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(Semi)standard Young tableaux
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(Semi)standard Young tableaux (SSYT/SYT)
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Schur function sλ/µ(X ) and f λ/µ

1
1 2

1
2 2

1
1 3

1
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sλ/µ(X ) is the generating function of SSYT.

s(2,2)/(1)(X ) = x2
1 x2 + x1x

2
2 + x2

1 x3+x1x
2
3 + 2x1x2x3 + · · ·

1
2
3

is f (2,2)/(1) = [x1x2x3]s(2,2)/(1)(X ) = 2.

=⇒ the number f λ/µ of SYT with entries from 1 to |λ/µ|
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Determinantal formulas for sλ/µ(X )
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unified
by

Jacobi-Trudi determinant and its dual sλ/µ(X ),

Giambelli determinant sλ(X ),

Lascoux and Pragacz determinant sλ/µ(X ),

Hamel and Goulden determinant sλ/µ(X ),

(outside decompositions)

Reference: A.M. Hamel and I.P. Goulden, Planar decompositions of
tableaux and Schur function determinants, Europ. J. Combinatorics,
16, 461-477, 1995.

(border) strip or ribbon are not allowed
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Hamel and Goulden’s Determinant
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Motivation: unify different determinantal expressions of sλ/µ(X )

Hamel and Goulden determinant,

(outside decompositions)

If the skew diagram of λ/µ is edgewise connected. Then, for any
outside decomposition Φ = (θ1, θ2, . . . , θg ) of the skew shape λ/µ,
we have

sλ/µ(X ) = det[sθi#θj (X )]gi,j=1

where s∅(X ) = 1 and sθi#θj (X ) = 0 if θi#θj is undefined.
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(Border) strips (or ribbons):

A skew diagram θ is a (border) strip if θ is edgewise connected and
contains no 2× 2 blocks of boxes.

Yes No No
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φ = (θ1, θ2, θ3, θ4) is an outside decomposition

(1) θi is a (border) strip for all i ;

(2) the disjoint union of all (border) strips is the skew shape λ/µ;

(3) every starting box (resp. ending box) of θi is on the bottom or left

(resp. the top or right) perimeter of the skew shape λ/µ.

θ1

θ2

θ3

θ4

Yes
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φ = (θ1, θ2, θ3, θ4, θ5) is not an outside decomposition

(1) θi is a (border) strip for all i ;

(2) the disjoint union of all (border) strips is the skew shape λ/µ;

(3) every starting box (resp. ending box) of θi is on the bottom or left

(resp. the top or right) perimeter of the skew shape λ/µ.

θ1

θ2

θ3

θ4

θ5

No
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Outside decomposition (is nested)→ cutting strip→ operator #

Simplify the definition of θi#θj from Hamel and Goulden’s paper:
W.Y.C. Chen, G.G Yan and A.L.B Yang, Transformations of border
strips and Schur function determinants, J. Algebr. Comb. 21,
379-394, 2005.

θ1

θ2

θ3

θ4

E.g., θ4#θ3 = (3, 3)/(2) and θ3#θ4 is undefined.
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Hamel and Goulden determinant,

(outside decompositions)

If the skew diagram of λ/µ is edgewise connected. Then, for any
outside decomposition Φ = (θ1, θ2, . . . , θg ) of the skew shape λ/µ,
we have

sλ/µ(X ) = det[sθi#θj (X )]gi,j=1,

where s∅(X ) = 1 and sθi#θj (X ) = 0 if θi#θj is undefined.
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Jacobi-Trudi determinant Dual Jacobi-Trudi determinant

Lascoux-Pragacz determinant Giambelli determinant
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Positive side: simplify some determinants

sλ/µ(X ) = det

[
sθ1 (X ) sθ1#θ2 (X )
sθ2#θ1 (X ) sθ2 (X )

]

θ1

θ2
cutting strip

p(θ1)

p(θ2)

q(θ1)

q(θ2)
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Negative side: can not simplify some determinants

# minimal strips= # rows# minimal strips= # columns
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Main results
(outside nested decompositions)

thickened strip is allowed

are not allowed
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Main results:

If the skew diagram of λ/µ is edgewise connected. Then, for any
outside nested decomposition Φ = (Θ1,Θ2, . . . ,Θg ) of the skew
shape λ/µ, we have

p1r (X )sλ/µ(X ) = det[sΘi#Θj (X )]gi,j=1 where p1r (X ) = (
∞∑
i=1

xi )
r ,

s∅(X ) = 1, sΘi#Θj (X ) = 0 if Θi#Θj is undefined
and r is the number of common special corners of Φ.

a determinantal expression of sλ/µ(X )p1r (X )

(outside nested decompositions)
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Main results:

If the skew diagram of λ/µ is edgewise connected. Then,
for any outside nested decomposition Φ = (Θ1,Θ2, . . . ,Θg )
of the skew shape λ/µ, we have

f λ/µ = |λ/µ|! det[(|Θi#Θj |!)−1f Θi#Θj ]gi,j=1

where f ∅ = 1 and f Θi#Θj = 0 if Θi#Θj is undefined.

+ exponential
specialization

a determinantal expression of sλ/µ(X )p1r (X )

(outside nested decompositions)



23

Outside nested decomposition:

p14 (X )s(6,6,6,4)/(3,1)(X ) = det
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Application to the m-strip tableaux:

Reference: Y. Baryshnikov and D. Romik, Enumeration formulas for
Young tableaux in a diagonal strip, Israel Journal of Mathematics 178,
157-186, 2010.

an outside nested decomposition of an m-strip diagram
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Outside nested decompositions
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Thickened strips:

A skew diagram Θ is a thickened strip if Θ is edgewise connected and
neither contains a 3× 2 block of boxes nor a 2× 3 block of boxes.

Yes No No
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Φ = (Θ1,Θ2) is an outside thickened strip decomposition.

(1) Θi is a thickened strip for all i .

(2) the union of all thickened strips is the skew shape λ/µ.

(3) every starting box (resp. ending box) of Θi is on the bottom or left

(resp. the top or right) perimeter of the skew shape λ/µ.

(4) allowed common special corners (next page)

Θ1

Θ2
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Special corners:

Special upper corners:

Special lower corners:

and
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Outside thickened strip decompositions:

allowed common special corners
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Non-outside thickened strip decomposition:

NOT allowed common special corners

Θ1
Θ2

Θ3 is not an outside thickened
strip decomposition.
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Outside nested decompositions:

Θ1

Θ2

Θ1

Θ2

Yes No

for all c , all boxes of content c all go up or all go right;

or all boxes of content c are all special corners;

or all boxes of content (c + 1) are all special corners.
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Thickened cutting strip H(Φ):

Θ1Θ2

H(Φ):
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Θ1Θ2

H(Φ):

p(Θ1)

q(Θ1)

p(Θ2)

q(Θ2)

Define Θi#Θj = [p(Θj), q(Θi )]

p14 (X )s(6,6,6,4)/(3,1)(X ) = det

[
sΘ1 (X ) sΘ1#Θ2 (X )
sΘ2#Θ1 (X ) sΘ2 (X )

]
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Define Θi#Θj = [p(Θj), q(Θi )]

Θ1Θ2

H(Φ):

p(Θ1)

q(Θ1)

p(Θ2)

q(Θ2)

p14 (X )s(6,6,6,4)/(3,1)(X ) = det
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Define Θi#Θj = [p(Θj), q(Θi )]

Θ1Θ2

H(Φ):

p(Θ1)

q(Θ1)

p(Θ2)

q(Θ2)

p14 (X )s(6,6,6,4)/(3,1)(X ) = det



36

Define Θi#Θj = [p(Θj), q(Θi )]

Θ1Θ2

H(Φ):

p(Θ1)

q(Θ1)

p(Θ2)

q(Θ2)

f (6,6,6,4)/(3,1) = (18)! det f
× 1

(11)!

f
× 1

(11)!

f
× 1

(11)!

f

× 1
(11)!
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Proof of the main results:
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The proof consists of three main steps:

(1) SSYT → a sequence of non-crossing double lattice paths

based on the bijection between SSYT and a sequence of
non-intersecting lattice paths in Hamel and Goulden’s paper.

(2) Define a sequence of separable double lattice paths, whose

generating function is p1r (X )sλ/µ(X ).

(3) Construct an involution on all non-separable sequences of

double lattice paths, so that only the separable ones
constribute the determinant det[sΘi#Θj (X )].

[Reference: J.R. Stembridge, Nonintersecting paths, pfaffians and
plane partitions, Adv. Math., 83, 96-131, 1990.]
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Applications

n→∞

and small
m is fixed m

an m-strip diagram
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Examples: a 5-strip diagram

has 8 strips has 2 thickened strips
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Counting 3-strip tableaux

n columns
(3n − 2) boxes

n columns
(3n − 1) boxes

To prove (3n − 1)f D3n−2 = 2f D
∗
3n−1

D3n−2 D∗3n−1
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Counting 3-strip tableaux

a

+i

a i

a

i

x∗ = 3n − x

i∗
a∗

+i

SYT(D3n−2)

To prove (3n − 1)f D3n−2 = 2f D
∗
3n−1

a

i



43

Counting 3-strip tableaux

remove box (i , n − i)

D3n−2

(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

To prove

D3n−2,i

f D3n−2 =
n−1∑
i=1

f D3n−2,i .
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(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

SYT(D3n−2,i )

+r
a

b
a

br
if r < min{a, b}cc
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(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

SYT(D3n−2,i )

a
+r

a
b

if r > min{a, b} = a

=
a r

b

c c

c
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(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

SYT(D3n−2,i )

a
+r

a
b

if r > min{a, b} = a

=

b
a

r

c c

c

SYT(D∗3n−3i−1) SYT(D∗3i−1)



47

(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

SYT(D3n−2,i )

a
+r

a
b

if r > min{a, b} = b

=
a

b

c c

c

r
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(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

SYT(D3n−2,i )

a
+r

a
b

if r > min{a, b} = b

=

b

c c

ra

c

SYT(D∗3n−3i−1) SYT(D∗3i−1)
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(3n − 1)f D3n−2 = 2f D
∗
3n−1 .

(3n − 2)f D3n−2,i = f D3n−2 +

(
3n − 2

3i − 1

)
f D

∗
3i−1 f D

∗
3n−3i−1 .

=⇒
f (x) = 2g(x),

f ′(x) = 1 + g(x)2.

where

f (x) =
∑
n≥1

f D3n−2

(3n − 2)!
x2n−1, g(x) =

∑
n≥1

f D
∗
3n−1

(3n − 1)!
x2n−1.

=⇒ f (x) = 2 tan(x/2),g .f .

g(x) = tan(x/2).
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Counting 3-strip tableaux

f D3n−2 =
(3n − 2)!E2n−1

(2n − 1)!22n−2
,

D∗3n−1

f D
∗
3n−1 =

(3n − 1)!E2n−1

(2n − 1)!22n−1
.

D3n−2
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unified
by

Jacobi-Trudi determinant and its dual sλ/µ(X ),

Giambelli determinant sλ(X ),

Lascoux and Pragacz determinant sλ/µ(X ),

Hamel and Goulden determinant sλ/µ(X ),

(outside decompositions)

Summary:

generalized
by

Jin, 2016, a determinant p1r (X )sλ/µ(X ),

(outside nested decompositions)

to count m-strip tableaux.
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Vielen Dank!


