (4,2,3,1) & (4,1,3,2) & (3,2,4,1) \\
& (3,1,4,2) & (2,1,4,3)
\end{array}
$$

have no run of size one and the derangements

$$
\begin{array}{cccc}
(2,1,4,3) & (3,4,1,2) & (4,3,2,1) & (3,4,2,1) \\
& (4,3,1,2) & (4,1,2,3)
\end{array}
$$

have no double excedance, in agreement with

$$
d_{4}(x)=x(1+x)^{2}+5 x^{2}
$$

This statement, along with several q-analogues and generalizations, was discovered independently (using different methods) by:

- A-Savvidou (2012),
- Shareshian-Wachs (2010),
- Linusson-Shareshian-Wachs (2012),
- Shin-Zeng (2012),
- Sun-Wang (2014).

For instance:

We denote by $c(w)$ the number of cycles of $w \in \mathfrak{S}_{n}$.

Theorem (Shin-Zeng, 2012)

We have

$$
\sum_{w \in \mathcal{D}_{n}} q^{c(w)} x^{\operatorname{exc}(w)}=\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, i}(q) x^{i}(1+x)^{n-2 i}
$$

where

$$
\xi_{n, i}(q)=\sum_{w \in \mathcal{D}_{n}(i)} q^{c(w)}
$$

and $\mathcal{D}_{n}(i)$ consists of all elements of \mathcal{D}_{n} with exactly i excedances and no double excedance.

Recall that

$$
\operatorname{maj}(w)=\sum_{i \in \operatorname{Des}(w)} i
$$

is the major index of $w \in \mathfrak{S}_{n}$.

Theorem (Shareshian-Wachs, 2010)

We have

$$
\sum_{w \in \mathcal{D}_{n}} p^{\operatorname{des}(w)} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} x^{\operatorname{exc}(w)}=\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, i}(p, q) x^{i}(1+x)^{n-2 i}
$$

for some polynomials $\xi_{n, i}(p, q)$ in p, q with nonnegative coefficients.

Note: A combinatorial interpretation for $\xi_{n, i}(p, q)$ will be given the day after tomorrow.

Corollary

We have

$$
d_{n}(-1)= \begin{cases}0, & \text { if } n \text { is odd } \\ (-1)^{n / 2} \xi_{n, n / 2}, & \text { if } n \text { is even }\end{cases}
$$

where $\xi_{n, n / 2}$ is the number of up-down permutations in \mathfrak{S}_{n}.

Involutions

We let \mathcal{I}_{n} be the set of permutations $w \in \mathfrak{S}_{n}$ with $w=w^{-1}$ and let

$$
\mathcal{I}_{n}(x):=\sum_{w \in \mathcal{I}_{n}} x^{\operatorname{des}(w)}
$$

Example

$$
\mathcal{I}_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ 1+2 x+x^{2}, & \text { if } n=3 \\ 1+4 x+4 x^{2}+x^{3}, & \text { if } n=4 \\ 1+6 x+12 x^{2}+6 x^{3}+x^{4}, & \text { if } n=5 \\ 1+9 x+28 x^{2}+28 x^{3}+9 x^{4}+x^{5}, & \text { if } n=6 \\ 1+12 x+57 x^{2}+92 x^{3}+57 x^{4}+12 x^{5}+x^{6}, & \text { if } n=7\end{cases}
$$

Note: The polynomial $\mathcal{I}_{n}(x)$ was first considered by Strehl (1980).

Theorem (Guo-Zeng, 2006)

The polynomial $\mathcal{I}_{n}(x)$ is symmetric and unimodal for every n.

The proof uses generating functions and recursions.

Conjecture (Guo-Zeng, 2006)

The polynomial $\mathcal{I}_{n}(x)$ is γ-nonnegative for every n.

Example

$$
\mathcal{I}_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ (1+x)^{2}, & \text { if } n=3 \\ (1+x)^{3}+x(1+x), & \text { if } n=4 \\ (1+x)^{4}+2 x(1+x)^{2}+2 x^{2}, & \text { if } n=5 \\ (1+x)^{5}+4 x(1+x)^{3}+6 x^{2}(1+x), & \text { if } n=6 \\ (1+x)^{6}+6 x(1+x)^{4}+18 x^{2}(1+x)^{2}, & \text { if } n=7\end{cases}
$$

Note: The symmetry of $\mathcal{I}_{n}(x)$ is evident from the following statements; it was also shown in a more general context by Hultman.

Proposition (Strehl, 1980)

Let $\operatorname{SYT}(n)$ denote the set of standard Young tableaux of size n. Then

$$
\mathcal{I}_{n}(x)=\sum_{Q \in \operatorname{SYT}(n)} x^{\operatorname{des}(Q)}
$$

where $\operatorname{des}(Q)$ is the number of entries $i \in[n-1]$ for which $i+1$ lies in a row in Q lower than i does.

Example

$$
\begin{aligned}
& \begin{array}{l|l|l}
\hline 1 & 2 & 3
\end{array}, \begin{array}{|l|l}
\hline 1 & 2 \\
\hline 3
\end{array}, \quad \begin{array}{|l|l|}
\hline 1 & 3 \\
2 &
\end{array}, \begin{array}{|l|}
\hline 1 \\
\hline
\end{array} \\
& \hline \mathcal{I}_{2}(x) \\
& \hline
\end{aligned}
$$

Proposition (A, 2015)

For $n \geq 1$,

$$
\mathcal{I}_{n}(x)=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} A_{c\left(w^{2}\right)}(x)(1-x)^{n-c\left(w^{2}\right)}
$$

where $c(w)$ is the number of cycles of $w \in \mathfrak{S}_{n}$.

W-Eulerian polynomials

We let

- (W, S) be a Coxeter system
- $\ell(w)$ be the Coxeter length of $w \in W$,
so that $W=\left\langle S:(s t)^{m(s, t)}=e\right\rangle$ for some positive integers $m(s, t)$ with $m(s, t)=m(t, s)$ and $m(s, t)=1 \Leftrightarrow s=t$ for $s, t \in S$, and for $w \in W$
- $\operatorname{des}(w):=\#\{s \in S: \ell(w s)<\ell(w)\}$.

Definition

The W-Eulerian polynomial is defined as

$$
W(x)=\sum_{w \in W} x^{\operatorname{des}(w)}
$$

for every finite Coxeter group W.

Note: Finite Coxeter groups include \mathfrak{S}_{n}, as well as the group of signed permutations $B_{n}=\left\{w=(w(1), w(2), \ldots, w(n)):|w| \in \mathfrak{S}_{n}\right\}$. Then

$$
B_{n}(x)=\sum_{w \in B_{n}} x^{\operatorname{des}_{B}(w)}
$$

where

- $\operatorname{des}_{B}(w):=\#\{i \in\{0,1, \ldots, n-1\}: w(i)>w(i+1)\}$
for $w \in B_{n}$ as above, with $w(0):=0$.

Example

$$
B_{n}(x)= \begin{cases}1+x, & \text { if } n=1 \\ 1+6 x+x^{2}, & \text { if } n=2 \\ 1+23 x+23 x^{2}+x^{3}, & \text { if } n=3 \\ 1+76 x+230 x^{2}+76 x^{3}+x^{4}, & \text { if } n=4 \\ 1+237 x+1682 x^{2}+1682 x^{3}+237 x^{4}+x^{5}, & \text { if } n=5 .\end{cases}
$$

Note:

$$
B_{n}(x)= \begin{cases}1+x, & \text { if } n=1 \\ (1+x)^{2}+4 x, & \text { if } n=2 \\ (1+x)^{3}+20 x(1+x), & \text { if } n=3 \\ (1+x)^{4}+72 x(1+x)^{2}, & \text { if } n=4 \\ (1+x)^{5}+232 x(1+x)^{3}+976 x^{2}(1+x), & \text { if } n=5 \\ (1+x)^{6}+716 x(1+x)^{4}+7664 x^{2}(1+x)^{2}, & \text { if } n=6 .\end{cases}
$$

Note: The unimodality of $W(x)$ follows from a deep result of Stanley on h-polynomials of simplicial convex polytopes.

Theorem (Stembridge, 2007)

The polynomial $W(x)$ is γ-nonnegative for every finite Coxeter group W.

Problem: Find a proof which does not depend on the classification of finite Coxeter groups.

Note: More information about the γ-coefficients can be given:

For $w \in \mathfrak{S}_{n}$ let

$$
\operatorname{pk}(w):=\#\{i \in[n-1]: w(i-1)<w(i)>w(i+1)\}
$$

be the number of left peaks of w, where $w(0):=0$.

Theorem (Petersen, 2007)

We have

$$
B_{n}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \gamma_{n, i}^{B} x^{i}(1+x)^{n-2 i}
$$

where

$$
\gamma_{n, i}^{B}=4^{i} \cdot \#\left\{w \in \mathfrak{S}_{n}: \operatorname{pk}(w)=i\right\}
$$

Note: There is a similar result for $D_{n}(x)$.

Narayana polynomials

The Catalan number

$$
C_{n}:=\frac{1}{n+1}\binom{2 n}{n}
$$

has the interesting q-analogue

$$
C_{n}(q)=\sum_{i=0}^{n-1} \frac{1}{i+1}\binom{n}{i}\binom{n-1}{i} q^{i}
$$

known as the nth Narayana polynomial, in the sense that $C_{n}(1)=C_{n}$. The coefficients of $C_{n}(q)$ count

- Dyck paths of length $2 n$, by the number of peaks,
- noncrossing partitions of [n], by the number of blocks,
among many other families of combinatorial objects.

Note: The polynomial $C_{n}(q)$ is γ-nonnegative; in fact, as it follows, for instance, from work of Simion-Ullman,

$$
C_{n}(q)=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} C_{k}\binom{n-1}{2 k} q^{k}(1+q)^{n-1-2 k}
$$

Note: There is an interesting Coxeter group analogue of $C_{n}(q)$:

We let

- W be a finite Coxeter group
- T be the set of reflections,
- $\ell_{T}(w)$ be the length of $w \in W$ with respect to T,
- c be a Coxeter element.

Definition (Bessis, Brady-Watt, 2001)

The set of W-noncrossing partitions is defined as

$$
\mathrm{NC}_{W}=\left\{w \in W: \ell_{T}(w)+\ell_{T}\left(w^{-1} c\right) \leq \ell_{T}(c)\right\} .
$$

We let

$$
C_{W}(q)=\sum_{w \in \mathrm{NC}_{W}} q^{\ell T(w)}
$$

Note: We have

$$
C_{W}(1)=\prod_{i=1}^{\ell} \frac{e_{i}+h+1}{e_{i}+1}
$$

for every irreducible Coxeter group W, where $e_{1}, e_{2}, \ldots, e_{\ell}$ are the exponents of W and h is the Coxeter number.

We have

$$
C_{W}(q)= \begin{cases}\sum_{i=0}^{n} \frac{1}{i+1}\binom{n}{i}\binom{n-1}{i} q^{i}, & \text { if } W=\mathfrak{S}_{n} \\ \sum_{i=0}^{n}\binom{n}{i}^{2} q^{i}, & \text { if } W=B_{n} \\ \sum_{i=0}^{n}\binom{n}{i}\left(\binom{n-1}{i}+\binom{n-2}{i-2}\right) q^{i}, & \text { if } W=D_{n} .\end{cases}
$$

Note that $C_{\mathfrak{S}_{n}}(q)=C_{n}(q)$, as expected.

Theorem

The polynomial $C_{W}(q)$ is γ-nonnegative for every finite Coxeter group W.

Problem: Find a proof which does not depend on the classification of finite Coxeter groups.

Note: The theorem was extended to all well-generated complex reflection groups by Mühle.

More examples

There is an endless list of generalizations and similar results, including:

- q-analogues,
- various refinements,
- analogues for colored permutations,
- results for other interesting classes of permutations.

An example from symmetric functions

We define polynomials $T_{\lambda}(t)$ by

$$
\sum_{\lambda} T_{\lambda}(t) s_{\lambda}(x)=\frac{\sum_{k \geq 1}\left(1+t+\cdots+t^{k-1}\right) s_{k}(x)}{1-\sum_{k \geq 2}\left(t+t^{2}+\cdots+t^{k-1}\right) s_{k}(x)}
$$

where the sum on the left ranges over all integer partitions λ and $s_{\lambda}(x)$ is a Schur function.

Note: The $T_{\lambda}(t)$ are symmetric, with nonnegative coefficients, and satisfy

$$
\sum_{\lambda \vdash n} f^{\lambda} T_{\lambda}(t)=A_{n}(t)
$$

where f^{λ} is the number of standard Young tableaux of shape λ.

Theorem (Brenti, 1989)

The polynomial $T_{\lambda}(t)$ is real-rooted for every λ.

Note: As a result, the $T_{\lambda}(t)$ are γ-nonnegative and their γ-nonnegativity refines that of the Eulerian polynomials. We will see the day after tomorrow what the γ-coefficients count.

Two-sided Eulerian polynomials

Let W be a finite Coxeter group. The two-sided W-Eulerian polynomial is defined as

$$
W(x, y)=\sum_{w \in W} x^{\operatorname{des}(w)} y^{\operatorname{des}\left(w^{-1}\right)}
$$

Conjecture (Gessel, 2005, Petersen)

There exist nonnegative integers $\gamma_{i, j}=\gamma_{i, j}^{W}$ such that

$$
W(x, y)=\sum_{2 i+j \leq n} \gamma_{i, j}(x y)^{i}(x+y)^{j}(1+x y)^{n-2 i-j}
$$

where n is the rank of W.

Note: This has been proved for the symmetric and hyperoctahedral groups by Zhicong Lin. It is an open probelm to find a combinatorial interpretation to the γ-coefficients.

More examples tomorrow...

Part II

II. Gamma-nonnegativity in geometry

Face enumeration of simplicial complexes

We let

- Δ be a simplicial complex of dimension $n-1$,
- $f_{i}(\Delta)$ be the number of i-dimensional faces.

Definition

The h-polynomial of Δ is defined as

$$
h(\Delta, x)=\sum_{i=0}^{n} f_{i-1}(\Delta) x^{i}(1-x)^{n-i}=\sum_{i=0}^{n} h_{i}(\Delta) x^{i}
$$

The sequence $h(\Delta)=\left(h_{0}(\Delta), h_{1}(\Delta), \ldots, h_{n}(\Delta)\right)$ is the h-vector of Δ.

Note: $h(\Delta, 1)=f_{n-1}(\Delta)$.

Example

For the 2-dimensional complex

we have $f_{0}(\Delta)=8, f_{1}(\Delta)=15$ and $f_{2}(\Delta)=8$ and hence

$$
\begin{aligned}
h(\Delta, x) & =(1-x)^{3}+8 x(1-x)^{2}+15 x^{2}(1-x)+8 x^{3} \\
& =1+5 x+2 x^{2}
\end{aligned}
$$

Theorem (Klee, Reisner, Stanley)

The polynomial $h(\Delta, x)$:

- has nonnegative coefficients if Δ triangulates a ball or a sphere,
- is symmetric if Δ triangulates a sphere,
- is unimodal if Δ is the boundary complex of a simplicial polytope.

Example

We let

- V be an n-element set,
- 2^{V} be the simplex on the vertex set V,
- Γ be the first barycentric subdivision of the boundary complex of 2^{V}.

Then $h(\Gamma, x)=A_{n}(x)$. For $n=3$

$$
h(\Delta, x)=(1-x)^{2}+6 x(1-x)+6 x^{2}=1+4 x+x^{2}
$$

Flag complexes and Gal's conjecture

Definition

A simplicial complex Δ is called flag if it contains every simplex whose 1 -skeleton is a subcomplex of Δ.

Example

not flag

flag

Example

For a 1-dimensional sphere Δ with m vertices we have

$$
h(\Delta, x)=1+(m-2) x+x^{2} .
$$

Note that $h(\Delta, x)$ is γ-nonnegative $\Leftrightarrow m \geq 4 \Leftrightarrow \Delta$ is flag.

Conjecture (Gal, 2005)

The polynomial $h(\Delta, x)$ is γ-nonnegative for every flag triangulation Δ of the sphere.

Note: This extends a conjecture of Charney-Davis (1995).

Example

The boundary complex Σ_{n} of the n-dimensional cross-polytope is a flag triangulation of the $(n-1)$-dimensional sphere:

We have

$$
h\left(\Sigma_{n}, x\right)=(1+x)^{n}
$$

for every $n \geq 1$.

Note: Let us write

$$
h(\Delta, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \gamma_{i}(\Delta) x^{i}(1+x)^{n-2 i}
$$

Then Gal's conjecture asserts that $\gamma_{i}(\Delta) \geq \gamma_{i}\left(\Sigma_{n}\right)$ for every i and implies that $h_{2}(\Delta)$ is bounded below by the coefficient of x^{2} in

$$
(1+x)^{n}+\gamma_{1}(\Delta) x(1+x)^{n-2}
$$

which means the following:

Conjecture

Among all flag triangulations of the $(n-1)$-dimensional sphere with given number m of vertices, the $(n-2)$-fold double suspension over the boundary complex of an $(m-2 n+4)$-gon has the smallest possible number of edges.

Note: By a result of Karu (2006), Gal's conjecture holds for barycentric subdivisions of regular CW-spheres.

The Coxeter complex

For every finite Coxeter group W there exists a flag triangulation $\operatorname{Cox}(W)$ of the sphere, known as the Coxeter complex, such that

$$
h(\operatorname{Cox}(W), x)=W(x):=\sum_{w \in W} x^{\operatorname{des}(w)}
$$

Note: The Coxeter complex $\operatorname{Cox}\left(\mathfrak{S}_{n}\right)$ is isomorphic to the first barycentric subdivision of the boundary complex of the simplex with n vertices.

Example

The Coxeter complex for B_{2}

Note: As a result, the γ-nonnegativity of the W-Eulerian polynomial is an instance of Gal's conjecture.

The cluster complex

For every finite Coxeter group W there exists a flag triangulation Δ_{W} of the sphere, namely the cluster complex of Fomin-Zelevinsky, such that

$$
h\left(\Delta_{W}, x\right)=C_{W}(x):=\sum_{w \in \mathrm{NC}_{W}} x^{\ell_{T}(w)}
$$

The cluster complex for \mathfrak{S}_{2}

Note: As a result, the γ-nonnegativity of the $C_{W}(x)$ is an instance of Gal's conjecture as well.

The local h-polynomial

We let

- V be an n-element set,
- Γ be a triangulation of the simplex 2^{V} on the vertex set V.

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V) is defined as

$$
\ell_{V}(\Gamma, x)=\sum_{F \subseteq V}(-1)^{n-|F|} h\left(\Gamma_{F}, x\right)
$$

where Γ_{F} is the restriction of Γ to the face F of the simplex 2^{V}.

Note: This polynomial plays a major role in Stanley's theory of subdivisions of simplicial (and more general) complexes.

Example

For the 2-dimensional triangulation

we have

$$
\begin{aligned}
\ell_{V}(\Gamma, x)= & \left(1+5 x+2 x^{2}\right)-(1+2 x)-(1+x)-1 \\
& +1+1+1-1=2 x+2 x^{2}
\end{aligned}
$$

Theorem (Stanley, 1992)

The polynomial $\ell_{V}(\Gamma, x)$

- is symmetric,
- has nonnegative coefficients,
- is unimodal for every regular triangulation Γ of 2^{V}.

Conjecture (A, 2012)

The polynomial $\ell_{V}(\Gamma, x)$ is γ-nonnegative, if Γ is a flag triangulation of $2 V$

Note: This is stronger than Gal's conjecture. There is considerable evidence for both conjectures. For instance:

Proposition

- (Gal, 2005) $h(\Delta, x)$ is γ-nonnegative for every (necessarily flag) triangulation Δ of the sphere which can be obtained from Σ_{n} by successive edge subdivisions,
- (A, 2012) $\ell_{V}(\Gamma, x)$ is γ-nonnegative for every (necessarily flag) triangulation Γ which can be obtained from the trivial triangulation of 2^{V} by successive edge subdivisions.

Example

An edge subdivision

Recall that we denote by Σ_{n} the boundary complex of the n-dimensional cross-polytope.

Theorem (A, 2012)

Every flag triangulation Δ of the $(n-1)$-dimensional sphere is a flag, ve-rtex-induced homology subdivision Γ of Σ_{n}. Moreover,

$$
h(\Delta, x)=\sum_{F \in \Sigma_{n}} \ell_{F}\left(\Gamma_{F}, x\right)(1+x)^{n-|F|}
$$

hence the γ-nonnegativity of $h(\Delta, x)$ is implied by that of the $\ell_{F}\left(\Gamma_{F}, x\right)$.

Corollary

For every flag triangulation Δ of the $(n-1)$-dimensional sphere,

$$
h(\Delta, x) \geq(1+x)^{n}
$$

holds coefficientwise.

Note: This holds, more generally, for doubly Cohen-Macaulay flag complexes of dimension $n-1$.

Barycentric subdivision

For the barycentric subdivision 「 of the simplex 2^{V} on the vertex set V

Stanley showed that

$$
\ell_{V}(\Gamma, x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} A_{k}(x)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{exc}(w)}=d_{n}(x)
$$

whose γ-nonnegativity has already been discussed.

Edgewise subdivision

The r-fold edgewise subdivision $\operatorname{esd}_{r}\left(2^{V}\right)$ is a standard way to triangulate a simplex 2^{V} so that each face $F \in 2^{V}$ is subdivided into $r^{\operatorname{dim}(F)}$ simplices of the same dimension.

Example

The 3-fold edgewise subdivision of a 2-simplex

To be more precisely, we let

- $e_{1}, e_{2}, \ldots, e_{d}$ be the unit coordinate vectors in \mathbb{R}^{d},
- $V=\left\{0, r e_{1}, r\left(e_{1}+e_{2}\right), \ldots, r\left(e_{1}+e_{2}+\cdots+e_{d}\right)\right\}$.

Then $\operatorname{esd}_{r}\left(2^{V}\right)$ is realized as the triangulation of the geometric simplex with vertex set V whose maximal faces are the d-dimensional simplices into which that simplex is dissected by the hyperplanes of the form

- $x_{i}=k$,
- $x_{i}-x_{j}=k$,
with $k \in \mathbb{Z}$.
Note: The triangulation $\operatorname{esd}_{r}\left(2^{V}\right)$ is flag.

Note: The edgewise subdivision has appeared in several mathematical contexts, including:

- algebraic topology (Freudenthal, 1942)
- toric geometry (Kempf-Knudsen-Mumford-Saint-Donat, 1972)
- algebraic K-theory (Grayson, 1989)
- topological cyclic homology (Bökstedt-Hsiang-Madsen, 1993)
- combinatorial commutative algebra (Brun-Römer, 2005)
- combinatorial commutative algebra (Brenti-Welker, 2009)
- discrete geometry (Haase-Paffenholz-Piechnik-Santos, 2014).

We let

- $\mathcal{S}(n, r)$ denote the set of sequences

$$
w=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in\{0,1, \ldots, r-1\}^{n+1}
$$

having no two consecutive entries equal and satisfying $w_{0}=w_{n}=0$
and for such $w \in \mathcal{S}(n, r)$ we set

- $\operatorname{asc}(w):=\#\left\{i \in\{0,1, \ldots, n-1\}: w_{i}<w_{i+1}\right\}$.

We say that an index $i \in[n-1]$ is a

- double ascent of w if $w_{i-1}<w_{i}<w_{i+1}$ and
- double descent of w if $w_{i-1}>w_{i}>w_{i+1}$.

Theorem (A, 2014)

For every n-element set V,

$$
\begin{aligned}
\ell_{V}\left(\operatorname{esd}_{r}\left(2^{V}\right), x\right) & =\sum_{w \in \mathcal{S}(n, r)} x^{\operatorname{asc}(w)} \\
& =\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, r, i} x^{i}(1+x)^{n-2 i}
\end{aligned}
$$

where $\xi_{n, r, i}$ is the number of $\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathcal{S}(n, r)$ which have exactly i ascents and satisfy the following: for every double ascent k there exists a double descent $\ell>k$ such that $w_{k}=w_{\ell}$ and $w_{k} \leq w_{j}$ for $k<j<\ell$.

Note: One can define the r-fold edgewise subdivision for any simplicial complex.

Example

The 4-fold edgewise subdivision of the 2-simplex and the 3-fold edgewise subdivision of its barycentric subdivision

More barycentric subdivisions

Consider the barycentric subdivision K of the cubical barycentric subdivision of the simplex 2^{V}.

Note: The sum of the coefficients of $\ell_{V}(K, x)$ is equal to the number of

- even derangements in B_{n},
- derangements in D_{n},
where B_{n} is the group of signed permutations of $[n]$ and D_{n} is the subgroup of even signed permutations.

Example

$$
\ell_{V}(K, x)= \begin{cases}0, & \text { if } n=1 \\ 3 x, & \text { if } n=2 \\ 7 x+7 x^{2}, & \text { if } n=3 \\ 15 x+87 x^{2}+15 x^{3}, & \text { if } n=4 \\ 31 x+551 x^{2}+551 x^{3}+31 x^{4}, & \text { if } n=5 \\ 63 x+2803 x^{2}+8243 x^{3}+2803 x^{4}+63 x^{5}, & \text { if } n=6\end{cases}
$$

Conjecture

The polynomial $\ell_{V}(K, x)$ has only real roots.

For $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in B_{n}$ we let

- $\operatorname{exc}_{A}(w):=\#\{i \in[n-1]: w(i)>i\}$,
- $\operatorname{neg}(w):=\#\{i \in[n]: w(i)<0\}$.

Definition (Bagno-Garber, 2006)

The flag-excedance number of $w \in B_{n}$ is defined as

$$
\operatorname{fex}(w)=2 \cdot \operatorname{exc}_{A}(w)+\operatorname{neg}(w)
$$

Example: For

- $w=(3,-5,1,4,-2)$
we have $\operatorname{exc}_{A}(w)=1$ and $\operatorname{neg}(w)=2$, so $\operatorname{fex}(w)=4$.

Theorem (A, 2014)

We have

$$
\begin{aligned}
\ell_{V}(K, x) & =\sum_{w} x^{\mathrm{fex}(w) / 2} \\
& =\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, i}^{+} x^{i}(1+x)^{n-2 i}
\end{aligned}
$$

where the first sum runs over all derangements $w \in D_{n}$ and $\xi_{n, i}^{+}$is the number of elements of B_{n} with i descending runs, none of size one, and positive last coordinate.

Problem: Find a simple combinatorial proof of the second expression.

Consider the second barycentric subdivision Γ^{2} of the simplex 2^{V}.

Note: The sum of the coefficients of $\ell_{V}\left(\Gamma^{2}, x\right)$ equals the number of pairs $(u, v) \in \mathfrak{S}_{n} \times \mathfrak{S}_{n}$ of permutations with no common fixed point.

Problem: Find a combinatorial interpretation for:

- the coefficients of $\ell_{V}\left(\Gamma^{2}, x\right)$,
- the coefficients in the expansion

$$
\ell_{V}\left(\Gamma^{2}, x\right)=\sum \gamma_{i} x^{i}(1+x)^{n-2 i}
$$

Problem: Study the barycentric subdivision of more general polyhedral subdivisions of the simplex.

Generalization to r-colored permutations

We let Λ denote the 2-fold edgewise subdivision of the barycentric subdivision of the simplex 2^{V}.

Proposition (A-Savvidou, 2012)

For every n-element set V,

$$
\ell_{V}(K, x)=\ell_{V}(\Lambda, x)
$$

This makes it natural to consider the r-fold edgewise subdivision Λ_{r} of the barycentric subdivision of the simplex 2^{V}.

Example

The subdivision Λ_{3} of the 2-simplex on the right.

Recall that a permutation $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathfrak{S}_{n}$ is r-colored if each w_{i} has been colored with one of the elements of $\{0,1, \ldots, r-1\}$. We let

- \mathfrak{S}_{n}^{r} be the group of r-colored permutations of $[n]$ and for $w \in \mathfrak{S}_{n}^{r}$ as above
- $\operatorname{exc}_{A}(w):=\#\{i \in[n-1]: w(i)>i$ has zero color $\}$,
- $\operatorname{csum}(w)$ be the sum of the colors of the entries of w.

The flag-excedance number of w is defined by Bagno-Garber as

$$
\operatorname{fex}(w)=r \cdot \operatorname{exc}_{A}(w)+\operatorname{csum}(w)
$$

We call w balanced if $\operatorname{fex}(w)$ is divisible by r.

Theorem (A, 2014)

We have

$$
\begin{aligned}
\ell_{V}\left(\Lambda_{r}, x\right) & =\sum_{w} x^{\mathrm{fex}(w) / r} \\
& =\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, r, i}^{+} x^{i}(1+x)^{n-2 i}
\end{aligned}
$$

where the first sum runs over all balanced derangements $w \in \mathfrak{S}_{n}^{r}$ and $\xi_{n, r, i}^{+}$ is the number of elements of \mathfrak{S}_{n}^{r} with i descending runs, none of size one, and last coordinate of zero color.

Cluster subdivision

We let

- W be a finite Coxeter group of rank n,
- S be a genarating set of simple reflections,
- W_{J} be the standard parabolic subgroup corresponding to $J \subseteq S$.

The cluster complex Δ_{W} has a positive part Δ_{W}^{+}which naturally defines a triangulation of the simplex 2^{S}, called the cluster subdivision and denoted by ΓW.

Note: The cluster subdivision is flag.

Example

The cluster subdivision for \mathfrak{S}_{3} :

Note: By definition, we have

$$
\ell_{S}\left(\Gamma_{W}, x\right)=\sum_{J \subseteq S}(-1)^{|S \backslash J|} h\left(\Delta_{W_{J}}^{+}, x\right)
$$

where

$$
h\left(\Delta_{W}^{+}, x\right)= \begin{cases}\sum_{i=0}^{n} \frac{1}{i+1}\binom{n}{i}\binom{n-1}{i} x^{i}, & \text { if } W=S_{n+1} \\ \sum_{i=0}^{n}\binom{n}{i}\binom{n-1}{i} x^{i}, & \text { if } W=B_{n} \\ \sum_{i=0}^{n}\left(\binom{n}{i}\binom{n-2}{i}+\binom{n-2}{i-2}\binom{n-1}{i}\right) x^{i}, & \text { if } W=D_{n}\end{cases}
$$

Theorem (A-Savvidou, 2012)

The local h-polynomial of the cluster subdivision Γ_{W} is γ-nonnegative for every finite Coxeter group W.

Problem: Find a proof which does not depend on the classification of finite Coxeter groups.

Note: Writing

$$
\gamma(W, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \gamma_{i}(W) x^{i}, \quad \xi(W, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(W) x^{i}
$$

where

$$
\begin{aligned}
C_{W}(x) & =\sum_{i=0}^{\lfloor n / 2\rfloor} \gamma_{i}(W) x^{i}(1+x)^{n-2 i}, \\
\ell_{S}\left(\Gamma_{W}, x\right) & =\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(W) x^{i}(1+x)^{n-2 i},
\end{aligned}
$$

we have

$$
\gamma(W, x)=\sum_{J \subseteq S} \xi\left(W_{J}, x\right)
$$

Let us also write

$$
\ell_{S}\left(\Gamma_{W}, x\right)=\sum_{i=0}^{n} \ell_{i}(W) x^{i}
$$

We call a singleton block $\{b\}$ of a noncrossing partition π of [n] nested if some block of π contains elements a and c such that $a<b<c$; otherwise the block $\{b\}$ is nonnested.

Example

A noncrossing partition of [9] with nested singleton block $\{3\}$ and a nonnested singleton block $\{7\}$:

Note: An analogous definition exists for type B noncrossing partitions.

Theorem (A-Savvidou, 2012)

The coefficient $\ell_{i}(W)$ is equal to:

- the number of noncrossing partitions π of [n] with i blocks, such that every singleton block of π is nested, if $W=\mathfrak{S}_{n+1}$,
- the number of noncrossing partitions π of type B_{n} with no zero block and i pairs $\{B,-B\}$ of nonzero blocks, such that every positive singleton block of π is nested, if $W=B_{n}$,
- $n-2$ times the number of noncrossing partitions of $[n-1]$ having i blocks, if $W=D_{n}$.

Theorem (A-Savvidou, 2012)

The coefficient $\xi_{i}(W)$ is equal to:

- the number of noncrossing partitions of $[n]$ which have no singleton blocks and a total of i blocks, if $W=\mathfrak{S}_{n+1}$,
- the number of noncrossing partitions of type B_{n} which have no zero block, no singleton blocks and a total of i pairs $\{B,-B\}$ of nonzero blocks, if $W=B_{n}$.

Corollary (A-Savvidou, 2012)

We have $\xi_{0}(W)=0$ and

$$
\xi_{i}(W)= \begin{cases}\frac{1}{n-i+1}\binom{n}{i}\binom{n-i-1}{i-1}, & \text { if } W=\mathfrak{S}_{n+1} \\ \binom{n}{i}\binom{n-i-1}{i-1}, & \text { if } W=B_{n} \\ \frac{n-2}{i}\binom{2 i-2}{i-1}\binom{n-2}{2 i-2}, & \text { if } W=D_{n}\end{cases}
$$

for $1 \leq i \leq\lfloor n / 2\rfloor$.

For a summery of these results see

- C.A. Athanasiadis, A survey of subdivisions and local h-vectors, in "The Mathematical Legacy of Richard P. Stanley", AMS, 2016.

Part III

III. Methods

Methods

Methods to prove γ-nonnegativity include:

- valley hopping (Foata-Schützenberger-Strehl)
- combinatorial expansions (Bränden, Shin-Zeng, Stembridge)
- symmetric functions (Shareshian-Wachs)
- poset decompositions (Simion-Ullman, Petersen, Mühle)
- poset homology, shellability (Linusson-Shareshian-Wachs)
- enriched P-partitions (Stembridge, Petersen)
- combinatorics of subdivisions (A-Savvidou).

Valley hopping

We have seen several applications of valley hopping. For more see, for instance:

- P. Bränden, Actions on permutations and unimodality of descent polynomials, European J. Combin. 29 (2008), 514-531.
- A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, Doc. Math. 13 (2008), 207-273.
- Z. Lin and J. Zeng, The γ-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory Series A 135 (2015), 112-129.

Symmetric functions

For $\Theta \subseteq \mathbb{Z}$ we let

- $\operatorname{Stab}(\Theta)$ be the set of subsets of Θ which do not contain two successive integers.

Theorem (Shareshian-Wachs, 2010)

We have

$$
\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} t^{\operatorname{exc}(w)}=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, i}(q) t^{i}(1+t)^{n-1-2 i}
$$

where

$$
\gamma_{n, i}(q)=\sum q^{\operatorname{maj}\left(w^{-1}\right)}
$$

the sum running over all permutations $w \in \mathfrak{S}_{n}$ with i descents, such that $\operatorname{Des}(w) \in \operatorname{Stab}([n-2])$.

The proof of Shareshian-Wachs uses symmetric functions. Recall the polynomials $T_{\lambda}(t)$ defined by

$$
\sum_{\lambda} T_{\lambda}(t) s_{\lambda}(x)=\frac{\sum_{k \geq 1}\left(1+t+\cdots+t^{k-1}\right) s_{k}(x)}{1-\sum_{k \geq 2}\left(t+t^{2}+\cdots+t^{k-1}\right) s_{k}(x)}
$$

and define the $R_{\lambda}(t)$ similarly by the equality

$$
\sum_{\lambda} R_{\lambda}(t) s_{\lambda}(x)=\frac{1}{1-\sum_{k \geq 2}\left(t+t^{2}+\cdots+t^{k-1}\right) s_{k}(x)}
$$

Note: We have

$$
\sum_{\lambda \vdash n} f^{\lambda} T_{\lambda}(t)=A_{n}(t)
$$

and

$$
\sum_{\lambda \vdash n} f^{\lambda} R_{\lambda}(t)=d_{n}(t)
$$

where f^{λ} is the number of standard Young tableaux of shape λ.

Note: The symmetry and unimodality of the polynomials $R_{\lambda}(t)$ and $T_{\lambda}(t)$ was shown by Brenti (1990).

Note: We have

$$
\sum_{\lambda} T_{\lambda}(t) s_{\lambda}(x)=\frac{(1-t) H(x, 1)}{H(x, t)-t H(x ; 1)}
$$

and

$$
\sum_{\lambda} R_{\lambda}(t) s_{\lambda}(x)=\frac{1-t}{H(x, t)-t H(x ; 1)}
$$

where

$$
H(x, z)=\sum_{n \geq 0} s_{n}(x) z^{n}=\frac{1}{\prod_{i \geq 1}\left(1-x_{i} z\right)}
$$

Note: The generating functions on the right-hand sides have several important algebraic-geometric and combinatorial interpretations.

The proof uses the following result. For a word $w=a_{1} a_{2} \cdots a_{n}$ on the alphabet $\mathbb{Z}_{>0}=\{1,2, \ldots\}$ we set $x_{w}=x_{a_{1}} x_{a_{2}} \cdots x_{a_{n}}$.

Theorem (Gessel, unpublished)

We have

$$
\frac{(1-t) H(x, 1)}{H(x, t)-t H(x ; 1)}=\sum_{n \geq 1} \sum_{w \in U_{n}} x_{w} t^{\operatorname{des}(w)}(1+t)^{n-1-2 \operatorname{des}(w)}
$$

where U_{n} stands for the set of words w of length n on the alphabet $\mathbb{Z}_{>0}$ such that $\operatorname{Des}(w) \in \operatorname{Stab}([n-2])$, and

$$
\frac{1-t}{H(x, t)-t H(x ; 1)}=1+\sum_{n \geq 2} \sum_{w \in \widetilde{U}_{n}} x_{w} t^{\operatorname{des}(w)+1}(1+t)^{n-2-2 \operatorname{des}(w)}
$$

where \widetilde{U}_{n} stands for the set of words w of length n on the alphabet $\mathbb{Z}_{>0}$ such that $\operatorname{Des}(w) \in \operatorname{Stab}(\{2, \ldots, n-2\})$.

Corollary

We have

$$
T_{\lambda}(t)=\sum t^{\operatorname{des}(Q)}(1+t)^{n-1-2 \operatorname{des}(Q)}
$$

where the sum ranges over all standard Young tableaux $Q \in \operatorname{SYT}(\lambda)$ such that $\operatorname{Des}(Q) \in \operatorname{Stab}([n-2])$, and

$$
R_{\lambda}(t)=\sum t^{\operatorname{des}(Q)+1}(1+t)^{n-2 \operatorname{des}(Q)-2}
$$

where the sum ranges over all standard Young tableaux $Q \in \operatorname{SYT}(\lambda)$ such that $\operatorname{Des}(Q) \in \operatorname{Stab}(\{2, \ldots, n-2\})$.

Sketch of proof. Use Gessel's result, interpret the elements of U_{n} and \widetilde{U}_{n} as reading words of semistandard ribbon skew tableaux, express the resulting ribbon skew Schur functions in terms of ordinary skew Schur functions and extract the coefficient of $s_{\lambda}(x)$ to get the desired expressions for $T_{\lambda}(t)$ and $R_{\lambda}(t)$.

Sketch of proof of Shareshian-Wachs. Let us write

$$
A_{n}(q, t):=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} t^{\operatorname{exc}(w)}
$$

The "Eulerian quasisymmetric function" expansion of

$$
\frac{(1-t) H(x, 1)}{H(x, t)-t H(x ; 1)}=\sum_{\lambda} T_{\lambda}(t) s_{\lambda}(x)
$$

due to Shareshian-Wachs (2010), gives

$$
\sum_{w \in \mathfrak{S}_{n}} F_{n, \operatorname{DEX}(w)}(x) t^{\operatorname{exc}(w)}=\sum_{\lambda \vdash n} T_{\lambda}(t) s_{\lambda}(x)
$$

Taking the stable principal specialization of both hand sides, we get

$$
\frac{A_{n}(q, t)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\sum_{\lambda \vdash n} T_{\lambda}(t) \frac{f^{\lambda}(q)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

and conclude that

$$
A_{n}(q, t)=\sum_{\lambda \vdash n} T_{\lambda}(t) f^{\lambda}(q)
$$

where

$$
f^{\lambda}(q):=\sum_{Q \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj}(Q)}
$$

The γ-expansion of $T_{\lambda}(t)$, given in the corollary, as well as standard manipulations and properties of the Robinson-Schensted correspondence, yield the desired expansion for $A_{n}(q, t)$.

Note. Similarly, the quasisymmetric function expansion

$$
\frac{1-t}{H(x, t)-t H(x ; 1)}=\sum_{n \geq 0} \sum_{w \in \mathcal{D}_{n}} F_{n, \operatorname{DEX}(w)}(x) t^{\operatorname{exc}(w)}
$$

due to Shareshian-Wachs (2010), gives

$$
\sum_{w \in \mathcal{D}_{n}} F_{n, \operatorname{DEX}(w)}(x) t^{\operatorname{exc}(w)}=\sum_{\lambda \vdash n} R_{\lambda}(t) s_{\lambda}(x) .
$$

Taking the stable principal specialization yields the following result:

Theorem

We have

$$
\begin{aligned}
\sum_{w \in \mathcal{D}_{n}} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} t^{\operatorname{exc}(w)} & =\sum_{\lambda \vdash n} R_{\lambda}(t) f^{\lambda}(q) \\
& =\sum_{i=0}^{\lfloor(n-2) / 2\rfloor} \xi_{n, i}(q) t^{i+1}(1+t)^{n-2 i-2}
\end{aligned}
$$

where

$$
\xi_{n, i}(q)=\sum q^{\operatorname{maj}\left(w^{-1}\right)}
$$

the sum running over all permutations $w \in \mathfrak{S}_{n}$ with i descents, such that $\operatorname{Des}(w) \in \operatorname{Stab}(\{2, \ldots, n-2\})$.

Using nonstable principal specialization instead yields the following refinement:

Theorem

We have
$\sum_{w \in \mathcal{D}_{n}} p^{\operatorname{des}(w)} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} t^{\operatorname{exc}(w)}=p \cdot \sum_{\lambda \vdash n} R_{\lambda}(t) f^{\lambda}(p, q)$

$$
=\sum_{i=0}^{\lfloor(n-2) / 2\rfloor} \xi_{n, i}(p, q) t^{i+1}(1+t)^{n-2 i-2}
$$

where

$$
f^{\lambda}(p, q):=\sum_{Q \in \operatorname{SYT}(\lambda)} p^{\operatorname{des}(Q)} q^{\operatorname{maj}(Q)}
$$

Theorem

and

$$
\xi_{n, i}(p, q)=p \cdot \sum p^{\operatorname{des}\left(w^{-1}\right)} q^{\operatorname{maj}\left(w^{-1}\right)}
$$

the sum running over all permutations $w \in \mathfrak{S}_{n}$ with i descents, such that $\operatorname{Des}(w) \in \operatorname{Stab}(\{2, \ldots, n-2\})$.

Similarly:

Theorem

We have
$\sum_{w \in \mathfrak{S}_{n}} p^{\operatorname{des}^{*}(w)} q^{\operatorname{maj}(w)-\operatorname{exc}(w)} t^{\operatorname{exc}(w)}=\sum_{\lambda \vdash n} T_{\lambda}(t) f^{\lambda}(p, q)$,

$$
=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor} \gamma_{n, i}(p, q) t^{i}(1+t)^{n-1-2 i}
$$

where

$$
\operatorname{des}^{*}(w)= \begin{cases}\operatorname{des}(w), & \text { if } w(1)=1 \\ \operatorname{des}(w)-1, & \text { if } w(1) \neq 1\end{cases}
$$

for $w \in \mathfrak{S}_{n}$ and

$$
\gamma_{n, i}(p, q)=\sum p^{\operatorname{des}\left(w^{-1}\right)} q^{\operatorname{maj}\left(w^{-1}\right)}
$$

the sum running over all permutations $w \in \mathfrak{S}_{n}$ with i descents, such that $\operatorname{Des}(w) \in \operatorname{Stab}([n-2])$.

Combinatorics of subdivisions

Consider again the polynomial

$$
f_{n}^{+}(x)=\sum_{w} x^{\mathrm{fex}(w) / 2}
$$

where the first sum runs over all derangements $w \in B_{n}$ with an even number of negative signs. Let us use the fact that

$$
f_{n}^{+}(x)=\ell_{V}(K, x)
$$

to find a formula for $f_{n}^{+}(x)$ which implies γ-nonnegativity.

Let us recall the definition of $\ell_{V}(\Gamma, x)$. We let

- V be an n-element set,
- Γ be a triangulation of the simplex 2^{V} on the vertex set V.

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V) is defined as

$$
\ell_{V}(\Gamma, x)=\sum_{F \subseteq V}(-1)^{n-|F|} h\left(\Gamma_{F}, x\right)
$$

where Γ_{F} is the restriction of Γ to the face F of the simplex 2^{V}.

We also recall that the link of a simplicial complex Δ at a face $F \in \Delta$ is defined as $\operatorname{link}_{\Delta}(F):=\{G \backslash F: F \subseteq G \in \Delta\}$.

Proposition (Stanley, 1992)

For every triangulation Δ^{\prime} of a pure simplicial complex Δ,

$$
h\left(\Delta^{\prime}, x\right)=\sum_{F \in \Delta} \ell_{F}\left(\Delta_{F}^{\prime}, x\right) h\left(\operatorname{link}_{\Delta}(F), x\right)
$$

Corollary

For every triangulation Δ of the boundary complex Σ_{n} of the n-dimensional cross-polytope we have

$$
h(\Delta, x)=\sum_{F \in \Sigma_{n}} \ell_{F}\left(\Delta_{F}, x\right)(1+x)^{n-|F|} .
$$

In particular, if $\ell_{F}\left(\Delta_{F}, x\right)$ is γ-nonnegative for every $F \in \Sigma_{n}$, then so is $h(\Delta, x)$.

Example

The polynomial $h\left(\operatorname{esd}_{r}\left(\Sigma_{n}\right), x\right)$ is γ-nonnegative for all n, r.

We let

- V be an n-element set,
- Γ be a triangulation of the simplex 2^{V} on the vertex set V,
- E be a face of Γ.

Definition (A, 2012)

The relative local h-polynomial of Γ (with respect to V) at $E \in \Gamma$ is defined as

$$
\ell_{V}(\Gamma, E, x)=\sum_{\sigma(E) \subseteq F \subseteq V}(-1)^{d-|F|} h\left(\operatorname{link}_{\Gamma_{F}}(E), x\right),
$$

where $\sigma(E)$ is the smallest face of 2^{V} containing E.

Note: $\ell_{V}(\Gamma, \varnothing, x)=\ell_{V}(\Gamma, x)$.

Example

We let

- Γ be the barycentric subdivision of 2^{V},
- E be a face of Γ given by the chain $S_{1} \subset S_{2} \subset \cdots \subset S_{k}$ of nonempty subsets of V.

Then

$$
\ell_{V}(\Gamma, E, x)=d_{n_{0}}(x) A_{n_{1}}(x) A_{n_{2}}(x) \cdots A_{n_{k}}(x)
$$

where $d_{0}(x):=1, n_{0}=\left|V \backslash S_{k}\right|$ and $n_{i}=\left|S_{i} \backslash S_{i-1}\right|$ for $1 \leq i \leq k$.

Theorem (A, 2012)

The polynomial $\ell_{V}(\Gamma, E, x)$

- is symmetric, and
- has nonnegative coefficients.

Theorem (Katz-Stapledon, 2016)

The polynomial $\ell_{V}(\Gamma, E, x)$ is unimodal for every regular triangulation Γ of 2^{V} and every $E \in \Gamma$.

Proposition (A, 2012)

For every triangulation Γ of the simplex 2^{V} and every triangulation Γ^{\prime} of Γ,

$$
\ell_{V}\left(\Gamma^{\prime}, x\right)=\sum_{E \in \Gamma} \ell_{E}\left(\Gamma_{E}^{\prime}, x\right) \ell_{V}(\Gamma, E, x)
$$

We now note that K is a subdivision of the simplicial barycentric subdivision of 2^{V}

and apply the previous formula when

- Γ is the simplicial barycentric subdivision of 2^{V},
- $\Gamma^{\prime}=K$.

Note: Each face $E \in \Gamma$ is subdivided by Γ^{\prime} into $2^{\operatorname{dim}(E)}$ simplices of the same dimension. This implies that

$$
\ell_{E}\left(\Gamma_{E}^{\prime}, x\right)= \begin{cases}x^{|E| / 2}, & \text { if }|E| \text { is even } \\ 0, & \text { otherwise }\end{cases}
$$

We deduce the following formula for $\ell_{V}(K, x)=f_{n}^{+}(x)$, which implies its γ-nonnegativity.

Proposition

$$
f_{n}^{+}(x)=\sum\binom{n}{r_{0}, r_{1}, \ldots, r_{2 k}} x^{k} d_{r_{0}}(x) A_{r_{1}}(x) \cdots A_{r_{2 k}}(x)
$$

where the sum ranges over all $k \geq 0$ and over all sequences $\left(r_{0}, r_{1}, \ldots, r_{2 k}\right)$ of integers which satisfy $r_{0} \geq 0, r_{1}, \ldots, r_{2 k} \geq 1$ and sum to n.

Example

Applying the same formula to the second barycentric subdivision Γ^{2} of 2^{V} we get

$$
\ell_{V}\left(\Gamma^{2}, x\right)=\sum\binom{n}{r_{0}, r_{1}, \ldots, r_{k}} d_{k}(x) d_{r_{0}}(x) A_{r_{1}}(x) \cdots A_{r_{k}}(x)
$$

where the sum ranges over all $k \geq 0$ and over all sequences $\left(r_{0}, r_{1}, \ldots, r_{k}\right)$ of integers which satisfy $r_{0} \geq 0, r_{1}, \ldots, r_{k} \geq 1$ and sum to n.

Note: This implies the γ-nonnegativity of $\ell_{V}\left(\Gamma^{2}, x\right)$.

Poset homology

We let

- P be a finite graded poset with rank function ρ_{P},
- Q be a finite graded poset with rank function ρ_{Q}.

Definition (Björner-Welker, 2005)

The Rees product of P and Q is defined as

$$
P * Q=\left\{(p, q) \in P \times Q: \rho_{P}(p) \geq \rho_{Q}(q)\right\}
$$

with partial order defined by setting $\left(p_{1}, q_{1}\right) \leq\left(p_{2}, q_{2}\right)$ if and only if:

- $p_{1} \leq p_{2}$ holds in P,
- $q_{1} \leq q_{2}$ holds in Q, and
- $\rho_{P}\left(p_{2}\right)-\rho_{P}\left(p_{1}\right) \geq \rho_{Q}\left(q_{2}\right)-\rho_{Q}\left(q_{1}\right)$.

Note: Equivalently, $\left(p_{1}, q_{1}\right)$ is covered by $\left(p_{2}, q_{2}\right)$ if and only if

- p_{1} is covered by p_{2} in P, and
- either $q_{1}=q_{2}$, or q_{1} is covered by q_{2} in Q.

Example

Example

For a graded poset P of rank $n+1$ with minimum element $\hat{0}$, maximum element $\hat{1}$ and rank function $\rho: P \rightarrow\{0,1, \ldots, n+1\}$, we let

- $\bar{P}=P \backslash\{\hat{0}, \hat{1}\}$,
- $\mu(\bar{P})=\mu_{P}(\hat{0}, \hat{1})$,
where μ_{P} is the Möbius function of P. For $S \subseteq[n]$ we set
- $\beta_{P}(S)=(-1)^{|S|-1} \mu\left(\bar{P}_{S}\right)$,
where

$$
\bar{P}_{S}=\{x \in P: \rho(x) \in S\}
$$

is a rank-selected subposet.

For positive integers n, x we let

- $T_{x, n}$ be the poset whose Hasse diagram is a complete x-ary tree of height $n-1$, with root at the bottom.

Theorem (Linusson-Shareshian-Wachs, 2012)

For every EL-shellable poset P of rank $n+1$ and every positive integer x we have

$$
\begin{aligned}
\left|\mu\left(\bar{P} * T_{x, n}\right)\right|= & \sum_{S \in \operatorname{Stab}(\{2, \ldots, n-1\})} \beta_{P}([n] \backslash S) x^{|S|}(1+x)^{n-1-2|S|}+ \\
& \sum_{S \in \operatorname{Stab}(\{2, \ldots, n-2\})} \beta_{P}([n-1] \backslash S) x^{|S|+1}(1+x)^{n-2-2|S|},
\end{aligned}
$$

where $\operatorname{Stab}(\Theta)$ denotes the set of all subsets of Θ which do not contain two consecutive integers.

We will apply this to the set

- B_{n}^{r} of subsets of [n], with each element r-colored, partially ordered by inclusion, with a maximum element $\hat{1}$ attached

Example

to prove the following result, mentioned yesterday:

Theorem (A, 2014)

We have

$$
\begin{aligned}
f_{n, r}^{+}(x) & :=\sum_{w} x^{\mathrm{fex}(w) / r} \\
& =\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{n, r, i}^{+} x^{i}(1+x)^{n-2 i},
\end{aligned}
$$

where the first sum runs over all balanced derangements $w \in \mathfrak{S}_{n}^{r}$ and $\xi_{n, r, i}^{+}$ is the number of elements of \mathfrak{S}_{n}^{r} with i descending runs, none of size one, and last coordinate of zero color.

Using the definition of the Möbius function and a result of ShareshianWachs (2009), one can show that

$$
\left|\mu\left(\bar{B}_{n}^{r} * T_{x, n}\right)\right|=x^{n} d_{n}^{r}(1 / x)
$$

where

$$
d_{n}^{r}(x)=f_{n, r}^{+}(x)+\sum x^{\left\lceil\frac{\operatorname{fex}(w)}{r}\right\rceil}
$$

the sum ranging over all nonbalanced derangements $w \in \mathfrak{S}_{n}^{r}$. Comparing with the expression provided by the result of Linusson-Shareshian-Wachs, one can conclude that

$$
x^{n} f_{n, r}^{+}(1 / x)=\sum_{S \in \operatorname{Stab}(\{2, \ldots, n-1\})} \beta_{P}([n] \backslash S) x^{|S|}(1+x)^{n-1-2|S|},
$$

where $P=B_{n}^{r}$. An easy EL-labeling for P gives a combinatorial interpretation to the numbers $\beta_{P}(S)$ and yields the desired γ-expansion for $f_{n, r}^{+}(x)$.

Thank you for your attention!

