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Plan:

• Burrill’s conjecture on standard tableaux and oscillating tableaux

• Representation theoretical proof of Burrill’s conjecture

• Generalizations of Burrill’s conjecture



Burrill’s Conjecture



Standard Tableaux

Let λ be a partition with |λ| = k. A standard tableau of shape λ is
a filling of the cells of the diagram of λ by positive integers 1, 2, . . . , k
satisfying

• each positive integer from 1 to k appears exactly once,

• the entries in each row and each column are increasing.

Standard tableaux of shape λ are in bijection with sequences of partitions

∅ = λ(0), λ(1), . . . , λ(k) = λ

satisfying

λ(i−1) ⊂ λ(i), |λ(i−1)| + 1 = |λ(i)| (1 ≤ i ≤ k).

Example

1 3 4
2 5

←→ ∅ ⊂ 1 ⊂ 1
2
⊂ 1 3

2
⊂ 1 3 4

2
⊂ 1 3 4

2 5



Oscillating Tableaux

For a nonnegative integer k and a partition λ, an oscillating tableau of
length k and shape λ is a sequence of partitions

∅ = λ(0), λ(1), . . . , λ(k) = λ

satisfying

λ(i−1) ⊂ λ(i), |λ(i−1)| + 1 = |λ(i)|,
OR λ(i−1) ⊃ λ(i), |λ(i−1)| − 1 = |λ(i)|.

Example The sequence

∅ ⊂ ⊂ ⊃ ⊂ ⊃

is an oscillating tableau of length 5 and shape (1).



Burrill’s Conjecture

Theorem 1 (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna)
Given nonnegative integers k, m and n, the following are equinumerous:

(a) Oscillating tableaux
(
λ(i)

)k
i=0 of length k and shape (m) (the one-row

partition of size m) such that l(λ(i)) ≤ n for each i.

Example If k = 4, m = 2 and n = 1, then

∅ ⊂ ⊃ ∅ ⊂ ⊂ ,

∅ ⊂ ⊂ ⊃ ⊂ ,

∅ ⊂ ⊂ ⊂ ⊃ .



Burrill’s Conjecture

Theorem 1 (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna)
Given nonnegative integers k, m and n, the following are equinumerous:

(a) Oscillating tableaux
(
λ(i)

)k
i=0 of length k and shape (m) (the one-row

partition of size m) such that l(λ(i)) ≤ n for each i.

(b) Standard tableaux whose shape λ satisfies |λ| = k, c(λ) = m, and
l(λ) ≤ 2n. Here c(λ) is the number of columns of odd length in the
diagram of λ.

Example If k = 4, m = 2 and n = 1, then

1 2 3
4 ,

1 2 4
3 ,

1 3 4
2 .



Burrill’s Conjecture

Theorem 1 (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna)
Given nonnegative integers k, m and n, the following are equinumerous:

(a) Oscillating tableaux
(
λ(i)

)k
i=0 of length k and shape (m) (the one-row

partition of size m) such that l(λ(i)) ≤ n for each i.

(b) Standard tableaux whose shape λ satisfies |λ| = k, c(λ) = m, and
l(λ) ≤ 2n. Here c(λ) is the number of columns of odd length in the
diagram of λ.

Krattenthaler and Burrill et al. gave bijective proofs to this theorem.
In this talk, we give another proof and generalizations based on the
representation theory of classical groups.



Representation Theoretical Proof of Burrill’s Conjecture



Representation theory of GLN (C)
The irreducible polynomial representations of the general linear group

GLN are parametrized by partitions of length ≤ N .

{irred. polyn. repr. of GLN} / ∼= ←→ {partitions of length ≤ N}
Vλ ←→ λ

For example,

V∅ = C (trivial repr.), V□ = CN (natural repr.),

V(r) = Sr(V□), V(1r) =
∧r(V□).

Pieri Rule (simplest case) For a partition µ with l(µ) ≤ N , we
have

Vµ ⊗ V□ ∼=
⊕
λ

Vλ,

where λ runs over all partitions of length ≤ N such that

λ ⊃ µ, |λ| = |µ| + 1.



Representation theory of Sp2n(C)
The irreducible representations of the symplectic group Sp2n ⊂ GL2n

are parametrized by partitions of length ≤ n.

{irred. repr. of Sp2n} / ∼= ←→ {partitions of length ≤ n}
W⟨λ⟩ ←→ λ

For example,

W⟨∅⟩ = C (trivial repr.), W⟨□⟩ = C2n (natural repr.),

W⟨(r)⟩ = Sr(W⟨□⟩), W⟨(1r)⟩ =
∧r(W⟨□⟩)/

∧r−2(W⟨□⟩).

Pieri Rule (simplest case) For a partition µ with l(µ) ≤ n, we have

W⟨µ⟩ ⊗W⟨□⟩ ∼=
⊕
λ

W⟨λ⟩,

where λ runs over all partitions of length ≤ n such that

λ ⊃ µ, |λ| = |µ| + 1, or λ ⊂ µ, |λ| = |µ| − 1.



Theorem 1 (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna)
Given nonnegative integers k, m and n, the following are equinumerous:

(a) Oscillating tableaux
(
λ(i)

)k
i=0 of length k and shape (m) (the one-row

partition of size m) such that l(λ(i)) ≤ n for each i.

(b) Standard tableaux whose shape λ satisfies |λ| = k, c(λ) = m, and
l(λ) ≤ 2n. Here c(λ) is the number of columns of odd length in the
diagram of λ.



Representation-theoretical Proof of Theorem 1
We compute the multiplicity[

Res
GL2n
Sp2n

V ⊗k□ : W⟨(m)⟩
]
Sp2n

in two ways, where (m) is the one-row partition of size m.

Since Res
GL2n
Sp2n

V□ = W⟨□⟩, we have[
Res

GL2n
Sp2n

V ⊗k□ : W⟨(m)⟩
]
Sp2n

=
[
W⊗k□ : W⟨(m)⟩

]
Sp2n

.

By iteratively applying Pieri rule for Sp2n, we have[
W⊗k□ : W⟨(m)⟩

]
Sp2n

= #

{(
λ(i)

)k
i=0 :

oscillating tableau of length k and shape (m)

such that l(λ(i)) ≤ n for 0 ≤ i ≤ k

}
.



Representation-theoretical Proof of Theorem 1 (continued)

On the other hand, by iteratively applying Pieri rule for GL2n, we have

V ⊗k□
∼=

⊕
λ

V
⊕fλ
λ ,

where λ runs over all partition with |λ| = k and l(λ) ≤ 2n, and fλ

denotes the number of standard tableaux of shape λ. Hence we have[
Res

GL2n
Sp2n

V ⊗k□ : W⟨(m)⟩
]
Sp2n

=
∑
λ

fλ
[
Res

GL2n
Sp2n

Vλ : W⟨(m)⟩
]
Sp2n

.

Therefore the proof is completed by using

Proposition For a partition of length ≤ 2n, we have[
Res

GL2n
Sp2n

Vλ : W⟨(m)⟩
]
Sp2n

=

{
1 if c(λ) = m,

0 otherwise.



Generalizations of Burrill’s Conjecture



Generalization

Our representation-theoretical proof suggests the following generaliza-
tions:

• Replace the representation V ⊗k□ by

Sα(V□) = Sα1(V□)⊗ · · · ⊗ Sαk(V□),∧α(V□) =
∧α1(V□)⊗ · · · ⊗

∧αk(V□).

• Consider the representations of the orthogonal group ON or SON .

Classical Pieri rules describe the irreducible decompositions of

Vλ ⊗ Sk(V□), Vλ ⊗
∧k(V□)

for GLN . We need similar decomposition formula for Sp2n and ON ,
SON .



Column-strict tableaux

A column-strict tableau (also called a semistandard tableau) of shape
λ and weight α = (α1, . . . , αk) is a filling of the cells of the diagram of
λ by positive integers 1, 2, 3, . . . such that

• i appears αi times,
• the entries in each row is weakly increasing,

• the entries in each column are strictly increasing, and

Column-strict tableaux of shape λ and weight α are in bijection with
sequences of partitions

∅ = λ(0), λ(1), . . . , λ(k) = λ

such that

λ(i)/λ(i−1) is a horizonal αi-strip for each i.



Example

1 1 2 3
2 3 3
4

←→ ∅ ⊂ 1 1 ⊂ 1 1 2
2

⊂ 1 1 2 3
2 3 3

⊂ 1 1 2 3
2 3 3
4



Row-strict Tableaux

A row-strict tableau of shape λ and weight α = (α1, . . . , αk) is a filling
of the cells of the diagram of λ by positive integers 1, 2, 3, . . . satisfying

• i appears αi times,
• the entries in each row is strictly increasing, and

• the entries in each column are weakly increasing.

Row-strict tableaux of shape λ and weight α are in bijection with se-
quences of partitions

∅ = λ(0), λ(1), . . . , λ(k) = λ

such that

λ(i)/λ(i−1) is a vertical αi-strip for each i.



Pieri rules for Sp2n (Sundaram)

Given partitions λ and µ with l(λ), l(µ) ≤ n, we have[
W⟨µ⟩ ⊗ Sr(W⟨□⟩) : W⟨λ⟩

]
Sp2n

= #

ξ :

partition with l(ξ) ≤ n such that
• µ ⊃ ξ ⊂ λ
• µ/ξ and λ/ξ are horizontal strips
• |µ/ξ| + |λ/ξ| = r

 ,

[
W⟨µ⟩ ⊗

∧r(W⟨□⟩) : W⟨λ⟩
]
Sp2n

= #

ξ :

partition with l(ξ) ≤ n such that
• µ ⊂ ξ ⊃ λ
• ξ/µ and ξ/λ are vertical strips
• |ξ/µ| + |ξ/λ| = r

 .



Generalizations

Theorem 2 (Krattenthaler) For a sequence α = (α1, . . . , αk) of non-
negative integers, and nonnegative integers m and n, the following are
equinumerous:

(a) Down-up sequences

∅ = λ(0) ⊃ λ(1) ⊂ λ(2) ⊃ λ(3) ⊂ λ(4)

⊃ · · · ⊂ λ(2k−2) ⊃ λ(2k−1) ⊂ λ(2k) = (m)

of partitions such that

• l(λ(i)) ≤ n,

• λ(2i−2)/λ(2i−1) and λ(2i)/λ(2i−1) are horizontal strips, and
• |λ(2i−2)/λ(2i−1)| + |λ(2i)/λ(2i−1)| = αi.

(b) Column-strict tableaux of weight α whose shape λ satisfies c(λ) = m
and l(λ) ≤ 2n.



Generalizations

Theorem 3 For a sequence α = (α1, . . . , αk) of nonnegative integers,
and nonnegative integers m and n, the following are equinumerous:

(a) Up-down sequences

∅ = λ(0) ⊂ λ(1) ⊃ λ(2) ⊂ λ(3) ⊃ λ(4)

⊂ · · · ⊃ λ(2k−2) ⊂ λ(2k−1) ⊃ λ(2k) = (m)

of partitions such that

• l(λ(i)) ≤ n,

• λ(2i−1)/λ(2i−2) and λ(2i−1)/λ(2i) are both vertical strips, and

• |λ(2i−1)/λ(2i−2)| + |λ(2i−1)/λ(2i)| = αi.

(b) Row-strict tableaux of weight α whose shape λ satisfies c(λ) = m
and l(λ) ≤ 2n.



Orthogonal Group Case

We can use the representation theory of the orthogonal group ON (C)
to prove

Theorem 4 Given nonnegative integers k, m and N , the following
are equinumerous:

(a) Oscillating tableaux
(
λ(i)

)k
i=0 of length k and shape (1m) (the one-

column partition of size m) such that (λ(i))′1 + (λ(i))′2 ≤ N for each
i.

(b) Standard tableaux whose shape λ satisfies |λ| = k, r(λ) = m and
l(λ) ≤ N . Here r(λ) is the number of rows of odd length in the
diagram of λ.

We have similar (but a bit complicated) Pieri rules for ON and SON
and equinumerous results analogous to Theorems 2 and 3.


