A refinement of switching on ballot tableau pairs

Olga Azenhas
CMUC, University of Coimbra

$$
\text { SLC } 77
$$

Strobl, September 11-14, 2016

Plan

(1) Ballot semistandard Young tableaux/Littlewood-Richardson tableaux
(2) Switching of tableau pairs
(3) Refinement of switching on ballot tableau pairs

- Hidden features and LR commutators

Ballot semistandard Young tableaux or LR tableaux

- Ballot or Littlewood-Richardson tableaux (LR)

11213

$$
Y=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & \\
\hline 3 & & \\
\hline
\end{array}
$$

11123

A semistandard Young tableau is ballot or LR if the content of each initial segment of the reading word (read right to left along rows, top to bottom) is a partition.
T and Y are ballot, U is not.

Littlewood-Richardson rule

- The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson 34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients appearing in the expansion of a product of Schur polynomials s_{μ} and s_{ν}

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(x)
$$

are given by

$$
c_{\mu \nu}^{\lambda}=\#\{\text { ballot SSYT of shape } \lambda / \mu \text { and content } \nu\} .
$$

- Schubert structure coefficients of the product in $H^{*}(G(d, n))$, the cohomology of the Grassmannian $G(d, n)$ (as a \mathbb{Z}-module), are also given by the LR rule (L. Lesier 47),

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

The structure coefficient $c_{\mu, \nu}^{\lambda}$ is
the cardinality of an explicit set of combinatorial objects.

- Fixing λ, it is known that the number $c_{\mu, \nu}^{\lambda}$ is invariant under the switching of μ and ν.
- There are several bijections (involutions) exhibiting the commutativity

$$
c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda} .
$$

The involutive nature is always quite hard and mysterious, very often, unfolded with the help of further theory.

Switching, B.S.S. (1996)

- Switching is an operation that takes two tableaux $S \cup T$ sharing a common border and moves them through each other giving another such pair $U \cup V$, in a way that preserves Knuth equivalence, $S \equiv V$ and $T \equiv U$, and the shape of their union.
- A second application of switching restores the original pair $U \cup V$. Switching is an involution.
- Benkart, Sottile and Stroomer (1996) have studied switching in a general context.

Switching moves

- A perforated tableau pair $S \cup T$ is a labeling of the boxes satisfying some restrictions: whenever x and x^{\prime} are letters from $S(T)$ and x is north-west of $x^{\prime}, x^{\prime} \geq x$; within each column of $T(S)$ the letters are distinct.
- The moves are such that if \mathbf{s} and \mathbf{t} are adjacent letters from S and T then a switch of \mathbf{s} with $\mathbf{t}, \mathbf{s} \underset{s}{\leftrightarrow} \mathbf{t}$, is a move such that the outcome pair is still perforated.

		11								11				1			1	1			
		22	2	2	2		\leftrightarrow			2	2	2	2		\leftrightarrow		2	2	2	2	
		23	3	3					22	2		3					22				

The Switching Procedure

- The Switching Procedure, B.S.S. (1996).
- Start with the tableau pair $S \cup T$.
- Switch integers from S with integers from T until it is no longer possible to do so. This produces a new pair $U \cup V$ where $U \equiv T$ and $S \equiv V$.
- Let ρ_{1} denote the map that the switching procedure calculates on ballot tableau pairs of partition shape.
- Imposing a certain order on switches on such pairs $(Y \cup T$ with Y Yamanouchi) reveals interesting features of the map ρ_{1}.

Basic ideas

- Switching on a two-row tableau pair:
- Comparision of the switching on one-row tableau pair with the switching on the augmented two-row tableau pair.

$$
S \cup T=1|1| 1|1 \rightarrow U \cup V=1| 1|1| 1
$$

Add the second row 212 to $S \cup T$.

Put 2 at the beginning of the second row of $U \cup V$; insert 1 in first row of $U \cup V$ by bumping the first 1 and then put it at the end of the second row; add at the end of the second row 2.

Switching on ballot tableau pairs

	1	1	1	1	1		1	1	1	1	1	1
	2	2	2	2	2		2	2	2	2	2	
$Y_{\mu} \cup T=$	3	1	2	3		\rightarrow	1	2	3	3		
	4	2	3	4			2	3	4	4		
1	1	1	1	1	1		1	1	1	1	1	1
2	2	2	2	2			1	2	2	2	2	
1	2	3	3				2	2	3	3		
2	3	4	4				2	3	4	4		

Switching on ballot tableau pairs

1	1	1	1	1	1			1	1	1	1	1
1	2	2	2	2			1	2	2	2	2	
2	3	3	3			\rightarrow	2	3	3	3		
2	2	4	4				4	2	2	4		
1	1	1	1	1	1		1	1	1	1	1	1
1	2	2	2	2			2	2	2	2	2	
2	3	3	3			\rightarrow	1	3	3	3		
4	2	2	4				4	2	2	4		
1	1	1	1	1	1							
2	2	2	2	2								
3	3	1	3									
4	2	2	4			$\cup U$	\cup		U	三	,	

A recursive definition for ρ_{1}

$$
\begin{aligned}
& \left(Y_{\mu} \cup T\right)^{-}=\begin{array}{|l|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 1 & 2 & 3 & & \\
\hline
\end{array} \underset{\rho_{1}}{ } \quad \rho_{1}\left[(Y \cup T)^{-}\right]=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline & 2 & 1 & 2 & 1 \\
\hline 3 & 2 & 2 & 2 & \\
\hline
\end{array}
\end{aligned}
$$

- Are $\rho_{1}(Y \cup T)$ and $\rho_{1}\left[(Y \cup T)^{-}\right]$related?

$$
\begin{aligned}
& \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\rho_{1}(Y \cup T)=\underbrace{\chi_{4} \bar{\theta}_{2,4} \bar{\theta}_{3,4} \bar{\theta}_{4,4}}_{\bar{\theta}_{4}} \rho_{1}\left[(Y \cup T)^{-}\right] . \\
\delta_{4} \rho_{1}(Y \cup T)=\rho_{1}\left[(Y \cup T)^{-}\right], \quad \delta_{4}=\bar{\theta}_{4}^{-1}
\end{array}
\end{aligned}
$$

An avatar of switching map $\rho_{1}: \bar{\rho}^{(n)}$

- $Y_{\mu} \cup T \rightarrow Y_{\nu} \cup U, T \equiv Y_{\nu}, U \equiv T_{\mu}$: use the GT pattern T_{ν} for internal insertion, and add μ_{i} boxes marked with i at the end of each row i.

$$
\begin{aligned}
& T_{\nu}= \\
& \begin{array}{llllll}
& & & 2 & & \\
3 & 3 & & 1 & & \\
3 & & 3 & & 2 & \\
\hline
\end{array}
\end{aligned}
$$

The bijection $\bar{\rho}^{(n)}$ and its inverse $\rho^{(n)}$

- Let $Y_{\mu} \cup T$ be a ballot tableau pair of shape λ. Let ν be the content of T with GT pattern $T_{\nu}=\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(n-1)}, \nu^{(n)}\right)$.
- Let $\nu^{(i)}-\nu^{(i-1)}=\left(V_{1}^{(i)}, \ldots, V_{i-1}^{(i)}, \nu_{i}\right), 1 \leq i \leq n$. Then

$$
\bar{\rho}^{(n)}\left(Y_{\mu} \cup T\right)=\bar{\theta}_{n} \cdots \bar{\theta}_{2} \bar{\theta}_{1} \emptyset
$$

$$
\text { where } \theta_{i}=\chi^{\mu_{i}} \bar{\theta}_{1, i}^{v_{1, i}^{(i)}} \bar{\theta}_{2, i}^{v_{2}^{(i)}} \cdots \bar{\theta}_{i-1, i}^{v_{i-1}^{(i)}} \bar{\theta}_{i, i}^{\nu_{i}}, \quad, 1 \leq i \leq n .
$$

- Let $\rho^{(n)}$ denote the inverse of $\bar{\rho}^{(n)}$. If $Y_{\nu} \cup U=\bar{\rho}^{(n)}\left(Y_{\mu} \cup T\right)$, then

$$
\rho^{(n)}\left(Y_{\nu} \cup U\right)=\delta_{1} \delta_{2} \cdots \delta_{n}\left(Y_{\nu} \cup U\right)
$$

produces the GT pattern of type ν consisting of the sequence of inner shapes in $Y_{\nu} \cup U$, and $\delta_{i} \cdots \delta_{n}\left(Y_{\nu} \cup U\right), i=2, \ldots, n$.

Avatars of switching map $\rho_{1}: \bar{\rho}^{(n)}$ and its inverse $\rho^{(n)}$

$$
\begin{aligned}
& \bar{\rho}^{(n)}\left(Y_{\mu} \cup T\right)=\bar{\theta}_{n} \bar{\rho}^{(n-1)}\left(Y_{\mu} \cup T\right)^{-} . \\
& {\left[\rho^{(n)}\left(Y_{\mu} \cup T\right)\right]^{-}=\rho^{(n-1)} \delta_{n}\left(Y_{\mu} \cup T\right) .}
\end{aligned}
$$

- Lemma. Let $\mathcal{L} \mathcal{R}^{(n)}$ the set of all ballot tableau pairs $Y \cup T$, with at most n rows, where Y is a Yamanouchi tableau. Let $\xi^{(n)}$ be an involution on $L R^{(n)}$ such that $\xi^{(n)}\left(Y_{\mu} \cup T\right)=Y_{\nu} \cup U$ with $Y_{\mu} \equiv U$ and $Y_{\nu} \equiv T$. Then, for all $Y \cup T \in \mathcal{L} \mathcal{R}^{(n)}$,

$$
\xi^{(n-1)}(Y \cup T)^{-}=\delta_{n} \xi^{(n)}(Y \cup T) \quad \text { iff } \quad \xi^{(n-1)} \delta_{n}(Y \cup T)=\left[\xi^{(n)}(Y \cup T)\right]^{-} .
$$

Using the fact that ρ_{1} is an involution.

- Corollary. $\bar{\rho}^{(n)}$ is an involution and by definition

$$
\delta_{n} \bar{\rho}^{(n)}(Y \cup T)=\bar{\rho}^{(n-1)}(Y \cup T)^{-} .
$$

Then

$$
\bar{\rho}^{(n-1)} \delta_{n}(Y \cup T)=\left[\bar{\rho}^{(n)}(Y \cup T)\right]^{-} .
$$

- Corollary. $\rho^{(n)}$ is an involution and by definition

$$
\left[\rho^{(n)}\left(Y_{\mu} \cup T\right)\right]^{-}=\rho^{(n-1)} \delta_{n}\left(Y_{\mu} \cup T\right)
$$

Then

$$
\delta_{n} \rho^{(n)}(Y \cup T)=\rho^{(n-1)}(Y \cup T)^{-} .
$$

Without using the switching map ρ_{1} : the bijection $\rho^{(n)}$

- By definition of $\rho^{(n)}$

$$
\begin{aligned}
& \rho^{(n-1)} \delta_{n}(Y \cup T)=\left[\rho^{(n)}(Y \cup T)\right]^{-} .
\end{aligned}
$$

- Theorem (A. 2000); A., King, Terada (2016)

$$
\begin{aligned}
& \rho^{(n-1)}(Y \cup T)^{-}=\delta_{n} \rho^{(n)}(Y \cup T) .
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{n} \rho^{(n)^{2}}=\rho^{(n)^{2}} \delta_{n} .
\end{aligned}
$$

$\rho^{(n)}$ is an involution

Theorem

(A., King, Terada, 2016) $\rho^{(n)^{2}}=i d$.

Proof. By induction on n.

$$
n=1, \quad T=1|1| 1|1| 1 \underset{\rho^{(1)}}{\rightarrow} S=1|1| 1|1| 1 \underset{\rho^{(1)}}{\rightarrow} T=1|1| 1|1| 1
$$

Let $n>1$. By induction on n,

$$
\begin{array}{cc}
& \rho^{(n)^{2}}\left(\delta_{n}(Y \cup T)\right)=\delta_{n}(Y \cup T) \\
\Leftrightarrow & \delta_{n}\left(\rho^{(n)^{2}}(Y \cup T)\right)=\rho^{(n)^{2}}\left(\delta_{n}(Y \cup T)\right)=\delta_{n}(Y \cup T) \\
\Rightarrow & \rho^{(n)^{2}}(Y \cup T)=Y \cup T .
\end{array}
$$

