A Sundaram type bijection for $\mathrm{SO}(3)$ vacillating tableaux and pairs of SYTs and LR-tableaux

Judith Braunsteiner

September $12^{\text {th }}, 2016$

Background

$$
V^{\otimes r}=\bigoplus_{\substack{\mu \text { arartition } \\(\mu) \leq n \\ \mu_{1}^{\prime}+\mu_{2}^{\prime} \leq n}} V(\mu) \otimes\left(\bigoplus_{\substack{\lambda \vdash r \\ I(\lambda) \leq n}} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right)
$$

a $\mathrm{SO}(n) \times \mathfrak{S}_{r}$ representation. For us: $\mathrm{n}=3$

- $V=\mathbb{C}^{n}$ the vector representation of $\mathrm{SO}(n)$

Background

$$
V^{\otimes r}=\bigoplus_{\substack{\mu \text { partition } \\ l(\mu) \leq n \\ \mu_{1}^{\prime}+\mu_{2}^{\prime} \leq n}} V(\mu) \otimes\left(\bigoplus_{\substack{\lambda \vdash r \\ I(\lambda) \leq n}} c_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right)
$$

a $\mathrm{SO}(n) \times \mathfrak{S}_{r}$ representation. For us: $\mathrm{n}=3$

- $V=\mathbb{C}^{n}$ the vector representation of $\mathrm{SO}(n)$
- $V(\mu) \ldots$ an irreducible representation of $\mathrm{SO}(n)$
- $S(\lambda) \ldots$ an irreducible representation of \mathfrak{S}_{r}

Background

$$
V^{\otimes r}=\bigoplus_{\substack{\mu \text { a partition } \\(\mu) \leq n \\ \mu_{1}^{\prime}+\mu_{2}^{\prime} \leq n}} V(\mu) \otimes\left(\bigoplus_{\substack{\lambda \vdash r \\ I(\lambda) \leq n}} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right)
$$

a $\mathrm{SO}(n) \times \mathfrak{S}_{r}$ representation. For us: $\mathrm{n}=3$

- $V=\mathbb{C}^{n}$ the vector representation of $\mathrm{SO}(n)$
- $V(\mu) \ldots$ an irreducible representation of $\mathrm{SO}(n)$
- $S(\lambda) \ldots$ an irreducible representation of \mathfrak{S}_{r}
- $c_{\lambda}^{\mu}(\mathfrak{d})$ multiplicities counted by so called type \mathfrak{d} Littlewood Richardson tableaux introduced by Kwon in 2015

Overview

Orthogonal Robinson Schensted

$$
\begin{array}{cc}
V^{\otimes r}=\bigoplus_{\mu} & V(\mu) \otimes\left(\bigoplus_{\lambda} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right) \\
\{0, \pm 1\}^{r} \leftrightarrow \bigcup_{\mu} & \text { (orthogonal SSYT, vacillating tableaux) }
\end{array}
$$

we are interested in:
vacillating tableaux $\leftrightarrow \bigoplus_{\lambda} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda) \leftrightarrow($ LR-tableaux, SYT $)$

Vacillating Tableaux and Lattice Paths

Definition
a vacillating tableau $\emptyset=\lambda_{0}, \lambda_{1}, \ldots, \lambda_{r}$
is a sequence of Young diagrams
with at most k rows: $n=2 k+1 \rightarrow$ for us $k=1$
λ_{i} and λ_{i+1} differ in at most one position
$\lambda_{i}=\lambda_{i+1}$ only occurs if the $k^{\text {th }}$ row is nonempty

sufficient to find a bijection between

SYT all rows even

1	2	3	4	5

1	2	3	4						
5	6								
$y y y y y y y$				$	$	1	2	3	5
:---	:---	:---	:---	:---					
4	6								

1	3	4	5
2	6		

1	2	3	6
4	5		

1	2	4	6
3	5		

1	3	4	5
2	4		

1	3	4	6
2	5		
$y y n n n$			

1	2			
3	4			
5	6		1	3
:---	:---			
2	4			
5	6			
4	6			
3	5			
1	2			
4	6			
2	5			
1	1 3 2 6${ }^{1}$			

vacillating tableaux $\lambda_{r}=\emptyset$

Descents

SYT
d is a descent
if $d+1$ is in a row below d
Example

1	3	7	8
2	5		
4	6		

has descents 1,3 and 5

Descents

SYT
d is a descent
if $d+1$ is in a row below d
Example

1	3	7	8
2	5		
4	6		

has descents 1,3 and 5

Vacillating Tableaux
i is a descent
if the $i^{\text {th }}$ position is:

- 1 followed by 0
- 0 followed by -1
- 1 followed by -1 except if $\lambda_{i}=\square$

Example

has descents 1 and 4

1	2	3	4	5

1	3	4	5
2	6		

1	2	5
3	4	6

1	3
2	4
5	6

$$
\left.\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 & \begin{array}{lll}
1 & 2 & 4 \\
\hline
\end{array} \\
\hline 5 & 6 & 5 & \\
\hline
\end{array}\right\}\left\{\begin{array}{l}
\end{array}\right.
$$

Bonus:

with a descent preserving bijection we also get the quasi symmetric expansion of the Frobenius character:

$$
\operatorname{ch}\left(\bigoplus_{\lambda \vdash r} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right)=\sum_{\lambda} \mathrm{c}_{\lambda}^{\mu}(\mathfrak{d}) s_{\lambda}=\sum_{w} \mathrm{~F}_{\operatorname{Des}(w)}
$$

- s_{λ} Schur functions
- $\mathrm{F}_{D}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ fundamental quasi symmetric $j \in D: \bar{i}<i_{j+1}$
functions

Idea

Insert the SYT row by row into a path:

- insert first row

Idea

Insert the SYT row by row into a path:

- insert first row
- insert second row in pairs $a b$ starting with the right most

Idea

Insert the SYT row by row into a path:

- insert first row
- insert second row in pairs $a b$ starting with the right most

Idea

Insert the SYT row by row into a path:

- insert first row
- insert second row in pairs $a b$ starting with the right most

Idea

Insert the SYT row by row into a path:

- insert first row
- insert second row in pairs $a b$ starting with the right most
- insert third row in pairs $a b$ starting with the right most

Idea

Insert the SYT row by row into a path:

- insert first row
- insert second row in pairs $a b$ starting with the right most
- insert third row in pairs $a b$ starting with the right most

First Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

we create a path $1,-1,1,-1, \ldots$ labeled with the first row entries

Second Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
- 0 if the step right of a is -1 but not b, change this step into 0
- -1 otherwise, change the next -1 to the left into 1
- change pairs of $1,-1$ between a and b into 0,0

Second Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
- 0 if the step right of a is -1 but not b, change this step into 0
- -1 otherwise, change the next -1 to the left into 1
- change pairs of $1,-1$ between a and b into 0,0

Second Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
- 0 if the step right of a is -1 but not b, change this step into 0
- -1 otherwise, change the next -1 to the left into 1
- change pairs of $1,-1$ between a and b into 0,0

Second Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
- 0 if the step right of a is -1 but not b, change this step into 0
- -1 otherwise, change the next -1 to the left into 1
- change pairs of $1,-1$ between a and b into 0,0

Third Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1 change next -1 to the left into 0
- go through path from b to left:
- "connect" at bottom points
- "separate" at certain points
- when finding a insert it with -1
- change next -1 into 0 or "unused" 0 into 1 stop here

Third Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1 change next -1 to the left into 0
- go through path from b to left:
- "connect" at bottom points
- "separate" at certain points
- when finding a insert it with -1
- change next -1 into 0 or "unused" 0 into 1 stop here

Third Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1 change next -1 to the left into 0
- go through path from b to left:
- "connect" at bottom points
- "separate" at certain points
- when finding a insert it with -1
- change next -1 into 0 or "unused" 0 into 1
stop here

Third Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1 change next -1 to the left into 0
- go through path from b to left:
- "connect" at bottom points
- "separate" at certain points
- when finding a insert it with -1
- change next -1 into 0 or "unused" 0 into 1
stop here

Result

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

The Bijection

$(\mathrm{LR}, \mathrm{SYT}) \leftrightarrow\left(\right.$ SYT all even/odd rows, $\left.\mathbb{N}_{\leq r}\right) \leftrightarrow$ vacillating tableaux

Outlook

$\mathrm{SO}(n), n=2 k+1, n>3$: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Outlook

$\mathrm{SO}(n), n=2 k+1, n>3$: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Conjectures [Rubey]

- reverse path \leftrightarrow evacuation of SYT
- concatenation path \leftrightarrow concatenation of SYT

Outlook

$\mathrm{SO}(n), n=2 k+1, n>3$: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Conjectures [Rubey]

- reverse path \leftrightarrow evacuation of SYT
- concatenation path \leftrightarrow concatenation of SYT

Other Groups

- $\mathrm{SO}(n)$, n even, vector rep. (descent set conj. by Rubey)
- G_{2}, vector rep. (descent set conj. by Rubey)
- $\operatorname{Sp}(n)$, vector rep., using Kwon's LR-tableaux

