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From such a humble beginning, Ramanujan wrote down several generalizations

and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this article is to show how to formally derive nine continued
fractions that appear in Ramanujan’s Lost Notebook [16] (see Andrews and Berndt
[3, ch. 6]) and his earlier Second Notebook (see Berndt [5, ch. 16]).

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [8] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2 �m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s Approach: The Rogers-Ramanujan Continued Fraction

Euler used the elementary identity:

N

D
= 1 +

N �D

D
(2.1)

1 + a1x+ a2x2 + a3x3 + · · ·
1 + b1x+ b2x2 + b3x3 + · · · = 1+

(1 + a1x+ a2x2 + · · · )� (1 + b1x+ b2x2 + · · · )
1 + b1x+ b2x2 + b3x3 + · · ·

This is simply one step of long division, provided the quotient when the numer-
ator N is divided by the denominator D is 1. This identity is used to ‘divide’ a
formal power series of the form 1 + a1z + a2z2 + · · · with another series of the
same form. You may also enjoy spotting (2.1) (and a continued fraction above) in
Gowers’ [10, p. 41–45] proof that the Golden Ratio is irrational.

All the continued fractions considered in this paper have a special parameter q in
them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

�
1 if k = 0,

(1� a)(1� aq) · · · (1� aqk�1) if k ⇤ 1.

Similarly, the infinite q-rising factorial is defined as:

(A; q)⇥ :=
⇥⇤

j=0

(1�Aqj), for |q| < 1.
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Cor. Entry 15, 
Chapter 16, 
Notebook 2, Part 3

Example 1. 
The Rogers-Ramanujan Continued 

fraction

where

FORMULAS FOR THE CONVERGENTS OF (SOME OF)
RAMANUJAN’S q-CONTINUED FRACTIONS

GAURAV BHATNAGAR AND MICHAEL D. HIRSCHHORN

Abstract. In response to Mike’s letter of June 9, 2015. We can pos-
sibly find formulas for the nth convergent of Ramanujan’s continued
fractions.

1. Junk required for ISI Talk
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HOW TO PROVE RAMANUJAN’S q-CONTINUED FRACTIONS 3

We proceed to apply Euler’s approach to derive the famous Rogers-Ramanujan
continued fraction, due to Rogers [17] and Ramanujan [5, Cor. to Entry 15, ch. 16]:
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Note that when a = 1, (2.2) reduces to (1.2).
The first step is to rewrite the ratio of sums on the LHS of (2.2) as
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We have shifted the index so that the sum once again runs from 0 to ⇤. In the
process, we extracted the common factor aq from the sum. The ratio of sums on
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(q; q)k�1
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⇥�

k=0

q(k+1)2+k+1

(q; q)k
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⇥�
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qk
2+3k

(q; q)k
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This time the common factor aq2 pops out, and we find that the LHS of (2.2) can
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1 +
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⇥�
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(q; q)k
ak

.

This process can be repeated.
The pattern is clear. Define R(s), for s = 0, 1, 2, . . . , as follows:

R(s) :=
⇥�

k=0

qk
2+sk

(q; q)k
ak.

Then, using (2.1) we have

R(s)

R(s+ 1)
= 1 +

R(s)�R(s+ 1)

R(s+ 1)

= 1 +
1

R(s+ 1)

⇥�

k=0

qk
2+sk

(q; q)k
ak(1� qk)

= 1 +
1

R(s+ 1)

⇥�

k=1

qk
2+sk

(q; q)k�1

ak
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⇥⇥

k=0

qk
2+k

(q; q)k
ak

⇥⇥

k=0

qk
2

(q; q)k
ak

=
1

1 +
aq

1 +
aq2

1 +
aq3

1 + · · ·
From such a humble beginning, Ramanujan wrote down several generalizations

and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this article is to show how to formally derive nine continued
fractions that appear in Ramanujan’s Lost Notebook [16] (see Andrews and Berndt
[3, ch. 6]) and his earlier Second Notebook (see Berndt [5, ch. 16]).

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [8] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2 �m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s Approach: The Rogers-Ramanujan Continued Fraction

Euler used the elementary identity:

N

D
= 1 +

N �D

D
(2.1)

1 + a1x+ a2x2 + a3x3 + · · ·
1 + b1x+ b2x2 + b3x3 + · · · = 1+

(1 + a1x+ a2x2 + · · · )� (1 + b1x+ b2x2 + · · · )
1 + b1x+ b2x2 + b3x3 + · · ·

This is simply one step of long division, provided the quotient when the numer-
ator N is divided by the denominator D is 1. This identity is used to ‘divide’ a
formal power series of the form 1 + a1z + a2z2 + · · · with another series of the
same form. You may also enjoy spotting (2.1) (and a continued fraction above) in
Gowers’ [10, p. 41–45] proof that the Golden Ratio is irrational.

All the continued fractions considered in this paper have a special parameter q in
them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

�
1 if k = 0,

(1� a)(1� aq) · · · (1� aqk�1) if k ⇤ 1.

Similarly, the infinite q-rising factorial is defined as:

(A; q)⇥ :=
⇥⇤

j=0

(1�Aqj), for |q| < 1.
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Once again, divide the two sums using (2.1) and find that the LHS of (2.2) equals:
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This time the common factor aq2 pops out, and we find that the LHS of (2.2) can
be written as:
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⇥�

k=0
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2+2k

(q; q)k
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⇥�
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2+3k

(q; q)k
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This process can be repeated.
The pattern is clear. Define R(s), for s = 0, 1, 2, . . . , as follows:

R(s) :=
⇥�

k=0

qk
2+sk

(q; q)k
ak

R(s)

R(s+ 1)
= 1 +

aqs+1

R(s+ 1)

R(s+ 2)

R(1)

R(0)
=

1

R(0)

R(1)

=
1

1 +

aq

1 +

aq2

1 + · · · +
aqs+1

R(s+ 1)

R(s+ 2)

Take limits as s ⇤ ⌅ to obtain (2.2), assuming the continued fraction converges,
and converges to the required limit. This completes the derivation of (2.2).
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be written as:
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k=0

qk
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This process can be repeated.
The pattern is clear. Define R(s), for s = 0, 1, 2, . . . , as follows:

R(s) :=
⇥�

k=0

qk
2+sk

(q; q)k
ak

R(s)

R(s+ 1)
= 1 +

aqs+1

R(s+ 1)

R(s+ 2)

R(1)

R(0)
=

1

R(0)

R(1)

=
1

1 +

aq

1 +

aq2

1 + · · · +
aqs+1

R(s+ 1)

R(s+ 2)

Take limits as s ⇤ ⌅ to obtain (2.2), assuming the continued fraction converges,
and converges to the required limit. This completes the derivation of (2.2).

Take limits to complete (formal) proof.

In general:



Notes

Note this calculation: 

When we shift the index, a few terms come out of the 
sum, because we want the sum to have first term 1

These sums can be written as infinite products. These 
are the famous Rogers-Ramanujan identities



Rogers-Ramanujan Identities



Example 2

Want a continued fraction where we know that the 
sums can be written in terms of infinite products.

We can think of using the q-binomial theorem, the 
simplest example of a sum written as a ratio of 
products.

Here’s one approach.



Example 2. Entry 11
Entry 3. The q-binomial
theorem 

Ratio of odd part/even 
part of series



Entry 11- Product side

Rewrite the products to 
get one side of Entry 11



Ratio of sums

The ratio can be
written as



Apply Euler’s approach

Recall



Apply Euler’s approach



So we get

Again, apply Euler’s approach to the ratio of two series





We get

Pattern is clear now.



Iterate to obtain



Proposition:
A “finite form” of Entry 11

For: 

As s goes to infinity, we get 
“Modified Covnergence” of the 
infinite continued fraction of 
Entry 11



Next

Entry 11 involves 

One can ask: Is there a similar continued fraction with 
even powers?

We had              in the denominator. 

One can try with 

In view of the q-binomial theorem, one can try with 
sums of the type:



After some messing around, we end up with

The calculations involved become

On shifting index, we will get

We get 

So we take              and squares of other parameters too, and 
make some more minor adjustments.

We use



Example 3: Entry 12

We begin with

Product side is OK. One 
can now try what happens 
in Euler’s approach.



Entry 12: Euler’s approach

We begin with

We use





Some issues 

So we add and subtract enough 
terms to get this factor and see what 
happens



So we add and subtract enough 
terms to get this factor and see what 
happens











The pattern is clear 
now.



Entry 12: Iterate to 
obtain



Proposition: 
A “finite form” of Entry 12

As s goes to infinity, we get 
“Modified Covnergence” of the 
infinite continued fraction of 
Entry 12

For: 



Overview
Entry 11: Was first proved by Adiga, Berndt, Bhargava and Watson (1985)

Used Heine’s continued fraction, q-binomial theorem

Entry 12: Adiga, Berndt, Bhargava and Watson (1985), Jacobsen (1989), 
Ramanathan (1987)

Adiga, Berndt et.al. thank Askey and Bressoud for ideas on how to prove 
Entry 12.

Used Heine’s continued fraction, Heine’s transformation, Bailey-Daum
summation

Our proof uses only the q-binomial theorem, which is Entry 2 in chapter 
16 of Ramanujan’s second notebook (Berndt, Part III)

It’s a “discovery” proof. 

Given Ramanujan’s talents, not too farfetched to think he may have 
thought like this.



I have often been asked whether Ramanujan had any 
special secret; whether his methods differed in kind from 
those of other mathematicians; whether there was anything 
really abnormal in his mode of thought. I cannot answer 
these questions with any confidence or conviction; but I do 
not believe it. My belief is that all mathematicians think, at 
bottom, in the same kind of way, and that Ramanujan was 
no exception.

G. H. Hardy



Thank you
Gaurav Bhatnagar


