Block decomposition of permutations and Schur Positivity

Eli Bagno (Jerusalem College of Technology) joint work with Ron M. Adin and Yuval Roichman

SLC 77 ,

September 12, 2016

Schur Positivity

A symmetric function is called "Schur positive" if its coordinates in the basis of Schur functions are non-negative.

Example

Given $\lambda \vdash k$ and $\mu \vdash \ell$, consider the product

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

The Littlewood-Richardson rule provides a combinatorial interpretation of the coefficients $c_{\lambda, \mu}^{\nu}$, proving that $s_{\lambda} s_{\mu}$ is Schur positive.

Statistics on \mathcal{S}_{n}

$\pi \in S_{n}$ is equipped with the statistics:

- The descent set:

$$
\operatorname{Des}(\pi)=\{i \mid \pi(i)>\pi(i+1)\}
$$

Example

$$
\pi=\overline{5} \overline{3} 2 \overline{6} 14, \text { so } \operatorname{Des}(\pi)=\{1,2,4\} .
$$

- The left to right maxima:

$$
\operatorname{LtrMax}(\pi)=\{i \mid \pi(i)>\pi(j) \text { for all } j<i\} .
$$

Example

$$
\pi=\overline{3} \overline{6} 2415 .
$$

Standard Young tableaux

λ is a partition of n, represented by a Young diagram. A standard Young tableau of shape λ is a filling of the cells of λ such that:

- The entries in each row are strictly increasing.
- The entries in each column are strictly increasing.

Denote the set of all standard Young tableaux of shape λ by SYT (λ)

Example

The descent set of a SYT

The descent set of a standard Young tableaux T is

$$
\operatorname{Des}(T)=\{i \mid i+1 \text { is in a lower row than } i\} .
$$

Example

$$
\begin{gathered}
T=\begin{array}{|lll}
\hline 1 & 2 & 4 \\
\hline 3 & 6 & \\
\hline 5 &
\end{array} \\
\operatorname{Des}(T)=\{2,4\} .
\end{gathered}
$$

Semi standard Tableaux

Definition

λ is a shape. A semistandard Young tableau of shape λ is a filling of the cells of λ such that

- The entries in each row are weakly increasing.
- The entries in each column are strictly increasing.

Example

$$
T=
$$

The Schur function

To each semi standard Young tablaeu T, we associate the weight monomial:

$$
\mathbf{x}^{T}=\prod_{i} x_{i}^{\text {number of } \mathrm{i} \text { 's in } T}
$$

Example

$T=$| 1 | 2 | 2 |
| :--- | :--- | :--- |
| | 3 | 4 |
| 5 | 6 | | has $\mathbf{x}^{T}=x_{1} x_{2}^{2} x_{3}^{2} x_{4} x_{5} x_{6}$.

For a partition λ, the Schur function s_{λ} is defined as:
$s_{\lambda}=\sum_{T \in S S Y T} \mathbf{x}^{T}$

Proposition

$\left\{s_{\lambda} \mid \lambda \vdash n\right\}$ is a basis for degree n homogenuous s.f.

Example

For $\lambda=(2,1)$ the list of semistandard tableaux of shape λ with numbers $1,2,3$ is:

The corresponding Schur polynomial is:

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

Quasisymmetric functions

A formal power series $f\left(x_{1}, x_{2}, \cdots\right)$ is a quasisymmetric function if for every composition $\left(\alpha_{1}, \cdots, \alpha_{k}\right)$, all monomials $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ in f with indices $i_{1}<i_{2}<\cdots<i_{k}$ have the same coefficients.

Example
(In 3 variables)
is quasisymmetric but not symmetric.

Example

is quasisymmetric but not symmetric.

Quasisymmetric functions

A formal power series $f\left(x_{1}, x_{2}, \cdots\right)$ is a quasisymmetric function if for every composition $\left(\alpha_{1}, \cdots, \alpha_{k}\right)$, all monomials $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ in f with indices $i_{1}<i_{2}<\cdots<i_{k}$ have the same coefficients.

Example

(In 3 variables)

$$
f=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
$$

is quasisymmetric but not symmetric.

is quasisymmetric but not symmetric.

Quasisymmetric functions

A formal power series $f\left(x_{1}, x_{2}, \cdots\right)$ is a quasisymmetric function if for every composition $\left(\alpha_{1}, \cdots, \alpha_{k}\right)$, all monomials $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ in f with indices $i_{1}<i_{2}<\cdots<i_{k}$ have the same coefficients.

Example

(In 3 variables)

$$
f=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
$$

is quasisymmetric but not symmetric.

Example

$$
f=\sum_{i<j} x_{i}^{2} x_{j}
$$

is quasisymmetric but not symmetric.

The fundamental basis

For each subset $D \subseteq[n-1]$ define the quasi-symmetric function

$$
F_{D}(\mathbf{x}):=\sum_{\substack{i_{1}<i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j} \leq 1 \\ \text { if } j \in D}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} .
$$

In the typical case, the sets are descents sets of permutations.
Example

$$
\begin{aligned}
\pi=132, \operatorname{Des}(\pi) & =\{2\} . \\
& \mathcal{F}_{\operatorname{Des}\{132\}}=x_{1} x_{1} x_{2}+x_{1} x_{1} x_{3}+x_{1} x_{2} x_{3}+x_{2} x_{2} x_{3}+\cdots .
\end{aligned}
$$

Proposition

The algebra of homogeneous quasisymetric functions n, Q_{n}, has $\left\{\mathcal{F}_{D}\right\}_{D \subseteq[n-1]}$ as a basis. This is Gessel's fundamental basis of Q_{n}.

Schur poitivity

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} \mathcal{F}_{D e s(\pi)}
$$

$\mathcal{Q}(A)$ is called Schur positive if it is symmetric and can be written as a linear combination of Schur functions with non-negative coefficients.
A is called Schur Positive if $\mathcal{Q}(A)$ is Schur positive.

Question
 (Gessel, Reutenaur, '93) For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?

Question
(Adin, Roichman, '93) For which $A \subseteq S_{n}$ is $Q(A)$ Schur positive?

Schur poitivity

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} \mathcal{F}_{D e s(\pi)}
$$

$\mathcal{Q}(A)$ is called Schur positive if it is symmetric and can be written as a linear combination of Schur functions with non-negative coefficients.
A is called Schur Positive if $\mathcal{Q}(A)$ is Schur positive.

Question

(Gessel, Reutenaur, '93) For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question
(Adin, Roichman, '93) For which $A \subseteq S_{n}$ is $Q(A)$ Schur positive?

Schur poitivity

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} \mathcal{F}_{D e s(\pi)}
$$

$\mathcal{Q}(A)$ is called Schur positive if it is symmetric and can be written as a linear combination of Schur functions with non-negative coefficients.
A is called Schur Positive if $\mathcal{Q}(A)$ is Schur positive.

Question

(Gessel, Reutenaur, '93) For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?

Question

(Adin, Roichman, '93) For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur positive?

Some known Schur Positive sets

- Subsets closed under conjugation. (involutions, derangments,...).(Gessel, Reutenauer, '93).
- Permutations with prescribed number of inversions (Adin, Roichman, '15).
- Arc permutations. (each prefix of π forms an interval in \mathbb{Z}_{n}).

Knuth classes

For every standard Young tableau T of size n, the set

$$
\mathcal{C}_{T}:=\left\{\pi \in \mathcal{S}_{n}: P_{\pi}=T\right\}
$$

is a Knuth class corresponding to T, where P_{π} is given by the RSK correspondence: $\pi \mapsto\left(P_{\pi}, Q_{\pi}\right)$.

Example

$$
\begin{aligned}
& 213 \mapsto\left(\begin{array}{ll|l|l}
1 & 3 \\
2 & 3 & 1 & 3 \\
\hline
\end{array}\right) \text { and } 231 \mapsto\left(\begin{array}{lll|l|}
\hline 1 & 3 & 1 & 2 \\
\hline 2 & 3 & 3
\end{array}\right) \text {, so that } \\
& \mathcal{C}^{\mathcal{C}_{1}} \begin{array}{l}
3 \\
\hline 2
\end{array}
\end{aligned}
$$

Proposition

For $\pi \in S_{n}$:

$$
\operatorname{Des}(\pi)=\operatorname{Des}\left(Q_{\pi}\right), \operatorname{Des}\left(\pi^{-1}\right)=\operatorname{Des}\left(P_{\pi}\right) .
$$

Proposition

(Gessel, '84) Knuth classes are Schur-positive.

Proposition

For $\pi \in S_{n}$:

$$
\operatorname{Des}(\pi)=\operatorname{Des}\left(Q_{\pi}\right), \operatorname{Des}\left(\pi^{-1}\right)=\operatorname{Des}\left(P_{\pi}\right) .
$$

Proposition

(Gessel, '84) Knuth classes are Schur-positive.

Two questions

Question

(Sagan, Woo, '14) Is there a way to combine pattern avoidance and quasisymmetric functions?
In other words, which pattern avoiding sets of permutations $\mathcal{S}_{n}\left(\sigma_{1}, \sigma_{2}, \cdots\right)$ are Schur positive?

Question

Is there a way to combine pattern avoidance, quasisymmetric functions and permutation statistics?
In other words, find pattern avoiding sets graded by parameters on \mathcal{S}_{n} which are Schur positive.

Two questions

Question

(Sagan, Woo, '14) Is there a way to combine pattern avoidance and quasisymmetric functions?
In other words, which pattern avoiding sets of permutations $\mathcal{S}_{n}\left(\sigma_{1}, \sigma_{2}, \cdots\right)$ are Schur positive?

Question

Is there a way to combine pattern avoidance, quasisymmetric functions and permutation statistics?
In other words, find pattern avoiding sets graded by parameters on \mathcal{S}_{n} which are Schur positive.

The blocks number

Definition

Let $\pi \in \mathcal{S}_{m}$ and $\sigma \in \mathcal{S}_{n}$. The direct sum of π and σ is the permutation $\pi \oplus \sigma \in \mathcal{S}_{m+n}$ defined by

$$
(\pi \oplus \sigma)_{i}= \begin{cases}\pi(i), & \text { if } i \leq n \\ \sigma(i-n)+n, & \text { otherwise }\end{cases}
$$

Example

If $\pi=132$ and $\sigma=4231$ then $\pi \oplus \sigma=1327564$.
The direct sum is clearly associative.

A nonempty permutation which is not a direct sum of two nonempty permutations is called \oplus-irreducible.
Each permutation π can be written uniquely as a direct sum of \oplus-irreducible ones, called the blocks of π.

$$
b l(\pi)=\text { number of blocks. }
$$

Example

$$
\begin{gathered}
\mathrm{bl}(45321)=1, \\
\mathrm{bl}(312 \mid 54)=2 \\
\mathrm{bl}(1|2| 3 \mid 4)=4
\end{gathered}
$$

Another statistic: the last descent

Definition

For a permutation $\pi \in S_{n}$ let

$$
\operatorname{ldes}(\pi):=\max \{i: \quad i \in \operatorname{Des}(\pi)\}
$$

with $\operatorname{ldes}(\pi):=0$ if $\operatorname{Des}(\pi)=\emptyset$ (i.e., if π is the identity permutation).

The sets $B l_{n, k}$ and $L_{n, k}$

Definition
 Let

$$
B I_{n, k}:=\left\{\pi \in \mathcal{S}_{n}(321): \quad \mathrm{bl}(\pi)=k\right\}
$$

Definition

Let

$$
L_{n, k}=\left\{\pi \in \mathcal{S}_{n}(321): \operatorname{Ides}\left(\pi^{-1}\right)=k\right\}
$$

Enumeration of $B I_{n, k}$

Definition

Recall: The Catalan number is given by:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

The corresponding generating function is

$$
c(x)=\sum_{n=0}^{\infty} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Enumeratrion of $B_{n, k}$

Definition

For each $k \geq 0$, the n-th k-fold Catalan number is the coefficient of x^{n} in $(x c(x))^{k}$, given by:

$$
C_{n, k}=\frac{k}{2 n-k}\binom{2 n-k}{n}
$$

Proposition

For positive integers $n \geq k \geq 1$:

$$
C_{n, k}=|S Y T(n-1, n-k)|=L_{n, n-k}=B_{n, k}
$$

This result will be refined in a moment.

LtrMax determines Des in $\mathcal{S}_{n}(321)$

Definition

$\mathcal{S}_{n}(321)$ is the set of 321 - avoiding permutations in \mathcal{S}_{n}.

Observation

For $\pi \in \mathcal{S}_{n}(321)$, the complement of $\operatorname{LtrMax}(\pi)$ is an increasing sequance.

Example

$$
\pi=\overline{3} 12 \overline{5} 4 \overline{6} .
$$

Observation

For each $\pi \in \mathcal{S}_{n}(321)$, the descents of π are placed exactly in the transitions from left to right maxima to non left to right maxima.

Example

$$
\pi=\overline{3} 12 \overline{5} 4 \overline{6}
$$

Proposition

For $\pi \in \mathcal{S}_{n}(321)$, $\operatorname{height}\left(P_{\pi}\right) \leq 2$.

Equidistribution

We present a left-to-right-maxima preserving bijection from $B I_{n, k}$ to $L_{n, n-k}$ which will give us:
Theorem (A.B.R. '16)
For every positive integer n :

Equidistribution

We present a left-to-right-maxima preserving bijection from $B I_{n, k}$ to $L_{n, n-k}$ which will give us:
Theorem (A.B.R. '16)
For every positive integer n :

$$
\sum_{\pi \in \mathcal{S}_{n}(321)} \mathbf{x}^{\operatorname{ltr} \operatorname{Max}(\pi)} t^{\pi^{-1}(n)} q^{\mathrm{bl}(\pi)}=\sum_{\pi \in \mathcal{S}_{n}(321)} \mathbf{x}^{\operatorname{ltr} \operatorname{Max}(\pi)} t^{\pi^{-1}(n)} q^{n-\operatorname{ldes}\left(\pi^{-1}\right)}
$$

The bijection

Definition

The map $f_{n}: \mathcal{S}_{n}(321) \mapsto \mathcal{S}_{n}(321)$ is defined recursively on n, as follows, distinguishing between 3 cases, according to the location of n in π or the relative order of $n-1$ and n.

- $L: n$ is positioned in the Last location.
- $D: n$ is not positioned in the last slot and $n-1$ preceds n.
- $R: n-1$ is to the right of n.

Case L: n is the last letter.

- Omit n
- Apply f_{n-1};
- Insert n at the last position.

Case D: $n-1$ is left of n, but n is not the last letter.

- Omit n.
- Apply f_{n-1}.
- Multiply from left by the transposition ($n-k-1, n-k$).
- Insert n at the same position as in π.

Case R: $n-1$ is right of n.
In this case $n-1$ must be the last letter.

- Exchange $n-1$ and n in π, then omit n.
- Apply f_{n-1}
- Multiply (from the left) the resulting permutation by the cycle ($n-k, n-k+1, \ldots, n-1, n$).

Example

$$
\text { Let } \pi_{8}=\pi=31254786
$$

$$
\begin{gathered}
\pi_{8}=31254786 \underset{(45)}{D} \pi_{7}=3125476 \underset{(4567)}{R} \pi_{6}=312546 \xrightarrow{L} \\
\pi_{5}=31254 \underset{(345)}{R} \pi_{4}=3124 \\
\xrightarrow{L} \pi_{3}=312 \xrightarrow[(23)]{R} \pi_{2}=21
\end{gathered}
$$

Now we make the other way around.

$$
\begin{gathered}
f\left(\pi_{2}\right)=21 \xrightarrow{(23)} f\left(\pi_{3}\right)=312 \rightarrow f\left(\pi_{4}\right)=3124 \xrightarrow{(345)} \\
f\left(\pi_{5}\right)=41253 \xrightarrow{(45)} f\left(\pi_{6}\right)=412536 \\
\xrightarrow{(4567)} f\left(\pi_{7}\right)=5126374 \xrightarrow{(45)} f\left(\pi_{8}\right)=41263785
\end{gathered}
$$

Schur positivity of $B I_{n, k}$

Theorem: (A.B.R) $\mathcal{Q}\left(B I_{n, k}\right)$ is Schur positive.
 Proof:
 Recall that in $\mathcal{S}_{n}(321)$ The LtrMax determines the Des and let $t=1$ in

Hence

Schur positivity of $B I_{n, k}$

Theorem: (A.B.R) $\mathcal{Q}\left(B I_{n, k}\right)$ is Schur positive.
Proof:
Recall that in $\mathcal{S}_{n}(321)$ The LtrMax determines the Des and let $t=1$ in

$$
\sum_{\pi \in \mathcal{S}_{n}(321)} \mathbf{x}^{\operatorname{ltr} \operatorname{Max}(\pi)} t^{\pi^{-1}(n)} q^{\mathrm{bl}(\pi)}=\mathbf{x}^{\operatorname{ltr} \operatorname{Max}(\pi)} t^{\pi^{-1}(n)} q^{n-\operatorname{ldes}\left(\pi^{-1}\right)}
$$

to get:

$$
\sum_{\pi \in \mathcal{S}_{n}(321)} \mathbf{x}^{\operatorname{Des}(\pi)} q^{\mathrm{bl}(\pi)}=\sum_{\pi \in \mathcal{S}_{n}(321)} \mathbf{x}^{\operatorname{Des}(\pi)} q^{n-\operatorname{ldes}\left(\pi^{-1}\right)}
$$

Hence

$$
\mathcal{Q}\left(B I_{n, k}\right)=\sum_{\pi \in B l_{n, k}} \mathcal{F}_{D e s}(\pi)=\sum_{\pi \in L_{n, n-k}} \mathcal{F}_{D e s}(\pi)=\mathcal{Q}\left(L_{n, n-k}\right)
$$

On the other hand,

$$
\begin{gathered}
L_{n, n-k}=\left\{\pi \in \mathcal{S}_{n}(321) \mid \operatorname{ldes}\left(\pi^{-1}\right)=n-k\right\}= \\
\left\{\pi \in \mathcal{S}_{n} \mid \operatorname{height}\left(P_{\pi}\right)<3 \text { and } \operatorname{Ides}\left(P_{\pi}\right)=n-k\right\}
\end{gathered}
$$

is a disjoint union of Knuth classes, thus is Schur-positive.

Characters

Recall that the Frobenius image of an \mathcal{S}_{n}-character $\chi=\sum_{\lambda \vdash n} c_{\lambda} \chi^{\lambda}$ is the symmetric function $f=\sum_{\lambda \vdash n} c_{\lambda} s_{\lambda}$, denoted by $c h(\chi)$.

Theorem

For every positive integer $1 \leq k \leq n$

$$
\mathcal{Q}\left(B I_{n, k}\right)=\operatorname{ch}\left(\chi^{n-1, n-k} \downarrow S_{n}\right),
$$

where ch is the Frobenius characteristic map from class functions on \mathcal{S}_{n} to symmetric functions.

Open questions

(1) Find a non-recursive definition for the bijection.
(2) A patterns-statistics pair $\left(\Pi\right.$, stat) consisting of $\Pi \subseteq \mathcal{S}_{m}$ and a permutations statistic stat : $\mathcal{S}_{n} \longrightarrow \mathbb{N}$ is Schur-positive if

$$
\mathcal{Q}\left(\left\{\pi \in S_{n}(\Pi) \mid \operatorname{stat}(\pi)=k\right\}\right)
$$

is Schur-positive for all positive integers n and k Find Schur-positive patterns-statistics pairs.

Open questions

(1) Find a non-recursive definition for the bijection.
(2) A patterns-statistics pair $\left(\Pi\right.$, stat) consisting of $\Pi \subseteq \mathcal{S}_{m}$ and a permutations statistic stat : $\mathcal{S}_{n} \longrightarrow \mathbb{N}$ is Schur-positive if

$$
\mathcal{Q}\left(\left\{\pi \in \mathcal{S}_{n}(\Pi) \mid \operatorname{stat}(\pi)=k\right\}\right)
$$

is Schur-positive for all positive integers n and k.
Find Schur-positive patterns-statistics pairs.

Open questions

(1) Find a non-recursive definition for the bijection.
(2) A patterns-statistics pair $(\Pi$, stat $)$ consisting of $\Pi \subseteq \mathcal{S}_{m}$ and a permutations statistic stat : $\mathcal{S}_{n} \longrightarrow \mathbb{N}$ is Schur-positive if

$$
\mathcal{Q}\left(\left\{\pi \in \mathcal{S}_{n}(\Pi) \mid \operatorname{stat}(\pi)=k\right\}\right)
$$

is Schur-positive for all positive integers n and k. Find Schur-positive patterns-statistics pairs.

Thank you

Corollary
 Thank you for your attention!

