Outside nested decompositions and Schur function determinants

Emma Yu Jin
Technische Universität Wien

77th SLC, Strobl

September 12, 2016

(Semi)standard Young tableaux

(Semi)standard Young tableaux (SSYT/SYT)

Schur function $s_{\lambda / \mu}(X)$ and $f^{\lambda / \mu}$

$s_{\lambda / \mu}(X)$ is the generating function of SSYT.
$s_{(2,2) /(1)}(X)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+2 x_{1} x_{2} x_{3}+\cdots$
\Longrightarrow the number $f^{\lambda / \mu}$ of SYT with entries from 1 to $|\lambda / \mu|$ is $f^{(2,2) /(1)}=\left[x_{1} x_{2} x_{3}\right]_{(2,2) /(1)}(X)=2$.

Determinantal formulas for $s_{\lambda / \mu}(X)$

$$
{ }^{s} \nabla^{(X)}=\operatorname{det}\left[\begin{array}{ll}
{ }^{s} \square_{\square}(X) & { }^{s} \square_{\square}(X) \\
{ }_{\square}(X) & s_{\square}(X)
\end{array}\right]
$$

Jacobi-Trudi determinant
${ }^{s} \boxminus(X)=\operatorname{det}\left[\begin{array}{cc}{ }^{s} \boxminus(X) & { }^{s} \boxminus(X) \\ { }^{s_{\square}(X)} & { }^{s} \boxminus(X)\end{array}\right]$
Dual Jacobi-Trudi determinant

Giambelli determinant

$$
{ }^{s} \square^{(X)}=\operatorname{det}\left[\begin{array}{ll}
{ }^{s} \square_{\square}(X) & s_{\square \square}(X) \\
{ }_{\square}(X) & s_{\square}(X)
\end{array}\right]
$$

Jacobi-Trudi determinant

Dual Jacobi-Trudi determinant

Giambelli determinant

$$
s_{\square}(X)=\operatorname{det}\left[\begin{array}{ll}
s_{\square}(X) & s_{\square \square}(X) \\
{ }_{\square}{ }^{(X)} & s_{\square}(X)
\end{array}\right]
$$

Jacobi-Trudi determinant
$s_{\square!}(X)=\operatorname{det}\left[\begin{array}{cc}s^{s} \square(X) & s^{s} \boxminus(X) \\ { }^{s_{\square}(X)} & { }^{s} \boxminus(X)\end{array}\right]$
Dual Jacobi-Trudi determinant

$$
s_{\square}^{s_{0}}(X)=\operatorname{det}\left[\begin{array}{cc}
s^{\square} \square(X) & s^{s} \square(X) \\
{ }^{s} \square(X) & s_{\square}(X)
\end{array}\right]
$$

Giambelli determinant

> Jacobi-Trudi determinant and its dual $s_{\lambda / \mu}(X)$, Giambelli determinant $s_{\lambda}(X)$, Lascoux and Pragacz determinant $s_{\lambda / \mu}(X)$,

Hamel and Goulden determinant $s_{\lambda / \mu}(X)$, (outside decompositions)

Reference: A.M. Hamel and I.P. Goulden, Planar decompositions of tableaux and Schur function determinants, Europ. J. Combinatorics, 16, 461-477, 1995.

are not allowed

Hamel and Goulden's Determinant

Motivation: unify different determinantal expressions of $s_{\lambda / \mu}(X)$
Hamel and Goulden determinant, (outside decompositions)

If the skew diagram of λ / μ is edgewise connected. Then, for any outside decomposition $\Phi=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{g}\right)$ of the skew shape λ / μ, we have

$$
s_{\lambda / \mu}(X)=\operatorname{det}\left[s_{\theta_{i} \# \theta_{j}}(X)\right]_{i, j=1}^{g}
$$

where $s_{\emptyset}(X)=1$ and $s_{\theta_{i} \# \theta_{j}}(X)=0$ if $\theta_{i} \# \theta_{j}$ is undefined.
(Border) strips (or ribbons):
A skew diagram θ is a (border) strip if θ is edgewise connected and contains no 2×2 blocks of boxes.

Yes

No

No

$$
\phi=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right) \text { is an outside decomposition }
$$

(1) θ_{i} is a (border) strip for all i;
(2) the disjoint union of all (border) strips is the skew shape λ / μ;
(3) every starting box (resp. ending box) of θ_{i} is on the bottom or left (resp. the top or right) perimeter of the skew shape λ / μ.

Yes

$$
\phi=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right) \text { is not an outside decomposition }
$$

(1) θ_{i} is a (border) strip for all i;
(2) the disjoint union of all (border) strips is the skew shape λ / μ;
(3) every starting box (resp. ending box) of θ_{i} is on the bottom or left (resp. the top or right) perimeter of the skew shape λ / μ.

No

Outside decomposition (is nested) \rightarrow cutting strip \rightarrow operator $\#$

E.g., $\theta_{4} \# \theta_{3}=(3,3) /(2)$ and $\theta_{3} \# \theta_{4}$ is undefined.

Simplify the definition of $\theta_{i} \# \theta_{j}$ from Hamel and Goulden's paper: W.Y.C. Chen, G.G Yan and A.L.B Yang, Transformations of border strips and Schur function determinants, J. Algebr. Comb. 21, 379-394, 2005.

Hamel and Goulden determinant, (outside decompositions)

If the skew diagram of λ / μ is edgewise connected. Then, for any outside decomposition $\Phi=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{g}\right)$ of the skew shape λ / μ, we have

$$
s_{\lambda / \mu}(X)=\operatorname{det}\left[s_{\theta_{i} \# \theta_{j}}(X)\right]_{i, j=1}^{g}
$$

where $s_{\emptyset}(X)=1$ and $s_{\theta_{i} \# \theta_{j}}(X)=0$ if $\theta_{i} \# \theta_{j}$ is undefined.

Jacobi-Trudi determinant

Lascoux-Pragacz determinant

Dual Jacobi-Trudi determinant

Giambelli determinant

Positive side: simplify some determinants

Negative side: can not simplify some determinants

\# minimal strips= \# columns

\# minimal strips $=\#$ rows

Main results
 (outside nested decompositions)

are not allowed

Main results:
a determinantal expression of $s_{\lambda / \mu}(X) p_{1^{r}}(X)$
(outside nested decompositions)

If the skew diagram of λ / μ is edgewise connected. Then, for any outside nested decomposition $\Phi=\left(\Theta_{1}, \Theta_{2}, \ldots, \Theta_{g}\right)$ of the skew shape λ / μ, we have

$$
p_{1^{r}}(X) s_{\lambda / \mu}(X)=\operatorname{det}\left[s_{\Theta_{i} \# \Theta_{j}}(X)\right]_{i, j=1}^{g} \text { where } p_{1^{r}}(X)=\left(\sum_{i=1}^{\infty} x_{i}\right)^{r},
$$

$s_{\emptyset}(X)=1, s_{\Theta_{i} \# \Theta_{j}}(X)=0$ if $\Theta_{i} \# \Theta_{j}$ is undefined and r is the number of common special corners of Φ.

Main results:
a determinantal expression of $s_{\lambda / \mu}(X) p_{1^{r}}(X) \quad+$ exponential (outside nested decompositions) specialization

If the skew diagram of λ / μ is edgewise connected. Then, for any outside nested decomposition $\Phi=\left(\Theta_{1}, \Theta_{2}, \ldots, \Theta_{g}\right)$ of the skew shape λ / μ, we have

$$
f^{\lambda / \mu}=|\lambda / \mu|!\operatorname{det}\left[\left(\left|\Theta_{i} \# \Theta_{j}\right|!\right)^{-1} f^{\Theta_{i} \# \Theta_{j}}\right]_{i, j=1}^{g}
$$

where $f^{\emptyset}=1$ and $f^{\Theta_{i} \# \Theta_{j}}=0$ if $\Theta_{i} \# \Theta_{j}$ is undefined.

Outside nested decomposition:

Application to the m-strip tableaux:

Reference: Y. Baryshnikov and D. Romik, Enumeration formulas for Young tableaux in a diagonal strip, Israel Journal of Mathematics 178, 157-186, 2010.

an outside nested decomposition of an m-strip diagram

Outside nested decompositions

Thickened strips:
A skew diagram Θ is a thickened strip if Θ is edgewise connected and neither contains a 3×2 block of boxes nor a 2×3 block of boxes.

Yes

No

No
$\Phi=\left(\Theta_{1}, \Theta_{2}\right)$ is an outside thickened strip decomposition.

(1) Θ_{i} is a thickened strip for all i.
(2) the union of all thickened strips is the skew shape λ / μ.
(3) every starting box (resp. ending box) of Θ_{i} is on the bottom or left (resp. the top or right) perimeter of the skew shape λ / μ.
(4) allowed common special corners (next page)

Special corners: and a

Special upper corners:
Special lower corners:

Outside thickened strip decompositions:

Non-outside thickened strip decomposition:

NOT allowed common special corners

Θ_{1} is not an outside thickened strip decomposition.

Outside nested decompositions:

for all c, all boxes of content c all go up or all go right; or all boxes of content c are all special corners; or all boxes of content $(c+1)$ are all special corners.

Thickened cutting strip $H(\Phi)$:

Define $\Theta_{i} \# \Theta_{j}=\left[p\left(\Theta_{j}\right), q\left(\Theta_{i}\right)\right]$

$$
\text { Define } \Theta_{i} \# \Theta_{j}=\left[p\left(\Theta_{j}\right), q\left(\Theta_{i}\right)\right]
$$

Define $\Theta_{i} \# \Theta_{j}=\left[p\left(\Theta_{j}\right), q\left(\Theta_{i}\right)\right]$

Define $\Theta_{i} \# \Theta_{j}=\left[p\left(\Theta_{j}\right), q\left(\Theta_{i}\right)\right]$

Proof of the main results:

The proof consists of three main steps:
(1) SSYT \rightarrow a sequence of non-crossing double lattice paths based on the bijection between SSYT and a sequence of non-intersecting lattice paths in Hamel and Goulden's paper.
(2) Define a sequence of separable double lattice paths, whose generating function is $p_{1^{r}}(X) s_{\lambda / \mu}(X)$.
(3) Construct an involution on all non-separable sequences of double lattice paths, so that only the separable ones constribute the determinant $\operatorname{det}\left[s_{\Theta_{i}} \# \Theta_{j}(X)\right]$.
[Reference: J.R. Stembridge, Nonintersecting paths, pfaffians and plane partitions, Adv. Math., 83, 96-131, 1990.]

Applications

Examples: a 5-strip diagram

Counting 3-strip tableaux
$\mathcal{D}_{3 n-2}$

$$
\mathcal{D}_{3 n-1}^{*}
$$

$(3 n-2)$ boxes

$(3 n-1)$ boxes
To prove $(3 n-1) f^{\mathcal{D}_{3 n-2}}=2 f^{\mathcal{D}_{3 n-1}^{*}}$

Counting 3-strip tableaux
To prove $(3 n-1) f^{\mathcal{D}_{3 n-2}}=2 f^{\mathcal{D}_{3 n-1}^{*}}$

Counting 3-strip tableaux

remove box $(i, n-i)$

$$
f^{\mathcal{D}_{3 n-2}}=\sum_{i=1}^{n-1} f^{\mathcal{D}_{3 n-2, i}}
$$

To prove
$(3 n-2) f^{\mathcal{D}_{3 n-2, i}}=f^{\mathcal{D}_{3 n-2}}+\binom{3 n-2}{3 i-1} f^{\mathcal{D}_{3 i-1}^{*}} f^{\mathcal{D}_{3 n-3 i-1}^{*}}$.
$(3 n-2) f^{\mathcal{D}_{3 n-2, i}}=f^{\mathcal{D}_{3 n-2}}+\binom{3 n-2}{3 i-1} f^{\mathcal{D}_{3 i-1}^{*}} f^{\mathcal{D}_{3 n-3 i-1}^{*}}$.

if $r<\min \{a, b\}$
$\operatorname{SYT}\left(\mathcal{D}_{3 n-2, i}\right)$

$$
\begin{aligned}
& (3 n-2) f^{\mathcal{D}_{3 n-2, i}}=f^{\mathcal{D}_{3 n-2}}+\binom{3 n-2}{3 i-1} f^{\mathcal{D}_{3 i-1}^{*}} f^{\mathcal{D}_{3 n-3 i-1}^{*}} . \\
& \text { if } r>\min \{a, b\}=a \\
& \operatorname{SYT}\left(\mathcal{D}_{3 n-2, i}\right) \\
& \operatorname{SYT}\left(\mathcal{D}_{3 n-3 i-1}^{*}\right) \quad \operatorname{SYT}\left(\mathcal{D}_{3 i-1}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (3 n-2) f^{\mathcal{D}_{3 n-2, i}}=f^{\mathcal{D}_{3 n-2}}+\binom{3 n-2}{3 i-1} f^{\mathcal{D}_{3 i-1}^{*}} f^{\mathcal{D}_{3 n-3 i-1}^{*}} . \\
& \text { if } r>\min \{a, b\}=b \\
& \operatorname{SYT}\left(\mathcal{D}_{3 n-2, i}\right) \\
& \operatorname{SYT}\left(\mathcal{D}_{3 n-3 i-1}^{*}\right) \quad \operatorname{SYT}\left(\mathcal{D}_{3 i-1}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (3 n-1) f^{\mathcal{D}_{3 n-2}}=2 f^{\mathcal{D}_{3 n-1}^{*}} . \\
& (3 n-2) f^{\mathcal{D}_{3 n-2, i}}=f^{\mathcal{D}_{3 n-2}}+\binom{3 n-2}{3 i-1} f^{\mathcal{D}_{3 i-1}^{*} f^{\mathcal{D}_{3 n-3 i-1}^{*}} .} \\
& \qquad \begin{array}{l}
\text { g.f. } \quad f(x)=2 g(x), \\
\\
f^{\prime}(x)=1+g(x)^{2} .
\end{array} \Longrightarrow \begin{array}{l}
f(x)=2 \tan (x / 2), \\
g(x)=\tan (x / 2) .
\end{array}
\end{aligned}
$$

where

$$
f(x)=\sum_{n \geq 1} \frac{f^{\mathcal{D}_{3 n-2}}}{(3 n-2)!} x^{2 n-1}, g(x)=\sum_{n \geq 1} \frac{f^{\mathcal{D}_{3 n-1}^{*}}}{(3 n-1)!} x^{2 n-1} .
$$

Counting 3-strip tableaux

$$
f^{\mathcal{D}_{3 n-2}}=\frac{(3 n-2)!E_{2 n-1}}{(2 n-1)!2^{2 n-2}}, \quad f^{\mathcal{D}_{3 n-1}^{*}}=\frac{(3 n-1)!E_{2 n-1}}{(2 n-1)!2^{2 n-1}}
$$

Summary:

Jacobi-Trudi determinant and its dual $s_{\lambda / \mu}(X)$, Giambelli determinant $s_{\lambda}(X)$,
Lascoux and Pragacz determinant $s_{\lambda / \mu}(X)$,
Hamel and Goulden determinant $s_{\lambda / \mu}(X)$, (outside decompositions)
unified by
generalized by

Jin, 2016, a determinant $p_{1^{r}}(X) s_{\lambda / \mu}(X)$, (outside nested decompositions)
to count m-strip tableaux.

Vielen Dank!

