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Schur Positivity

A symmetric function is called ”Schur positive” if its coordinates in
the basis of Schur functions are non-negative.

Example

Given λ ` k and µ ` `, consider the product

sλsµ =
∑
ν

cνλ,µsν .

The Littlewood-Richardson rule provides a combinatorial
interpretation of the coefficients cνλ,µ, proving that sλsµ is Schur
positive.

Eli Bagno (Jerusalem College of Technology) joint work with Ron M. Adin and Yuval Roichman

Block decomposition of permutations and Schur Positivity



3/33

Statistics on Sn
π ∈ Sn is equipped with the statistics:

The descent set:

Des(π) = {i | π(i) > π(i + 1)}.

Example

π = 5̄3̄26̄14, so Des(π) = {1, 2, 4}.

The left to right maxima:

LtrMax(π) = {i | π(i) > π(j) for all j < i}.

Example

π = 3̄6̄2415.
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Standard Young tableaux

λ is a partition of n, represented by a Young diagram.
A standard Young tableau of shape λ is a filling of the cells of λ
such that:

The entries in each row are strictly increasing.

The entries in each column are strictly increasing.

Denote the set of all standard Young tableaux of shape λ by
SYT (λ)

Example

SYT (3, 2) = 1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

.
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The descent set of a SYT

The descent set of a standard Young tableaux T is

Des(T ) = {i | i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6
5

Des(T ) = {2, 4}.
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Semi standard Tableaux

Definition

λ is a shape. A semistandard Young tableau of shape λ is a filling
of the cells of λ such that

The entries in each row are weakly increasing.

The entries in each column are strictly increasing.

Example

T =
1 2 2
3 3 4
5 6

.
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The Schur function

To each semi standard Young tablaeu T , we associate the weight
monomial:

xT =
∏
i

xnumber of i’s inT
i .

Example

T =
1 2 2
3 3 4
5 6

has xT = x1x
2
2x

2
3x4x5x6.

For a partition λ, the Schur function sλ is defined as:
sλ =

∑
T∈SSYT

xT

Proposition

{sλ | λ ` n} is a basis for degree n homogenuous s.f.
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Example

For λ = (2, 1) the list of semistandard tableaux of shape λ with
numbers 1, 2, 3 is:

1 1
2

, 1 1
3

, 1 2
2

, 1 2
3

, 1 3
2

, 1 3
3

, 2 2
3

, 2 3
3

.

The corresponding Schur polynomial is:

s(2,1)(x1, x2, x3) = x21x2+x21x3+x1x
2
2 +2x1x2x3+x1x

2
3 +x22x3+x2x

2
3
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Quasisymmetric functions

A formal power series f (x1, x2, · · · ) is a quasisymmetric function if
for every composition (α1, · · · , αk), all monomials xα1

i1
· · · xαk

ik
in f

with indices i1 < i2 < · · · < ik have the same coefficients.

Example

(In 3 variables)
f = x21x2 + x21x3 + x22x3

is quasisymmetric but not symmetric.

Example

f =
∑
i<j

x2i xj

is quasisymmetric but not symmetric.
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The fundamental basis

For each subset D ⊆ [n − 1] define the quasi-symmetric function

FD(x) :=
∑

i1≤i2≤...≤in
ij<ij+1 if j∈D

xi1xi2 · · · xin .

In the typical case, the sets are descents sets of permutations.

Example

π = 132, Des(π) = {2}.

FDes{132} = x1x1x2 + x1x1x3 + x1x2x3 + x2x2x3 + · · · .

Proposition

The algebra of homogeneous quasisymetric functions n, Qn,has
{FD}D⊆[n−1] as a basis. This is Gessel’s fundamental basis of Qn.

Eli Bagno (Jerusalem College of Technology) joint work with Ron M. Adin and Yuval Roichman

Block decomposition of permutations and Schur Positivity



11/33

Schur poitivity

For A ⊆ Sn, let
Q(A) =

∑
π∈A
FDes(π).

Q(A) is called Schur positive if it is symmetric and can be written
as a linear combination of Schur functions with non-negative
coefficients.
A is called Schur Positive if Q(A) is Schur positive.

Question

(Gessel, Reutenaur, ’93) For which A ⊆ Sn is Q(A) symmetric?

Question

(Adin, Roichman, ’93) For which A ⊆ Sn is Q(A) Schur positive?
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Some known Schur Positive sets

Subsets closed under conjugation. (involutions,
derangments,...).(Gessel, Reutenauer, ’93).

Permutations with prescribed number of inversions (Adin,
Roichman, ’15).

Arc permutations. (each prefix of π forms an interval in Zn).
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Knuth classes

For every standard Young tableau T of size n, the set

CT := {π ∈ Sn : Pπ = T}

is a Knuth class corresponding to T , where Pπ is given by the RSK
correspondence: π 7→ (Pπ,Qπ).

Example

213 7→ ( 1 3
2

, 1 3
2

) and 231 7→ ( 1 3
2

, 1 2
3

), so that

C
1 3
2

= {213, 231}.
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Proposition

For π ∈ Sn:

Des(π) = Des(Qπ),Des(π−1) = Des(Pπ).

Proposition

(Gessel, ’84) Knuth classes are Schur-positive.
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Two questions

Question

(Sagan, Woo, ’14) Is there a way to combine pattern avoidance
and quasisymmetric functions?
In other words, which pattern avoiding sets of permutations
Sn(σ1, σ2, · · · ) are Schur positive?

Question

Is there a way to combine pattern avoidance, quasisymmetric
functions and permutation statistics?
In other words, find pattern avoiding sets graded by parameters on
Sn which are Schur positive.
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The blocks number

Definition

Let π ∈ Sm and σ ∈ Sn. The direct sum of π and σ is the
permutation π ⊕ σ ∈ Sm+n defined by

(π ⊕ σ)i =

{
π(i), if i ≤ n;

σ(i − n) + n, otherwise.

Example

If π = 132 and σ = 4231 then π ⊕ σ = 1327564.

The direct sum is clearly associative.
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A nonempty permutation which is not a direct sum of two
nonempty permutations is called ⊕-irreducible.
Each permutation π can be written uniquely as a direct sum of
⊕-irreducible ones, called the blocks of π.

bl(π) = number of blocks.

Example

bl(45321) = 1,

bl(312 | 54) = 2,

bl(1 | 2 | 3 | 4) = 4.
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Another statistic: the last descent

Definition

For a permutation π ∈ Sn let

ldes(π) := max{i : i ∈ Des(π)},

with ldes(π) := 0 if Des(π) = ∅ (i.e., if π is the identity
permutation).
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The sets Bln,k and Ln,k

Definition

Let
Bln,k := {π ∈ Sn(321) : bl(π) = k}.

Definition

Let
Ln,k = {π ∈ Sn(321) : ldes(π−1) = k}.
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Enumeration of Bln,k

Definition

Recall: The Catalan number is given by:

Cn =
1

n + 1

(
2n

n

)
.

The corresponding generating function is

c(x) =
∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
.
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Enumeratrion of Bn,k

Definition

For each k ≥ 0, the n-th k-fold Catalan number is the coefficient
of xn in (xc(x))k , given by:

Cn,k =
k

2n − k

(
2n − k

n

)
.

Proposition

For positive integers n ≥ k ≥ 1:

Cn,k = |SYT (n − 1, n − k)| = Ln,n−k = Bn,k

This result will be refined in a moment.
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LtrMax determines Des in Sn(321)

Definition

Sn(321) is the set of 321− avoiding permutations in Sn.

Observation

For π ∈ Sn(321), the complement of LtrMax(π) is an increasing
sequance.

Example

π = 3̄125̄46̄.
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Observation

For each π ∈ Sn(321), the descents of π are placed exactly in the
transitions from left to right maxima to non left to right maxima.

Example

π = 3̄125̄46̄

Proposition

For π ∈ Sn(321), height(Pπ) ≤ 2.
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Equidistribution

We present a left-to-right-maxima preserving bijection from
Bln,k to Ln,n−k which will give us:
Theorem (A.B.R. ’16)
For every positive integer n:

∑
π∈Sn(321)

xltrMax(π)tπ
−1(n)qbl(π) =

∑
π∈Sn(321)

xltrMax(π)tπ
−1(n)qn−ldes(π

−1).
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The bijection

Definition

The map fn : Sn(321) 7→ Sn(321) is defined recursively on n, as
follows, distinguishing between 3 cases, according to the location
of n in π or the relative order of n − 1 and n.

L : n is positioned in the Last location.

D: n is not positioned in the last slot and n − 1 preceds n.

R: n − 1 is to the right of n.
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Case L: n is the last letter.

Omit n
Apply fn−1;
Insert n at the last position.

Case D: n − 1 is left of n, but n is not the last letter.

Omit n.
Apply fn−1.
Multiply from left by the transposition (n − k − 1, n − k).
Insert n at the same position as in π.

Case R: n − 1 is right of n.
In this case n − 1 must be the last letter.

Exchange n − 1 and n in π, then omit n.
Apply fn−1

Multiply (from the left) the resulting permutation by the cycle
(n − k , n − k + 1, ..., n − 1, n).
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Example

Let π8 = π = 31254786

π8 = 31254786
D−−→

(45)
π7 = 3125476

R−−−−→
(4567)

π6 = 312546
L−→

π5 = 31254
R−−−→

(345)
π4 = 3124

L−→ π3 = 312
R−−→

(23)
π2 = 21
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Now we make the other way around.

f (π2) = 21
(23)−−→ f (π3) = 312 −→ f (π4) = 3124

(345)−−−→

f (π5) = 41253
(45)−−→ f (π6) = 412536

(4567)−−−−→ f (π7) = 5126374
(45)−−→ f (π8) = 41263785
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Schur positivity of Bln,k

Theorem: (A.B.R) Q(Bln,k) is Schur positive.
Proof:
Recall that in Sn(321) The LtrMax determines the Des and let
t = 1 in

∑
π∈Sn(321)

xltrMax(π)tπ
−1(n)qbl(π) = xltrMax(π)tπ

−1(n)qn−ldes(π
−1),

to get: ∑
π∈Sn(321)

xDes(π)qbl(π) =
∑

π∈Sn(321)

xDes(π)qn−ldes(π
−1).

Hence

Q(Bln,k) =
∑

π∈Bln,k

FDes(π) =
∑

π∈Ln,n−k

FDes(π) = Q(Ln,n−k).
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On the other hand,

Ln,n−k = {π ∈ Sn(321) | ldes(π−1) = n − k} =

{π ∈ Sn | height(Pπ) < 3 and ldes(Pπ) = n − k}

is a disjoint union of Knuth classes, thus is Schur-positive.
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Characters

Recall that the Frobenius image of an Sn-character χ =
∑
λ`n

cλχ
λ is

the symmetric function f =
∑
λ`n

cλsλ, denoted by ch(χ).

Theorem

For every positive integer 1 ≤ k ≤ n

Q(Bln,k) = ch(χn−1,n−k ↓Sn),

where ch is the Frobenius characteristic map from class functions
on Sn to symmetric functions.
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Open questions

1 Find a non-recursive definition for the bijection.

2 A patterns-statistics pair (Π, stat) consisting of Π ⊆ Sm and a
permutations statistic stat : Sn −→ N is Schur-positive if

Q({π ∈ Sn(Π) | stat(π) = k})

is Schur-positive for all positive integers n and k .
Find Schur-positive patterns-statistics pairs.
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Thank you

Corollary

Thank you for your attention!
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