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Ballot semistandard Young tableaux or LR tableaux

Ballot or Littlewood-Richardson tableaux (LR)

U =
1 2

1 3
1

T =
1 1

1 2
3

Y =
1 1 1
2
3

21311 11213 11123

A semistandard Young tableau is ballot or LR if the content of each initial
segment of the reading word (read right to left along rows, top to bottom)
is a partition.

T and Y are ballot, U is not.
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Littlewood-Richardson rule

The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson
34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients
appearing in the expansion of a product of Schur polynomials sµ and sν

sµ(x) sν(x) =
∑
λ

cλµν sλ(x)

are given by

cλµν = #{ballot SSYT of shape λ/µ and content ν}.

Schubert structure coefficients of the product in H∗(G (d , n)), the
cohomology of the Grassmannian G (d , n) (as a Z-module), are also given by
the LR rule (L. Lesier 47),

σµσν =
∑

λ⊆d×(n−d)

cλµ νσλ.

4 / 20



The structure coefficient cλµ,ν is

the cardinality of an explicit set of combinatorial objects.

2
1

1

1
2

1

1
1

2
c421

31, 21 = 2

Fixing λ, it is known that the number cλµ,ν is invariant under the switching
of µ and ν.

There are several bijections (involutions) exhibiting the commutativity

cλµ,ν = cλν,µ.

The involutive nature is always quite hard and mysterious, very often,
unfolded with the help of further theory.
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Switching, B.S.S. (1996)

Switching is an operation that takes two tableaux S ∪ T sharing a common
border and moves them through each other giving another such pair U ∪ V ,
in a way that preserves Knuth equivalence, S ≡ V and T ≡ U, and the
shape of their union.

A second application of switching restores the original pair U ∪V . Switching
is an involution.

Benkart, Sottile and Stroomer (1996) have studied switching in a general
context.
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Switching moves

A perforated tableau pair S ∪ T is a labeling of the boxes satisfying some
restrictions: whenever x and x ′ are letters from S (T ) and x is north-west of
x ′, x ′ ≥ x ; within each column of T (S) the letters are distinct.

The moves are such that if s and t are adjacent letters from S and T then a
switch of s with t, s↔

s
t, is a move such that the outcome pair is still

perforated.

1 1 1 1 1 1
2 2 2 2 2
1 2 3 3

↔
1 1 1 1 1 1
1 2 2 2 2
2 2 3 3

↔
1 1 1 1 1 1
1 2 2 2 2
2 2 3 3
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The Switching Procedure

The Switching Procedure, B.S.S. (1996).

I Start with the tableau pair S ∪ T .
I Switch integers from S with integers from T until it is no longer

possible to do so. This produces a new pair U ∪ V where U ≡ T and
S ≡ V .

S∪T =
1 1 1 1 1 1
2 2 2 2 2
3 1 2 3

↔
1 1 1 1 1 1
2 2 2 2 2
1 2 3 3

↔
1 1 1 1 1 1
1 2 2 2 2
2 2 3 3

↔
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

Let ρ1 denote the map that the switching procedure calculates on ballot
tableau pairs of partition shape.

Imposing a certain order on switches on such pairs (Y ∪ T with Y
Yamanouchi) reveals interesting features of the map ρ1.
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Basic ideas

Switching on a two-row tableau pair:

1 1 1 3 3
2 2 3 4

→ 1 1 3 3 1
2 3 4 2

→ 1 3 3 3 1
2 1 4 2

→ 1 3 3 3 1
2 4 1 2

Comparision of the switching on one-row tableau pair with the
switching on the augmented two-row tableau pair.

S ∪ T = 1 1 1 1 1 → U ∪ V = 1 1 1 1 1

Add the second row 212 to S ∪ T .

1 1 1 1 1
2 1 2

→ 1 1 1 1 1
1 2 2

→ 1 1 1 1 1
1 2 2

→ 1 1 1 1 1
2 1 2

Put 2 at the beginning of the second row of U ∪ V ; insert 1 in first
row of U ∪ V by bumping the first 1 and then put it at the end of the
second row; add at the end of the second row 2.
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Switching on ballot tableau pairs

Yµ ∪ T =

1 1 1 1 1 1

2 2 2 2 2

3 1 2 3

4 2 3 4

→

1 1 1 1 1 1

2 2 2 2 2

1 2 3 3

2 3 4 4

1 1 1 1 1 1

2 2 2 2 2

1 2 3 3

2 3 4 4

→

1 1 1 1 1 1

1 2 2 2 2

2 2 3 3

2 3 4 4

→
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Switching on ballot tableau pairs

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

2 2 4 4

→

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

4 2 2 4

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

4 2 2 4

→

1 1 1 1 1 1

2 2 2 2 2

1 3 3 3

4 2 2 4

1 1 1 1 1 1

2 2 2 2 2

3 3 1 3

4 2 2 4 = Yν ∪ U = ρ1(Yµ ∪ T ) U ≡ Yµ, Yν ≡ T .
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A recursive definition for ρ1

(Yµ ∪ T )− =
1 1 1 1 1 1
2 2 2 2 2
3 1 2 3

→
ρ1

ρ1[(Y ∪ T )−] =
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

Yµ ∪ T =

1 1 1 1 1 1
2 2 2 2 2
3 1 2 3
4 2 3 4

→
ρ1

ρ1(Y ∪ T ) =

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2 4

Are ρ1(Y ∪ T ) and ρ1[(Y ∪ T )−] related?

ρ1[(Y ∪ T )−] =
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

4→̄
θ44

1 1 1 1 1 1
2 2 1 2 2
3 2 2 3
4

3→̄
θ3,4

1 1 1 1 1 1
2 2 1 2 2
3 3 2 3
4 2

2→̄
θ24

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2

4→
χ4

1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2 4

= ρ1(Y ∪ T )
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Yµ ∪ T =

1 1 1 1 1 1
2 2 2 2 2
3 1 2 3
4 2 3 4

→
ρ1

ρ1[(Y ∪ T )] =
1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2 4

↓ ↑
θ̄4

↓
δ4

(Yµ ∪ T )− =
1 1 1 1 1 1
2 2 2 2 2
3 1 2 3

→
ρ1

ρ1[(Y ∪ T )−] =
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

ρ1(Y ∪ T ) = χ4θ̄2,4θ̄3,4θ̄4,4︸ ︷︷ ︸
θ̄4

ρ1[(Y ∪ T )−].

δ4 ρ1(Y ∪ T ) = ρ1[(Y ∪ T )−], δ4 = θ̄−1
4
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An avatar of switching map ρ1: ρ(n)

Yµ ∪ T → Yν ∪ U, T ≡ Yν , U ≡ Tµ: use the GT pattern Tν for internal
insertion, and add µi boxes marked with i at the end of each row i .

Yµ ∪ T =

1 1 1 1 1 1
2 2 2 2 2
3 1 2 3
4 2 3 4

Tν =

2
2 1

3 2 1
3 3 2 1

∅ → 1 1 1 1 1 1 → 1 1 1 1 1 1
2

→ 1 1 1 1 1 1
2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2
3

→
1 1 1 1 1 1
2 2 2 2 2
3 2

→
1 1 1 1 1 1
2 2 1 2 2
3 2 2

→
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

1 1 1 1 1 1
2 2 1 2 2
3 2 2 3
4

→
1 1 1 1 1 1
2 2 1 2 2
3 3 2 3
4 2

→
1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2

→
1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2 4

= Yν ∪ U
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The bijection ρ̄(n) and its inverse ρ(n)

Let Yµ ∪ T be a ballot tableau pair of shape λ. Let ν be the content of T
with GT pattern Tν = (ν(1), ν(2), . . . , ν(n−1), ν(n)).

Let ν(i) − ν(i−1) = (V
(i)
1 , . . . ,V

(i)
i−1, νi ), 1 ≤ i ≤ n. Then

ρ̄(n)(Yµ ∪ T ) = θ̄n · · · θ̄2θ̄1 ∅,

where θi = χµi θ̄
V

(i)
1

1,i θ̄
V

(i)
2

2,i · · · θ̄
V

(i)
i−1

i−1,i θ̄
νi
i,i , , 1 ≤ i ≤ n.

Let ρ(n) denote the inverse of ρ̄(n). If Yν ∪ U = ρ̄(n)(Yµ ∪ T ), then

ρ(n)(Yν ∪ U) = δ1δ2 · · · δn(Yν ∪ U)

produces the GT pattern of type ν consisting of the sequence of inner
shapes in Yν ∪ U, and δi · · · δn(Yν ∪ U), i = 2, . . . , n.
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Avatars of switching map ρ1: ρ̄(n) and its inverse ρ(n)

ρ̄(n)(Yµ ∪ T ) = θ̄nρ̄
(n−1)(Yµ ∪ T )−.

[ρ(n)(Yµ ∪ T )]− = ρ(n−1)δn(Yµ ∪ T ).

16 / 20



Lemma. Let LR(n) the set of all ballot tableau pairs Y ∪ T , with at most n
rows, where Y is a Yamanouchi tableau. Let ξ(n) be an involution on LR(n)

such that ξ(n)(Yµ ∪ T ) = Yν ∪ U with Yµ ≡ U and Yν ≡ T . Then, for all

Y ∪ T ∈ LR(n),

ξ(n−1)(Y ∪ T )− = δnξ
(n)(Y ∪ T ) iff ξ(n−1)δn(Y ∪ T ) = [ξ(n)(Y ∪ T )]−.

Using the fact that ρ1 is an involution.

Corollary. ρ̄(n) is an involution and by definition

δnρ̄
(n)(Y ∪ T ) = ρ̄(n−1)(Y ∪ T )−.

Then
ρ̄(n−1)δn(Y ∪ T ) = [ρ̄(n)(Y ∪ T )]−.

Corollary. ρ(n) is an involution and by definition

[ρ(n)(Yµ ∪ T )]− = ρ(n−1)δn(Yµ ∪ T ).

Then
δnρ

(n)(Y ∪ T ) = ρ(n−1)(Y ∪ T )−.
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Without using the switching map ρ1: the bijection ρ(n)

By definition of ρ(n)

LR(n) LR(n)

LR(n−1) LR(n−1)

ρ(n)

ρ(n−1)

δn

re
m

ov
in

g
th

e
n

th
ro

w3
T

3δnT

∈S

∈
S−.

S ′

ρ(n−1)δn(Y ∪ T ) = [ρ(n)(Y ∪ T )]−.

Theorem (A. 2000); A., King, Terada (2016)

LR(n) LR(n)

LR(n−1) LR(n−1)

ρ(n)

ρ(n−1)

rem
ovin

g
th

e
n

th
row

δn

3
T

3T
−

∈S

∈
δnS .

S ′

ρ(n−1)(Y ∪ T )− = δnρ
(n)(Y ∪ T ).
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LR(n) LR(n)

LR(n−1) LR(n−1)

ρ(n)

ρ(n)

δn

re
m

ov
in

g
th

e
n

th
ro

w3
T

3
δnT

∈
S

∈
S−.

S ′

LR(n) LR(n)

LR(n−1) LR(n−1)

ρ(n)

ρ(n)
rem

ovin
g

th
e
n

th
row

δn

3
S

3S
−

∈T ′

∈
δnT

′.

T ′′

δnρ
(n)2

= ρ(n)2
δn.
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ρ(n) is an involution

Theorem
(A., King, Terada, 2016) ρ(n)2

= id .

Proof. By induction on n.

n = 1, T = 1 1 1 1 1 1 →
ρ(1)

S = 1 1 1 1 1 1 →
ρ(1)

T = 1 1 1 1 1 1

Let n > 1. By induction on n,

ρ(n)2
(δn(Y ∪ T )) = δn(Y ∪ T )

⇔ δn(ρ(n)2
(Y ∪ T )) = ρ(n)2

(δn(Y ∪ T )) = δn(Y ∪ T )

⇒ ρ(n)2
(Y ∪ T ) = Y ∪ T .
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