A Sundaram type bijection for SO(3) vacillating tableaux and pairs of SYTs and LR-tableaux

Judith Braunsteiner

September 12th, 2016

Background

$$V^{\otimes r} = \bigoplus_{\substack{\mu \text{ a partition} \\ l(\mu) \le n \\ \mu'_1 + \mu'_2 \le n}} V(\mu) \otimes \left(\bigoplus_{\substack{\lambda \vdash r \\ l(\lambda) \le n}} c^{\mu}_{\lambda}(\mathfrak{d}) S(\lambda)\right)$$

a $SO(n) \times \mathfrak{S}_r$ representation. For us: n=3

•
$$V = \mathbb{C}^n$$
 the vector representation of $SO(n)$

Background

$V^{\otimes r} = \bigoplus_{\substack{\mu \text{ a partition} \\ l(\mu) \le n \\ \mu'_1 + \mu'_2 \le n}} V(\mu) \otimes \big(\bigoplus_{\substack{\lambda \vdash r \\ l(\lambda) \le n}} c^{\mu}_{\lambda}(\mathfrak{d}) S(\lambda) \big)$

a $SO(n) \times \mathfrak{S}_r$ representation. For us: n=3

- $V = \mathbb{C}^n$ the vector representation of SO(n)
- $V(\mu)$... an irreducible representation of SO(n)
- $S(\lambda)$... an irreducible representation of \mathfrak{S}_r

Background

$V^{\otimes r} = \bigoplus_{\substack{\mu \text{ a partition} \\ l(\mu) \le n \\ \mu'_1 + \mu'_2 \le n}} V(\mu) \otimes \big(\bigoplus_{\substack{\lambda \vdash r \\ l(\lambda) \le n}} c^{\mu}_{\lambda}(\mathfrak{d}) \ S(\lambda) \big)$

a $SO(n) \times \mathfrak{S}_r$ representation. For us: n=3

- $V = \mathbb{C}^n$ the vector representation of SO(n)
- $V(\mu)$... an irreducible representation of SO(n)
- $S(\lambda)$... an irreducible representation of \mathfrak{S}_r
- c^μ_λ(∂) multiplicities counted by so called type ∂ Littlewood Richardson tableaux introduced by Kwon in 2015

Overview

Orthogonal Robinson Schensted

$$V^{\otimes r} = \bigoplus_{\mu} \qquad V(\mu) \otimes \left(\bigoplus_{\lambda} c_{\lambda}^{\mu}(\mathfrak{d}) S(\lambda)\right)$$
$$\{0, \pm 1\}^{r} \leftrightarrow \bigcup_{\mu} \qquad \left(\text{orthogonal SSYT, vacillating tableaux}\right)$$

we are interested in:

vacillating tableaux $\leftrightarrow \bigoplus_{\lambda} c^{\mu}_{\lambda}(\mathfrak{d}) \ \mathcal{S}(\lambda) \leftrightarrow (\mathsf{LR}\text{-tableaux, SYT})$

Vacillating Tableaux and Lattice Paths

Definition a vacillating tableau $\emptyset = \lambda_0, \lambda_1, \dots, \lambda_r$ is a sequence of Young diagrams with at most k rows: $n = 2k + 1 \rightarrow$ for us k = 1 λ_i and λ_{i+1} differ in at most one position $\lambda_i = \lambda_{i+1}$ only occurs if the k^{th} row is nonempty

sufficient to find a bijection between

Descents

SYT

d is a descent if d + 1 is in a row below d

8

Example 1 3 7

has descents 1,3 and 5

э

Descents

SYT

d is a descent if d + 1 is in a row below d

Example

has descents 1,3 and 5

Vacillating Tableaux

i is a descent if the *i*th position is:

- 1 followed by 0
- ▶ 0 followed by -1
- 1 followed by -1 except if $\lambda_i = \square$

Example

has descents $1 \mbox{ and } 4$

Judith Braunsteiner A Sundaram type bijection for SO(3)

Bonus:

with a descent preserving bijection we also get the quasi symmetric expansion of the Frobenius character:

$$\operatorname{ch}\big(\bigoplus_{\lambda\vdash r}\operatorname{c}^{\mu}_{\lambda}(\mathfrak{d})\;\mathcal{S}(\lambda)\big)=\sum_{\lambda}\operatorname{c}^{\mu}_{\lambda}(\mathfrak{d})\;\boldsymbol{s}_{\lambda}=\sum_{w}\operatorname{F}_{\operatorname{Des}(w)}$$

• s_{λ} Schur functions

► $F_D = \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_r \\ j \in D: i_j < i_{j+1}}} x_{i_1} x_{i_2} \cdots x_{i_r}$ fundamental quasi symmetric functions

Insert the SYT row by row into a path:

insert first row

- insert first row
- ▶ insert second row in pairs *a b* starting with the right most

- insert first row
- ▶ insert second row in pairs *a b* starting with the right most

 -	-	-		_

- insert first row
- ▶ insert second row in pairs *a b* starting with the right most

I				
I				
I				
ł				
1				

- insert first row
- insert second row in pairs ab starting with the right most
- insert third row in pairs a b starting with the right most

- insert first row
- insert second row in pairs ab starting with the right most
- insert third row in pairs a b starting with the right most

			-	

First Row

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

we create a path 1, -1, 1, -1, ...labeled with the first row entries

글 🖌 🖌 글 🕨

э

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
 - 0 if the step right of a is -1 but not b, change this step into 0
 - -1 otherwise, change the next
 -1 to the left into 1
- change pairs of 1, -1 between a and b into 0,0

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- ▶ insert b with −1
- insert a with
 - 0 if the step right of a is -1 but not b, change this step into 0
 - -1 otherwise, change the next
 -1 to the left into 1
- change pairs of 1, -1 between a and b into 0,0

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- insert b with -1
- insert a with
 - 0 if the step right of a is -1 but not b, change this step into 0
 - -1 otherwise, change the next
 -1 to the left into 1
- ► change pairs of 1, -1 between a and b into 0,0

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

- ▶ insert b with −1
- insert a with
 - 0 if the step right of a is -1 but not b, change this step into 0
 - -1 otherwise, change the next
 -1 to the left into 1
- ► change pairs of 1, -1 between a and b into 0,0

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

• insert b with -1

change next $-1\ \mbox{to the left into }0$

- go through path from b to left:
 - "connect" at bottom points
 - "separate" at certain points
 - when finding *a* insert it with -1
 - change next -1 into 0 or "unused" 0 into 1 stop here

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

• insert b with -1

change next -1 to the left into 0

- go through path from b to left:
 - "connect" at bottom points
 - "separate" at certain points
 - when finding *a* insert it with -1
 - change next -1 into 0 or "unused" 0 into 1 stop here

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

• insert b with -1

change next -1 to the left into 0

- go through path from b to left:
 - "connect" at bottom points
 - ▶ "separate" at certain points
 - when finding *a* insert it with -1
 - change next -1 into 0 or "unused" 0 into 1 stop here

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

▶ insert *b* with -1

change next -1 to the left into 0

- go through path from b to left:
 - "connect" at bottom points
 - "separate" at certain points
 - when finding *a* insert it with -1
 - change next -1 into 0 or "unused" 0 into 1 stop here

Result

1	2	6	9	11	12
3	5	8	13		
4	7	10	14		

<ロ> <同> <同> < 同> < 同>

æ

The Bijection

$(\mathsf{LR},\mathsf{SYT}) \leftrightarrow (\mathsf{SYT} \text{ all even/odd rows}, \mathbb{N}_{\leq r}) \leftrightarrow \mathsf{vacillating tableaux}$

< ∃ →

Outlook

SO(n), n = 2k + 1, n > 3: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Outlook

SO(n), n = 2k + 1, n > 3: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Conjectures [Rubey]

- reverse path \leftrightarrow evacuation of SYT
- concatenation path \leftrightarrow concatenation of SYT

Outlook

SO(n), n = 2k + 1, n > 3: work in progress

- vacillating tableaux are k-tuples of paths with dependencies
- inductive approach

Conjectures [Rubey]

- reverse path \leftrightarrow evacuation of SYT
- \blacktriangleright concatenation path \leftrightarrow concatenation of SYT

Other Groups

- ▶ SO(n), *n* even, vector rep. (descent set conj. by Rubey)
- ▶ G₂, vector rep. (descent set conj. by Rubey)
- Sp(n), vector rep., using Kwon's LR-tableaux