A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures

Matthias Lenz

12 September 2016

77ème Séminaire Lotharingien de Combinatoire

• V vector space, e.g. $V \cong \mathbb{R}^d$

- V vector space, e.g. $V \cong \mathbb{R}^d$
- $0 \neq x \in V^*$ defines a linear hyperplane $H_x := \{v \in V : (x, v) = 0\}.$

- V vector space, e.g. $V \cong \mathbb{R}^d$
- $0 \neq x \in V^*$ defines a linear hyperplane $H_x := \{v \in V : (x, v) = 0\}.$
- List of vectors / matrix determines a hyperplane arrangement

- V vector space, e.g. $V \cong \mathbb{R}^d$
- $0 \neq x \in V^*$ defines a linear hyperplane $H_x := \{v \in V : (x, v) = 0\}.$
- List of vectors / matrix determines a hyperplane arrangement

Definition

A matroid is a pair (M, rk), where

• *M* finite set (ground set)

Definition

- A matroid is a pair (M, rk), where
 - *M* finite set (ground set)
 - $\mathsf{rk}: 2^M \to \mathbb{Z}_{\geq 0}$ rank function satisfies
 - $0 \leq \mathsf{rk}(A) \leq |A|$
 - $A \subseteq B \Rightarrow \mathsf{rk}(A) \le \mathsf{rk}(B)$
 - $\mathsf{rk}(A \cup B) + \mathsf{rk}(A \cap B) \le \mathsf{rk}(A) + \mathsf{rk}(B)$

Definition

A matroid is a pair (M, rk), where

- *M* finite set (ground set)
- $\mathsf{rk}: 2^M \to \mathbb{Z}_{\geq 0}$ rank function satisfies

•
$$0 \leq \mathsf{rk}(A) \leq |A|$$

•
$$A \subseteq B \Rightarrow \mathsf{rk}(A) \le \mathsf{rk}(B)$$

•
$$\mathsf{rk}(A \cup B) + \mathsf{rk}(A \cap B) \le \mathsf{rk}(A) + \mathsf{rk}(B)$$

A ($d \times N$)-matrix with entries in some field \mathbb{K} defines a matroid in a canonical way:

Main example

- ground set: columns of the matrix
- rank function: rank function from linear algebra

Definition

A matroid is a pair (M, rk), where

- *M* finite set (ground set)
- $\mathsf{rk}: 2^M \to \mathbb{Z}_{\geq 0}$ rank function satisfies

•
$$0 \leq \mathsf{rk}(A) \leq |A|$$

•
$$A \subseteq B \Rightarrow \mathsf{rk}(A) \le \mathsf{rk}(B)$$

•
$$\mathsf{rk}(A \cup B) + \mathsf{rk}(A \cap B) \le \mathsf{rk}(A) + \mathsf{rk}(B)$$

A ($d \times N$)-matrix with entries in some field \mathbb{K} defines a matroid in a canonical way:

Main example

- ground set: columns of the matrix
- rank function: rank function from linear algebra

• matrix, entries in $\mathbb{K} \leftrightarrow$ matroid (representable over $\mathbb{K})$

Definition

A matroid is a pair (M, rk), where

- *M* finite set (ground set)
- $\mathsf{rk}: 2^M \to \mathbb{Z}_{\geq 0}$ rank function satisfies

•
$$0 \leq \mathsf{rk}(A) \leq |A|$$

•
$$A \subseteq B \Rightarrow \mathsf{rk}(A) \le \mathsf{rk}(B)$$

• $\mathsf{rk}(A \cup B) + \mathsf{rk}(A \cap B) \le \mathsf{rk}(A) + \mathsf{rk}(B)$

A ($d \times N$)-matrix with entries in some field \mathbb{K} defines a matroid in a canonical way:

Main example

- ground set: columns of the matrix
- rank function: rank function from linear algebra
- matrix, entries in $\mathbb{K} \leftrightarrow$ matroid (representable over $\mathbb{K})$
- Hyperplane arr. in $\mathbb{K}^n \leftrightarrow$ matrix, entries in \mathbb{K} (without zero columns)

Definition

A matroid is a pair (M, rk), where

- *M* finite set (ground set)
- $\mathsf{rk}: 2^M \to \mathbb{Z}_{\geq 0}$ rank function satisfies

•
$$0 \leq \operatorname{rk}(A) \leq |A|$$

•
$$A \subseteq B \Rightarrow \mathsf{rk}(A) \le \mathsf{rk}(B)$$

•
$$\mathsf{rk}(A \cup B) + \mathsf{rk}(A \cap B) \le \mathsf{rk}(A) + \mathsf{rk}(B)$$

A ($d \times N$)-matrix with entries in some field \mathbb{K} defines a matroid in a canonical way:

Main example

- ground set: columns of the matrix
- rank function: rank function from linear algebra
- matrix, entries in $\mathbb{K} \leftrightarrow$ matroid (representable over \mathbb{K})
- Hyperplane arr. in $\mathbb{K}^n \leftrightarrow$ matrix, entries in \mathbb{K} (without zero columns)
- Hyperplane arr. in $\mathbb{K}^n \leftrightarrow$ matroid representable over \mathbb{K} (w/out loops)

Tutte polynomial of the matroid (M, rk):

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\mathsf{rk}(M) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

Tutte polynomial of the matroid (M, rk):

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\mathsf{rk}(M) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathfrak{T}_X(x, y) = \underbrace{(x - 1)^2}_{\emptyset} + \underbrace{3(x - 1)}_{\{a\}} + 3 + \underbrace{(y - 1)}_{M}$$

$$= x^2 + x + y$$

Tutte polynomial of the matroid (M, rk):

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\mathsf{rk}(M) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

Theorem (Zaslavsky (1975))

- $\mathcal{A} \subseteq \mathbb{R}^d$ hyperplane arrangement
- (*M*, rk) corresponding matroid.

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathfrak{T}_X(x, y) = \underbrace{(x-1)^2}_{\emptyset} + \underbrace{3(x-1)}_{\{a\}} + 3 + \underbrace{(y-1)}_{M}$$

$$= x^2 + x + y$$

Tutte polynomial of the matroid (M, rk):

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\mathsf{rk}(M) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

Theorem (Zaslavsky (1975))

- $\mathcal{A} \subseteq \mathbb{R}^d$ hyperplane arrangement
- (*M*, rk) corresponding matroid.

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathfrak{T}_X(x, y) = \underbrace{(x-1)^2}_{\emptyset} + \underbrace{3(x-1)}_{\{a\}} + 3 + \underbrace{(y-1)}_{M}$$

$$= x^2 + x + y$$

for regions

Tutte polynomial of the matroid (M, rk):

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\mathsf{rk}(M) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

Theorem (Zaslavsky (1975))

- $\mathcal{A} \subseteq \mathbb{R}^d$ hyperplane arrangement
- (*M*, rk) corresponding matroid.

Then \mathcal{A} divides \mathbb{R}^d into $\mathfrak{T}_M(2,0)$ regions.

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathfrak{T}_X(x, y) = \underbrace{(x-1)^2}_{\emptyset} + \underbrace{3(x-1)}_{\{a\}} + 3 + \underbrace{(y-1)}_{M}$$

$$= x^2 + x + y$$

• (M, rk) matroid and $A \subseteq M$

- (M, rk) matroid and $A \subseteq M$
- restriction to A: $(M, \mathsf{rk})|_A := (A, \mathsf{rk}|_A)$

- (M, rk) matroid and $A \subseteq M$
- restriction to A: $(M, \mathsf{rk})|_A := (A, \mathsf{rk}|_A)$
- contraction of A: $(M, \operatorname{rk})/A := (M \setminus A, \operatorname{rk}_A)$ with $\operatorname{rk}_{M/A} : 2^{M \setminus A} \to \mathbb{Z}_{\geq 0}, \operatorname{rk}_A(S) := \operatorname{rk}(A \cup S) \operatorname{rk}(A)$

- (M, rk) matroid and $A \subseteq M$
- restriction to A: $(M, \operatorname{rk})|_A := (A, \operatorname{rk}|_A)$
- contraction of A: $(M, \operatorname{rk})/A := (M \setminus A, \operatorname{rk}_{/A})$ with $\operatorname{rk}_{M/A} : 2^{M \setminus A} \to \mathbb{Z}_{\geq 0}, \operatorname{rk}_{/A}(S) := \operatorname{rk}(A \cup S) \operatorname{rk}(A)$

Theorem (Kook-Reiner-Stanton (1999), Etienne-Las Vergnas (1998))

Let (M, rk) be a matroid. Then

$$\mathfrak{T}_M(x,y) = \sum_{A \subseteq M} \mathfrak{T}_{M|_A}(0,y)\mathfrak{T}_{M/A}(x,0).$$

- (M, rk) matroid and $A \subseteq M$
- restriction to A: $(M, \operatorname{rk})|_A := (A, \operatorname{rk}|_A)$
- contraction of A: $(M, \operatorname{rk})/A := (M \setminus A, \operatorname{rk}_{/A})$ with $\operatorname{rk}_{M/A} : 2^{M \setminus A} \to \mathbb{Z}_{\geq 0}, \operatorname{rk}_{/A}(S) := \operatorname{rk}(A \cup S) \operatorname{rk}(A)$

Theorem (Kook-Reiner-Stanton (1999), Etienne-Las Vergnas (1998))

Let (M, rk) be a matroid. Then

$$\mathfrak{T}_M(x,y) = \sum_{A \subseteq M} \mathfrak{T}_{M|_A}(0,y)\mathfrak{T}_{M/A}(x,0).$$

Remark

- There is a proof using Hopf algebras (Duchamp–Hoang-Nghia–Krajewski–Tanasa: Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach)
- Presented at SLC 70 in 2013 in Ellwangen

• $(S^1)^d$: *d*-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.

- $(S^1)^d$: *d*-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.
- $v = (v_1, \ldots, v_d) \in \mathbb{Z}^d$ determines a *character* of the torus, i.e. a map $\chi_v : (S^1)^d \to S^1$ via $\chi_v((\alpha_1, \ldots, \alpha_d)) := \alpha_1^{v_1} \cdots \alpha_d^{v_d}$.

- $(S^1)^d$: d-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.
- $v = (v_1, \ldots, v_d) \in \mathbb{Z}^d$ determines a *character* of the torus, i.e. a map $\chi_v : (S^1)^d \to S^1$ via $\chi_v((\alpha_1, \ldots, \alpha_d)) := \alpha_1^{v_1} \cdots \alpha_d^{v_d}$.
- Hypersurface $S_{\nu} := \{ \alpha \in (S^1)^d : \chi_{\nu}(\alpha) = 1 \}$ (possibly disconnected)

- $(S^1)^d$: d-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.
- $v = (v_1, \ldots, v_d) \in \mathbb{Z}^d$ determines a *character* of the torus, i.e. a map $\chi_v : (S^1)^d \to S^1$ via $\chi_v((\alpha_1, \ldots, \alpha_d)) := \alpha_1^{v_1} \cdots \alpha_d^{v_d}$.
- Hypersurface $S_{\nu} := \{ \alpha \in (S^1)^d : \chi_{\nu}(\alpha) = 1 \}$ (possibly disconnected) Alternatively: $S_{\nu} := \{ \alpha \in (\mathbb{R}/\mathbb{Z})^d : \nu \cdot \alpha \equiv 0 \}$

- $(S^1)^d$: d-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.
- $v = (v_1, \ldots, v_d) \in \mathbb{Z}^d$ determines a *character* of the torus, i.e. a map $\chi_v : (S^1)^d \to S^1$ via $\chi_v((\alpha_1, \ldots, \alpha_d)) := \alpha_1^{v_1} \cdots \alpha_d^{v_d}$.
- Hypersurface $S_{\nu} := \{ \alpha \in (S^1)^d : \chi_{\nu}(\alpha) = 1 \}$ (possibly disconnected) Alternatively: $S_{\nu} := \{ \alpha \in (\mathbb{R}/\mathbb{Z})^d : \nu \cdot \alpha \equiv 0 \}$
- List of vectors $a_1, \ldots, a_N \in \mathbb{Z}^d$ defines toric arrangement $(S_{a_1}, \ldots, S_{a_N})$.

- $(S^1)^d$: d-dim real or compact torus, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.
- $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_d) \in \mathbb{Z}^d$ determines a *character* of the torus, i.e. a map $\chi_{\mathbf{v}} : (S^1)^d \to S^1$ via $\chi_{\mathbf{v}}((\alpha_1, \dots, \alpha_d)) := \alpha_1^{\mathbf{v}_1} \cdots \alpha_d^{\mathbf{v}_d}$.
- Hypersurface $S_{\nu} := \{ \alpha \in (S^1)^d : \chi_{\nu}(\alpha) = 1 \}$ (possibly disconnected) Alternatively: $S_{\nu} := \{ \alpha \in (\mathbb{R}/\mathbb{Z})^d : \nu \cdot \alpha \equiv 0 \}$
- List of vectors $a_1, \ldots, a_N \in \mathbb{Z}^d$ defines toric arrangement $(S_{a_1}, \ldots, S_{a_N})$.

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

- An arithmetic matroid is a triple (*M*, rk, *m*)
 - (M, rk) is a matroid

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

- An arithmetic matroid is a triple (*M*, rk, *m*)

 - (M, rk) is a matroid $m: 2^M \to \mathbb{Z}_{\geq 1}$ is the *multiplicity function* that satisfies certain axioms:

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

- An arithmetic matroid is a triple (*M*, rk, *m*)
 - (M, rk) is a matroid
 - $m: 2^{M} \to \mathbb{Z}_{\geq 1}$ is the multiplicity function that satisfies certain axioms:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - $\sum_{A} (-1)^{?} m(A) \ge 0$ where we sum over ...

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

• An arithmetic matroid is a triple (M, rk, m)

- (M, rk) is a matroid
- $m: 2^{M} \to \mathbb{Z}_{\geq 1}$ is the multiplicity function that satisfies certain axioms:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - $\sum_{A}(-1)^{?}m(A) \geq 0$ where we sum over ...

A $(d \times N)$ -matrix with entries in \mathbb{Z} defines an arithmetic matroid in a canonical way:

Main example

• defines a matroid in the usual way

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

• An arithmetic matroid is a triple (*M*, rk, *m*)

- (M, rk) is a matroid
- $m: 2^{M} \to \mathbb{Z}_{\geq 1}$ is the multiplicity function that satisfies certain axioms:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - $\sum_{A}(-1)^{?}m(A) \geq 0$ where we sum over ...

A $(d \times N)$ -matrix with entries in \mathbb{Z} defines an arithmetic matroid in a canonical way:

Main example

- defines a matroid in the usual way
- multiplicity of a basis B: m(B) = |det(B)|

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

• An arithmetic matroid is a triple (*M*, rk, *m*)

- (M, rk) is a matroid
- $m: 2^{M} \to \mathbb{Z}_{\geq 1}$ is the multiplicity function that satisfies certain axioms:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - $\sum_{A} (-1)^{?} m(A) \ge 0$ where we sum over ...

A $(d \times N)$ -matrix with entries in \mathbb{Z} defines an arithmetic matroid in a canonical way:

Main example

- defines a matroid in the usual way
- multiplicity of a basis B: m(B) = |det(B)|
- in general: $m(S) := \left| \langle S \rangle_{\mathbb{R}} \cap \mathbb{Z}^d / \langle S \rangle_{\mathbb{Z}} \right|$

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

• An arithmetic matroid is a triple (*M*, rk, *m*)

- (M, rk) is a matroid
- $m: 2^{M} \to \mathbb{Z}_{\geq 1}$ is the multiplicity function that satisfies certain axioms:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - $\sum_{A} (-1)^{?} m(A) \ge 0$ where we sum over ...

A $(d \times N)$ -matrix with entries in \mathbb{Z} defines an arithmetic matroid in a canonical way:

Main example

- defines a matroid in the usual way
- multiplicity of a basis B: m(B) = |det(B)|
- in general: $m(S) := \left| \langle S \rangle_{\mathbb{R}} \cap \mathbb{Z}^d / \langle S \rangle_{\mathbb{Z}} \right|$

Remark

Hyperplane arrangements are related to the problem of measuring volumes of polytopes, while toric arrangements are related to counting the number of lattice points.

Arithmetic Tutte polynomial and region counting

Definition (Moci (2012), D'Adderio-Moci (2013))

 (M, rk, m) arithmetic matroid. Its arithmetic Tutte polynomial is:

$$\mathfrak{M}_{M}(x,y) := \sum_{A \subseteq M} m(A)(x-1)^{\operatorname{rk}(M) - \operatorname{rk}(A)}(y-1)^{|A| - \operatorname{rk}(A)}$$

Arithmetic Tutte polynomial and region counting

Definition (Moci (2012), D'Adderio-Moci (2013))

(M, rk, m) arithmetic matroid. Its arithmetic Tutte polynomial is:

$$\mathfrak{M}_{M}(x,y) := \sum_{A \subseteq M} m(A)(x-1)^{\operatorname{rk}(M) - \operatorname{rk}(A)}(y-1)^{|A| - \operatorname{rk}(A)}$$

Appears in many different contexts:

- combinatorics and topology of toric arrangements
 - (~~ characteristic and Poincaré polynomials)
- theory of vector partition functions
- Ehrhart theory of zonotopes
Arithmetic Tutte polynomial and region counting

Definition (Moci (2012), D'Adderio-Moci (2013))

(M, rk, m) arithmetic matroid. Its arithmetic Tutte polynomial is:

$$\mathfrak{M}_M(x,y) := \sum_{A \subseteq M} m(A)(x-1)^{\operatorname{rk}(M) - \operatorname{rk}(A)}(y-1)^{|A| - \operatorname{rk}(A)}$$

Appears in many different contexts:

- combinatorics and topology of toric arrangements
 - (~> characteristic and Poincaré polynomials)
- theory of vector partition functions
- Ehrhart theory of zonotopes

Theorem (Moci (2012), Lawrence (2011))

Let \mathcal{A} be a toric arrangement in the real torus $(S^1)^d$ and let (M, rk, m) be the corresponding arithmetic matroid. Then \mathcal{A} divides the torus into $\mathfrak{M}_M(1,0)$ regions.

Arithmetic convolution formula

Theorem (Backman-ML (2016+))

(M, rk, m) arithmetic matroid. Then

$$\mathfrak{M}_M(x,y)=\sum_{A\subseteq M}$$

Arithmetic convolution formula

Theorem (Backman-ML (2016+))

(M, rk, m) arithmetic matroid. Then

$$\mathfrak{M}_{M}(x,y) = \sum_{A \subseteq M} \mathfrak{M}_{M|_{A}}(0,y)\mathfrak{T}_{M/A}(x,0)$$

= $\sum_{A \subseteq M} \mathfrak{T}_{M|_{A}}(0,y)\mathfrak{M}_{M/A}(x,0).$

Arithmetic convolution formula

Theorem (Backman–ML (2016+))

(M, rk, m) arithmetic matroid. Then

5

$$\mathfrak{M}_{M}(x,y) = \sum_{A \subseteq M} \mathfrak{M}_{M|_{A}}(0,y)\mathfrak{T}_{M/A}(x,0)$$

= $\sum_{A \subseteq M} \mathfrak{T}_{M|_{A}}(0,y)\mathfrak{M}_{M/A}(x,0).$

Restriction and contraction for the multiplicity function:

Generalising the arithmetic convolution formula

- ranked set with multiplicities: triple (*M*, rk, *m*)
 - *M* finite set
 - $\mathsf{rk}: 2^M \to \mathbb{Z}$ satisfies $\mathsf{rk}(\emptyset) = 0$
 - $m: 2^M \to R$, where R denotes a commutative ring with 1.

Generalising the arithmetic convolution formula

- ranked set with multiplicities: triple (M, rk, m)
 - *M* finite set
 - $\mathsf{rk}: 2^M \to \mathbb{Z}$ satisfies $\mathsf{rk}(\emptyset) = 0$
 - $m: 2^M \to R$, where R denotes a commutative ring with 1.
- Restriction and deletion are defined in the usual way. Let $A \subseteq M$.
 - Restriction to A: $(A, \operatorname{rk}|_A, m|_A)$
 - Contraction of A: $(M \setminus A, \operatorname{rk}_{M/A}, m_{M/A})$, where $\operatorname{rk}_{M/A}(B) := \operatorname{rk}_M(B \cup A) - \operatorname{rk}_M(A)$ and $m_{M/A}(B) := m_M(B \cup A)$ for $B \subseteq M \setminus A$.

Generalising the arithmetic convolution formula

• ranked set with multiplicities: triple (M, rk, m)

- *M* finite set
- $\mathsf{rk}: 2^M \to \mathbb{Z}$ satisfies $\mathsf{rk}(\emptyset) = 0$
- $m: 2^M \to R$, where R denotes a commutative ring with 1.
- Restriction and deletion are defined in the usual way. Let $A \subseteq M$.
 - Restriction to A: $(A, \operatorname{rk}|_A, m|_A)$
 - Contraction of A: $(M \setminus A, \operatorname{rk}_{M/A}, m_{M/A})$, where $\operatorname{rk}_{M/A}(B) := \operatorname{rk}_M(B \cup A) - \operatorname{rk}_M(A)$ and $m_{M/A}(B) := m_M(B \cup A)$ for $B \subseteq M \setminus A$.

Theorem (Backman-ML (2016+))

 (M, rk, m) ranked set with multiplicity. Let \mathfrak{M}_M denote its arithmetic Tutte polynomial and \mathfrak{T}_M its Tutte polynomial. Then

$$\mathfrak{M}_{M}(x,y) = \sum_{A \subseteq M} \mathfrak{M}_{M|_{A}}(0,y)\mathfrak{T}_{M/A}(x,0)$$
$$= \sum_{A \subseteq M} \mathfrak{T}_{M|_{A}}(0,y)\mathfrak{M}_{M/A}(x,0).$$

Further generalisation

For two multiplicity functions, m_1, m_2 , the product is defined by $(m_1 \cdot m_2)(A) := m_1(A) \cdot m_2(A)$.

Further generalisation

For two multiplicity functions, m_1, m_2 , the product is defined by $(m_1 \cdot m_2)(A) := m_1(A) \cdot m_2(A)$.

Theorem (suggested by Luca Moci)

Let (M, rk, m_1) and (M, rk, m_2) be two ranked sets with multiplicity.

For two multiplicity functions, m_1, m_2 , the product is defined by $(m_1 \cdot m_2)(A) := m_1(A) \cdot m_2(A)$.

Theorem (suggested by Luca Moci)

Let (M, rk, m_1) and (M, rk, m_2) be two ranked sets with multiplicity. Then

$$\mathfrak{M}_{(M,\mathsf{rk},m_1m_2)}(x,y) = \sum_{A \subseteq M} \mathfrak{M}_{(M,\mathsf{rk},m_1)|_A}(0,y) \mathfrak{M}_{(M,\mathsf{rk},m_2)/A}(x,0).$$

Our setting includes a convolution formula for Tutte polynomials of • polymatroids (not studied yet)

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

 $\mathsf{graphs} \longleftrightarrow \mathsf{matroids}$

graphs embedded in a surface \longleftrightarrow delta matroids

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

 $\mathsf{graphs} \longleftrightarrow \mathsf{matroids}$

graphs embedded in a surface \longleftrightarrow delta matroids

 topological Tutte polynomials for ribbon graphs / cellularly embedded graph, i. e. graphs embedded in a surface: Las Vergnas, Bollobás–Riordan, polynomial, Krushkal

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

 $\mathsf{graphs} \longleftrightarrow \mathsf{matroids}$

graphs embedded in a surface \longleftrightarrow delta matroids

- topological Tutte polynomials for ribbon graphs / cellularly embedded graph, i. e. graphs embedded in a surface: Las Vergnas, Bollobás–Riordan, polynomial, Krushkal
- delta-matroid: D = (M, F), M ground set, F ⊆ 2^M feasible sets (satisfy weak exchange axiom)

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

 $\mathsf{graphs} \longleftrightarrow \mathsf{matroids}$

graphs embedded in a surface \longleftrightarrow delta matroids

- topological Tutte polynomials for ribbon graphs / cellularly embedded graph, i. e. graphs embedded in a surface: Las Vergnas, Bollobás–Riordan, polynomial, Krushkal
- delta-matroid: D = (M, F), M ground set, F ⊆ 2^M feasible sets (satisfy weak exchange axiom)

2-variable Bollobás-Riordan polynomial:

 $R_D(x,y) = \sum_{A \subseteq M} (x-1)^{\rho(\dot{M}) - \rho(A)} (y-1)^{|A| - \rho(A)} \ (\rho \text{ rank function for } D).$

Our setting includes a convolution formula for Tutte polynomials of

- polymatroids (not studied yet)
- delta-matroids (already in the literature)

 $\mathsf{graphs} \longleftrightarrow \mathsf{matroids}$

graphs embedded in a surface \longleftrightarrow delta matroids

- topological Tutte polynomials for ribbon graphs / cellularly embedded graph, i. e. graphs embedded in a surface: Las Vergnas, Bollobás–Riordan, polynomial, Krushkal
- delta-matroid: D = (M, F), M ground set, F ⊆ 2^M feasible sets (satisfy weak exchange axiom)

2-variable Bollobás–Riordan polynomial: $R_D(x, y) = \sum_{A \subseteq M} (x - 1)^{\rho(M) - \rho(A)} (y - 1)^{|A| - \rho(A)} (\rho \text{ rank function for } D).$

Corollary (Krajewski-Moffat-Tanasa (2015+))

$$R_D(x,y) := \sum_{A \subseteq M} R_{D|_A}(0,y) R_{D/A}(x,0)$$

We are able to reprove some known results:

We are able to reprove some known results:

Corollary (D'Adderio-Moci (2013), Brändén-Moci (2014))

The coefficients of the arithmetic Tutte polynomial of an arithmetic matroid are positive.

We are able to reprove some known results:

Corollary (D'Adderio-Moci (2013), Brändén-Moci (2014))

The coefficients of the arithmetic Tutte polynomial of an arithmetic matroid are positive.

Corollary (Delucchi-Moci (2016+))

Let (M, rk, m_1) and (M, rk, m_2) be arithmetic matroids. Then (M, rk, m_1m_2) is also an arithmetic matroid.

We are able to reprove some known results:

Corollary (D'Adderio-Moci (2013), Brändén-Moci (2014))

The coefficients of the arithmetic Tutte polynomial of an arithmetic matroid are positive.

Corollary (Delucchi-Moci (2016+))

Let (M, rk, m_1) and (M, rk, m_2) be arithmetic matroids. Then (M, rk, m_1m_2) is also an arithmetic matroid.

Remark

- (M, rk, m) defined by jth boundary operator of a CW complex → *m*_(M,rk,m²) known as modified jth Tutte–Krushkal–Renardy polynomial
- Bajo–Burdick–Chmutov asked if (M, rk, m²) is an arithmetic matroid.

• For any polytope $P \subseteq \mathbb{R}^d$: $|P \cap \mathbb{Z}^d| = \sum_{F \preccurlyeq P} |\operatorname{relint}(F) \cap \mathbb{Z}^d|$.

- For any polytope $P \subseteq \mathbb{R}^d$: $|P \cap \mathbb{Z}^d| = \sum_{F \preccurlyeq P} |\operatorname{relint}(F) \cap \mathbb{Z}^d|$.
- For zonotopes, this is equivalent to the convolution formula for (x, y) = (2, 1).

- For any polytope $P \subseteq \mathbb{R}^d$: $|P \cap \mathbb{Z}^d| = \sum_{F \preccurlyeq P} |\operatorname{relint}(F) \cap \mathbb{Z}^d|$.
- For zonotopes, this is equivalent to the convolution formula for (x, y) = (2, 1).
- $X = (x_1, \ldots, x_N) \subseteq \mathbb{Z}^d$ be a list of vectors and let $Z(X) := \{\sum_{i=1}^N \lambda_i x_i : 0 \le \lambda_i \le 1\}$ be the zonotope defined by X.

- For any polytope $P \subseteq \mathbb{R}^d$: $|P \cap \mathbb{Z}^d| = \sum_{F \preccurlyeq P} |\operatorname{relint}(F) \cap \mathbb{Z}^d|$.
- For zonotopes, this is equivalent to the convolution formula for (x, y) = (2, 1).
- $X = (x_1, \ldots, x_N) \subseteq \mathbb{Z}^d$ be a list of vectors and let $Z(X) := \{\sum_{i=1}^N \lambda_i x_i : 0 \le \lambda_i \le 1\}$ be the zonotope defined by X.

Remark

$$\begin{aligned} \left| Z(X) \cap \mathbb{Z}^d \right| &= \mathfrak{M}_X(2,1) = \sum_{A \subseteq X} \mathfrak{M}_{M|_A}(0,1) \mathfrak{T}_{M/A}(2,0) \\ &= \sum_F \left| \mathsf{relint}(F) \cap \mathbb{Z}^d \right|, \end{aligned}$$

where the last sum is over all faces of Z(X).

Dahmen-Micchelli spaces

Remark

 If we set x = 1, the convolution formula is equivalent to a lemma of Moci (for representable arithmetic matroids).

Dahmen-Micchelli spaces

Remark

- If we set x = 1, the convolution formula is equivalent to a lemma of Moci (for representable arithmetic matroids).
- $X \subseteq \mathbb{Z}^d$, $\mathcal{V}(X)$: vertices of the corresponding toric arrangement, for $p \in \mathcal{V}(X)$, $M_p =$ "local" matroid

$$\mathfrak{M}_M(1,y) = \sum_{p \in \mathcal{V}(X)} \mathfrak{T}_{M_p}(1,y).$$

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Dahmen-Micchelli spaces

Remark

- If we set x = 1, the convolution formula is equivalent to a lemma of Moci (for representable arithmetic matroids).
- X ⊆ Z^d, V(X): vertices of the corresponding toric arrangement, for p ∈ V(X), M_p = "local" matroid

$$\mathfrak{M}_{M}(1,y) = \sum_{p \in \mathcal{V}(X)} \mathfrak{T}_{M_{p}}(1,y).$$

• Related to two decomposition formulas in the theory of splines and vector partition functions: Dahmen–Micchelli (1985), ML (2016)

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Definition (Arithmetic flows and colourings, Bränden-Moci (2014))

• X finite list of elements of \mathbb{Z}^d

- X finite list of elements of \mathbb{Z}^d
- $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_q)$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$.

- X finite list of elements of \mathbb{Z}^d
- $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_q)$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$.
- $\chi_X(q) = \#$ proper arithmetic *q*-colorings of *X*

- X finite list of elements of \mathbb{Z}^d
- $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_q)$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$.
- $\chi_X(q) = \#$ proper arithmetic *q*-colorings of *X*
- $\psi: X \to \mathbb{Z}_q \setminus \{0\}$ a nowhere zero q-flow on X if $\sum_{x \in X} \psi(x) = 0$ in $(\mathbb{Z}_q)^d$.

- X finite list of elements of \mathbb{Z}^d
- $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_q)$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$.
- $\chi_X(q) = \#$ proper arithmetic *q*-colorings of *X*
- $\psi: X \to \mathbb{Z}_q \setminus \{0\}$ a nowhere zero q-flow on X if $\sum_{x \in X} \psi(x) = 0$ in $(\mathbb{Z}_q)^d$.
- $\chi^*_X(q) = \#$ nowhere zero *q*-flows on *X*

Definition (Arithmetic flows and colourings, Bränden-Moci (2014))

- X finite list of elements of \mathbb{Z}^d
- $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_q)$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$.
- $\chi_X(q) = \#$ proper arithmetic *q*-colorings of *X*
- $\psi: X \to \mathbb{Z}_q \setminus \{0\}$ a nowhere zero q-flow on X if $\sum_{x \in X} \psi(x) = 0$ in $(\mathbb{Z}_q)^d$.
- $\chi^*_X(q) = \#$ nowhere zero *q*-flows on *X*

Remark

This generalises flows and colourings on CW complexes (Beck–Breuer–Godkin–Martin, Beck–Kemper), which in turn generalise flows and colourings on graphs.

Theorem (Brändén-Moci (2014))

X finite list of elements of \mathbb{Z}^d . There are infinite sets $\mathbb{Z}_M(X) \subseteq \mathbb{Z}_{>0}$ and $\mathbb{Z}_A(X) \subseteq \mathbb{Z}_{>0}$ s.t.

If
$$q \in \mathbb{Z}_A(X)$$
, then $\chi_X(q) = (-1)^{\mathsf{rk}(X)}q^{\mathsf{rk}(G)-\mathsf{rk}(X)}\mathfrak{M}_X(1-q,0)$
and $\chi_X^*(q) = (-1)^{|X|-\mathsf{rk}(X)}\mathfrak{M}_X(0,1-q).$

Theorem (Brändén-Moci (2014))

X finite list of elements of \mathbb{Z}^d . There are infinite sets $\mathbb{Z}_M(X) \subseteq \mathbb{Z}_{>0}$ and $\mathbb{Z}_A(X) \subseteq \mathbb{Z}_{>0}$ s.t.

If
$$q \in \mathbb{Z}_A(X)$$
, then $\chi_X(q) = (-1)^{\mathsf{rk}(X)} q^{\mathsf{rk}(G) - \mathsf{rk}(X)} \mathfrak{M}_X(1-q,0)$
and $\chi_X^*(q) = (-1)^{|X| - \mathsf{rk}(X)} \mathfrak{M}_X(0, 1-q)$.
If $q \in \mathbb{Z}_M(X)$, then $\chi_X(q) = (-1)^{\mathsf{rk}(X)} q^{\mathsf{rk}(G) - \mathsf{rk}(X)} \mathfrak{T}_X(1-q,0)$
and $\chi_X^*(q) = (-1)^{|X| - \mathsf{rk}(X)} \mathfrak{T}_X(0, 1-q)$.
Arithmetic flows and colourings

Theorem (Brändén-Moci (2014))

X finite list of elements of \mathbb{Z}^d . There are infinite sets $\mathbb{Z}_M(X) \subseteq \mathbb{Z}_{>0}$ and $\mathbb{Z}_A(X) \subseteq \mathbb{Z}_{>0}$ s.t.

If
$$q \in \mathbb{Z}_A(X)$$
, then $\chi_X(q) = (-1)^{\mathsf{rk}(X)} q^{\mathsf{rk}(G) - \mathsf{rk}(X)} \mathfrak{M}_X(1-q,0)$
and $\chi_X^*(q) = (-1)^{|X| - \mathsf{rk}(X)} \mathfrak{M}_X(0, 1-q)$.
If $q \in \mathbb{Z}_M(X)$, then $\chi_X(q) = (-1)^{\mathsf{rk}(X)} q^{\mathsf{rk}(G) - \mathsf{rk}(X)} \mathfrak{T}_X(1-q,0)$
and $\chi_X^*(q) = (-1)^{|X| - \mathsf{rk}(X)} \mathfrak{T}_X(0, 1-q)$.

•
$$\operatorname{lcm}(X) := \operatorname{lcm}\{m(B) : B \subseteq X \text{ basis}\}.$$

 $\mathbb{Z}_M(X) := \{q \in \mathbb{Z}_{>0} : \operatorname{gcd}(q, \operatorname{lcm}(X)) = 1\}$

Arithmetic flows and colourings

Theorem (Brändén-Moci (2014))

X finite list of elements of \mathbb{Z}^d . There are infinite sets $\mathbb{Z}_M(X) \subseteq \mathbb{Z}_{>0}$ and $\mathbb{Z}_A(X) \subseteq \mathbb{Z}_{>0}$ s.t.

$$\begin{array}{l} \textit{If } q \in \mathbb{Z}_{A}(X), \textit{ then } \chi_{X}(q) = (-1)^{\mathsf{rk}(X)}q^{\mathsf{rk}(G)-\mathsf{rk}(X)}\mathfrak{M}_{X}(1-q,0) \\ and \; \chi_{X}^{*}(q) = (-1)^{|X|-\mathsf{rk}(X)}\mathfrak{M}_{X}(0,1-q). \\ \textit{If } q \in \mathbb{Z}_{M}(X), \textit{ then } \chi_{X}(q) = (-1)^{\mathsf{rk}(X)}q^{\mathsf{rk}(G)-\mathsf{rk}(X)}\mathfrak{T}_{X}(1-q,0) \\ and \; \chi_{X}^{*}(q) = (-1)^{|X|-\mathsf{rk}(X)}\mathfrak{T}_{X}(0,1-q). \end{array}$$

•
$$\operatorname{lcm}(X) := \operatorname{lcm}\{m(B) : B \subseteq X \text{ basis}\}.$$

 $\mathbb{Z}_M(X) := \{q \in \mathbb{Z}_{>0} : \operatorname{gcd}(q, \operatorname{lcm}(X)) = 1\}$

• For $B \subseteq X$, G_B denotes the torsion subgroup of the quotient $\mathbb{Z}^d / \langle \{x : x \in B\} \rangle$. $\mathbb{Z}_A(X) := \{q \in \mathbb{Z}_{>0} : qG_B = \{0\} \text{ for all bases } B \subseteq X\},$

We obtain a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colourings:

We obtain a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colourings:

Corollary (Backman–ML (2016+))

Let $X \subseteq \mathbb{Z}^d$, $p \in \mathbb{Z}_A(X)$ and $q \in \mathbb{Z}_M(X)$ then

$$\mathfrak{M}_{X}(1-p,1-q) = p^{\mathsf{rk}(G)-\mathsf{rk}(X)}(-1)^{\mathsf{rk}(X)} \sum_{A \subseteq X} (-1)^{|A|} \chi^{*}_{X|_{A}}(q) \chi_{X/A}(p).$$

We obtain a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colourings:

Corollary (Backman–ML (2016+))

Let $X \subseteq \mathbb{Z}^d$, $p \in \mathbb{Z}_A(X)$ and $q \in \mathbb{Z}_M(X)$ then

$$\mathfrak{M}_X(1-p,1-q) =
ho^{\mathsf{rk}(G)-\mathsf{rk}(X)}(-1)^{\mathsf{rk}(X)}\sum_{A\subseteq X}(-1)^{|A|}\chi^*_{X|_A}(q)\chi_{X/A}(p).$$

• The same statement holds if we instead take $p \in \mathbb{Z}_M(X)$ and $q \in \mathbb{Z}_A(X)$.

We obtain a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colourings:

Corollary (Backman–ML (2016+))

Let $X \subseteq \mathbb{Z}^d$, $p \in \mathbb{Z}_A(X)$ and $q \in \mathbb{Z}_M(X)$ then

$$\mathfrak{M}_X(1-p,1-q) = p^{\mathsf{rk}(G)-\mathsf{rk}(X)}(-1)^{\mathsf{rk}(X)} \sum_{A\subseteq X} (-1)^{|A|} \chi^*_{X|_A}(q) \chi_{X/A}(p).$$

- The same statement holds if we instead take $p \in \mathbb{Z}_M(X)$ and $q \in \mathbb{Z}_A(X)$.
- There is a similar interpretation for the modified jth Tutte–Krushkal–Renardy polynomial with both p, q ∈ Z_A(X).

Thank you!

References

- Spencer Backman, ML, A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures, arXiv:1602.02664
 - C. Bajo, B. Burdick, S. Chmutov, *On the Tutte-Krushkal-Renardy polynomial for cell complexes*, J. Combin. Theory Ser. A, 2014.
- P. Brändén, L. Moci, The multivariate arithmetic Tutte polynomial, Trans. Amer. Math. Soc., 2014.
- E. Delucchi, L. Moci, *Colorings and flows on CW complexes, Tutte quasi-polynomials and arithmetic matroids*, 2016, arXiv:1602.04307.
- G. Etienne, M. Las Vergnas, *External and internal elements of a matroid basis*, Discrete Math., 1998.
- W. Kook, Vic Reiner, Dennis Stanton, *A convolution formula for the Tutte polynomial*, J. Combin. Theory Ser. B, 1999.
- T. Krajewski, I. Moffatt, A. Tanasa, *Combinatorial Hopf algebras and topological Tutte polynomials*, 2015, arXiv:1508.00814.

Arithmetic matroids

Definition (D'Adderio-Moci (2013), Brändén-Moci (2014))

• An arithmetic matroid is a triple (M, rk, m)

- (*M*, rk) is a matroid
- $m: 2^M \to \mathbb{Z}_{\geq 1}$ is the *multiplicity function* that satisfies the axioms (A1), (A2) and (P) below.
- Let R ⊆ S ⊆ M. The set [R, S] := {A : R ⊆ A ⊆ S} is called a molecule if S can be written as the disjoint union S = R ∪ F_{RS} ∪ T_{RS} and for each A ∈ [R, S], rk(A) = rk(R) + |A ∩ F_{RS}| holds.
- (A1) For all $A \subseteq E$ and $e \in E$: If $rk(A \cup \{e\}) = rk(A)$, then $m(A \cup \{e\})|m(A)$. Otherwise $m(A)|m(A \cup \{e\})$.
 - (A2) If [R, S] is a molecule, then $m(R)m(S) = m(R \cup F)m(R \cup T)$.
 - (P) for each molecule [R, S], the following inequality holds

$$ho(R,S) := (-1)^{|T_{RS}|} \sum_{A \in [R,S]} (-1)^{|S| - |A|} m(A) \ge 0.$$