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Hyperplane arrangements

V vector space, e. g. V ∼= Rd

0 6= x ∈ V ∗ defines a linear hyperplane Hx := {v ∈ V : (x , v) = 0}.
List of vectors / matrix determines a hyperplane arrangement

Example

X =

(
2 1 −1
0 1 1

)
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Matroids

Definition

A matroid is a pair (M, rk), where

M finite set (ground set)

rk : 2M → Z≥0 rank function satisfies

0 ≤ rk(A) ≤ |A|
A ⊆ B ⇒ rk(A) ≤ rk(B)
rk(A ∪ B) + rk(A ∩ B) ≤ rk(A) + rk(B)

Main example

A (d × N)-matrix with entries in some field K defines a
matroid in a canonical way:

ground set: columns of the matrix

rank function: rank function from linear algebra

matrix, entries in K ↔ matroid (representable over K)

Hyperplane arr. in Kn ↔ matrix, entries in K (without zero columns)
Hyperplane arr. in Kn ↔ matroid representable over K (w/out loops)
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Tutte polynomial and region counting

Tutte polynomial of the matroid (M, rk):

TM(x , y) :=
∑
A⊆M

(x − 1)rk(M)−rk(A)(y − 1)|A|−rk(A)

Theorem (Zaslavsky (1975))

A ⊆ Rd hyperplane arrangement

(M, rk) corresponding matroid.

Then A divides Rd into TM(2, 0) regions.

X =

(
2 1 −1
0 1 1

)
TX (x , y) = (x − 1)2︸ ︷︷ ︸

∅

+ 3(x − 1)︸ ︷︷ ︸
{a}

+3 + (y − 1)︸ ︷︷ ︸
M

= x2 + x + y
6 regions
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Convolution formula

(M, rk) matroid and A ⊆ M

restriction to A: (M, rk)|A := (A, rk |A)
contraction of A: (M, rk)/A := (M \ A, rk/A) with

rkM/A : 2M\A → Z≥0, rk/A(S) := rk(A ∪ S)− rk(A)

Theorem (Kook–Reiner–Stanton (1999), Etienne–Las Vergnas (1998))

Let (M, rk) be a matroid. Then

TM(x , y) =
∑
A⊆M

TM|A(0, y)TM/A(x , 0).

Remark

There is a proof using Hopf algebras
(Duchamp–Hoang-Nghia–Krajewski–Tanasa: Recipe theorem for the
Tutte polynomial for matroids, renormalization group-like approach)

Presented at SLC 70 in 2013 in Ellwangen
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Toric arrangements

(S1)d : d-dim real or compact torus, where S1 = {z ∈ C : |z | = 1}.

v = (v1, . . . , vd) ∈ Zd determines a character of the torus, i. e. a map
χv : (S1)d → S1 via χv ((α1, . . . , αd)) := αv1

1 · · ·α
vd
d .

Hypersurface Sv := {α ∈ (S1)d : χv (α) = 1} (possibly disconnected)
Alternatively: Sv := {α ∈ (R/Z)d : v · α ≡ 0}
List of vectors a1, . . . , aN ∈ Zd defines toric arrangement
(Sa1 , . . . ,SaN ).

Example

X =

(
2 1 −1
0 1 1

)
hyperplane arr. t. a. in (R/Z)2 toric arr. in (S1)2
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Arithmetic Matroids

Definition (D’Adderio–Moci (2013), Brändén–Moci (2014))

An arithmetic matroid is a triple (M, rk,m)

(M, rk) is a matroid

m : 2M → Z≥1 is the multiplicity function that satisfies certain axioms:

For A,B ⊆ M, m(A) divides m(B) iff ...∑
A(−1)?m(A) ≥ 0 where we sum over ...

Main example

A (d ×N)-matrix with entries in Z defines an arithmetic
matroid in a canonical way:

defines a matroid in the usual way

multiplicity of a basis B: m(B) = |det(B)|
in general: m(S) :=

∣∣〈S〉R ∩ Zd/ 〈S〉Z
∣∣

Remark

Hyperplane arrangements are related to the problem of measuring volumes
of polytopes, while toric arrangements are related to counting the number
of lattice points.
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Arithmetic Tutte polynomial and region counting

Definition (Moci (2012), D’Adderio–Moci (2013))

(M, rk,m) arithmetic matroid. Its arithmetic Tutte polynomial is:

MM(x , y) :=
∑
A⊆M

m(A)(x − 1)rk(M)−rk(A)(y − 1)|A|−rk(A).

Appears in many different contexts:

combinatorics and topology of toric arrangements
( characteristic and Poincaré polynomials)
theory of vector partition functions
Ehrhart theory of zonotopes

Theorem (Moci (2012), Lawrence (2011))

Let A be a toric arrangement in the real torus (S1)d and let (M, rk,m) be
the corresponding arithmetic matroid. Then A divides the torus into
MM(1, 0) regions.
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MM(1, 0) regions.

7



Arithmetic convolution formula

Theorem (Backman–ML (2016+))

(M, rk,m) arithmetic matroid. Then

MM(x , y) =
∑
A⊆M

MM|A(0, y)TM/A(x , 0)

=
∑
A⊆M

TM|A(0, y)MM/A(x , 0).

Restriction and contraction for the multiplicity function:

m|A(S) = m(S) for S ⊆ M

m/A(S) = m(A ∪ S) for S ⊆ M \ A

8
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Generalising the arithmetic convolution formula

ranked set with multiplicities: triple (M, rk,m)
M finite set
rk : 2M → Z satisfies rk(∅) = 0
m : 2M → R, where R denotes a commutative ring with 1.

Restriction and deletion are defined in the usual way. Let A ⊆ M.
Restriction to A: (A, rk |A,m|A)
Contraction of A: (M \ A, rkM/A,mM/A), where
rkM/A(B) := rkM(B ∪ A)− rkM(A) and mM/A(B) := mM(B ∪ A) for
B ⊆ M \ A.

Theorem (Backman–ML (2016+))

(M, rk,m) ranked set with multiplicity. Let MM denote its arithmetic
Tutte polynomial and TM its Tutte polynomial. Then

MM(x , y) =
∑
A⊆M

MM|A(0, y)TM/A(x , 0)

=
∑
A⊆M

TM|A(0, y)MM/A(x , 0).
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Further generalisation

For two multiplicity functions, m1,m2, the product is defined by
(m1 ·m2)(A) := m1(A) ·m2(A).

Theorem (suggested by Luca Moci)

Let (M, rk,m1) and (M, rk,m2) be two ranked sets with multiplicity.

Then

M(M,rk,m1m2)(x , y) =
∑
A⊆M

M(M,rk,m1)|A(0, y)M(M,rk,m2)/A(x , 0).

10
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Delta-matroids

Our setting includes a convolution formula for Tutte polynomials of

polymatroids (not studied yet)

delta-matroids (already in the literature)
graphs←→ matroids

graphs embedded in a surface←→ delta matroids

topological Tutte polynomials for ribbon graphs / cellularly embedded
graph, i. e. graphs embedded in a surface:
Las Vergnas, Bollobás–Riordan, polynomial, Krushkal

delta-matroid: D = (M,F), M ground set, F ⊆ 2M feasible sets
(satisfy weak exchange axiom)

2-variable Bollobás–Riordan polynomial:
RD(x , y) =

∑
A⊆M(x − 1)ρ(M)−ρ(A)(y − 1)|A|−ρ(A) (ρ rank function for D).

Corollary (Krajewski–Moffat–Tanasa (2015+))

RD(x , y) :=
∑
A⊆M

RD|A(0, y)RD/A(x , 0)
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Positivity

We are able to reprove some known results:

Corollary (D’Adderio–Moci (2013), Brändén–Moci (2014))

The coefficients of the arithmetic Tutte polynomial of an arithmetic
matroid are positive.

Corollary (Delucchi–Moci (2016+))

Let (M, rk,m1) and (M, rk,m2) be arithmetic matroids. Then
(M, rk,m1m2) is also an arithmetic matroid.

Remark

(M, rk,m) defined by jth boundary operator of a CW complex  
M(M,rk,m2) known as modified jth Tutte–Krushkal–Renardy
polynomial

Bajo–Burdick–Chmutov asked if (M, rk,m2) is an arithmetic matroid.
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Zonotopes

For any polytope P ⊆ Rd :
∣∣P ∩ Zd

∣∣ =
∑

F4P

∣∣relint(F ) ∩ Zd
∣∣.

For zonotopes, this is equivalent to the convolution formula for
(x , y) = (2, 1).
X = (x1, . . . , xN) ⊆ Zd be a list of vectors and let
Z (X ) := {

∑N
i=1 λixi : 0 ≤ λi ≤ 1} be the zonotope defined by X .

X =

(
2 1 −1
0 1 1

)
0

Remark ∣∣∣Z (X ) ∩ Zd
∣∣∣ = MX (2, 1) =

∑
A⊆X

MM|A(0, 1)TM/A(2, 0)

=
∑
F

∣∣∣relint(F ) ∩ Zd
∣∣∣ ,

where the last sum is over all faces of Z (X ).
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Dahmen–Micchelli spaces

Remark

If we set x = 1, the convolution formula is equivalent to a lemma of
Moci (for representable arithmetic matroids).

X ⊆ Zd , V(X ): vertices of the corresponding toric arrangement, for
p ∈ V(X ), Mp = “local” matroid

MM(1, y) =
∑

p∈V(X )

TMp(1, y).

Related to two decomposition formulas in the theory of splines and
vector partition functions: Dahmen–Micchelli (1985), ML (2016)

X =

(
2 1 −1
0 1 1

)
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Arithmetic flows and colourings

Definition (Arithmetic flows and colourings, Bränden–Moci (2014))

X finite list of elements of Zd

φ ∈ Hom(Zd ,Zq) proper arithmetic q-coloring if φ(x) 6= 0 for all
x ∈ X .

χX (q) = #proper arithmetic q-colorings of X

ψ : X → Zq \ {0} a nowhere zero q-flow on X if∑
x∈X ψ(x)x = 0 in (Zq)d .

χ∗X (q) = #nowhere zero q-flows on X

Remark

This generalises flows and colourings on CW complexes
(Beck–Breuer–Godkin–Martin, Beck–Kemper), which in turn generalise
flows and colourings on graphs.
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Arithmetic flows and colourings

Theorem (Brändén–Moci (2014))

X finite list of elements of Zd . There are infinite sets ZM(X ) ⊆ Z>0 and
ZA(X ) ⊆ Z>0 s. t.

If q ∈ ZA(X ), then χX (q) = (−1)rk(X )qrk(G)−rk(X )MX (1− q, 0)

and χ∗X (q) = (−1)|X |−rk(X )MX (0, 1− q).

If q ∈ ZM(X ), then χX (q) = (−1)rk(X )qrk(G)−rk(X )TX (1− q, 0)

and χ∗X (q) = (−1)|X |−rk(X )TX (0, 1− q).

lcm(X ) := lcm{m(B) : B ⊆ X basis}.
ZM(X ) := {q ∈ Z>0 : gcd(q, lcm(X )) = 1}

For B ⊆ X , GB denotes the torsion subgroup of the quotient
Zd/ 〈{x : x ∈ B}〉.

ZA(X ) := {q ∈ Z>0 : qGB = {0} for all bases B ⊆ X},
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Combinatorial interpretation of the arithmetic Tutte
polynomial

We obtain a combinatorial interpretation of the arithmetic Tutte
polynomial at infinitely many points in terms of arithmetic flows and
colourings:

Corollary (Backman–ML (2016+))

Let X ⊆ Zd , p ∈ ZA(X ) and q ∈ ZM(X ) then

MX (1− p, 1− q) = prk(G)−rk(X )(−1)rk(X )
∑
A⊆X

(−1)|A|χ∗X |A(q)χX/A(p).

The same statement holds if we instead take p ∈ ZM(X ) and
q ∈ ZA(X ).

There is a similar interpretation for the modified jth
Tutte–Krushkal–Renardy polynomial with both p, q ∈ ZA(X ).
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Thank you!
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Arithmetic matroids

Definition (D’Adderio–Moci (2013), Brändén–Moci (2014))

An arithmetic matroid is a triple (M, rk,m)

(M, rk) is a matroid
m : 2M → Z≥1 is the multiplicity function that satisfies the axioms
(A1), (A2) and (P) below.

Let R ⊆ S ⊆ M. The set [R,S ] := {A : R ⊆ A ⊆ S} is called a
molecule if S can be written as the disjoint union S = R ∪ FRS ∪ TRS

and for each A ∈ [R, S ], rk(A) = rk(R) + |A ∩ FRS | holds.

(A1) For all A ⊆ E and e ∈ E : If rk(A ∪ {e}) = rk(A), then
m(A ∪ {e})|m(A). Otherwise m(A)|m(A ∪ {e}).

(A2) If [R,S ] is a molecule, then m(R)m(S) = m(R ∪ F )m(R ∪ T ).
(P) for each molecule [R,S ], the following inequality holds

ρ(R,S) := (−1)|TRS |
∑

A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.
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