#### **Pieri Rules and Oscillating Tableaux**

Soichi OKADA (Nagoya University)

77th Séminaire Lotharingien de Combinatoire Strobl, September 12, 2016

This talk is based on a paper arXiv:1606.02375.

# Plan:

- Burrill's conjecture on standard tableaux and oscillating tableaux
- Representation theoretical proof of Burrill's conjecture
- Generalizations of Burrill's conjecture

#### **Standard Tableaux**

Let  $\lambda$  be a partition with  $|\lambda| = k$ . A standard tableau of shape  $\lambda$  is a filling of the cells of the diagram of  $\lambda$  by positive integers  $1, 2, \ldots, k$ satisfying

- $\bullet$  each positive integer from 1 to k appears exactly once,
- the entries in each row and each column are increasing.

Standard tableaux of shape  $\lambda$  are in bijection with sequences of partitions

$$\emptyset = \lambda^{(0)}, \ \lambda^{(1)}, \ \dots, \ \lambda^{(k)} = \lambda$$

satisfying

$$\lambda^{(i-1)} \subset \lambda^{(i)}, \quad |\lambda^{(i-1)}| + 1 = |\lambda^{(i)}| \quad (1 \le i \le k).$$

Example

## **Oscillating Tableaux**

For a nonnegative integer k and a partition  $\lambda$ , an oscillating tableau of length k and shape  $\lambda$  is a sequence of partitions

$$\emptyset = \lambda^{(0)}, \ \lambda^{(1)}, \ \dots, \ \lambda^{(k)} = \lambda$$

satisfying

$$\begin{split} \lambda^{(i-1)} &\subset \lambda^{(i)}, \quad |\lambda^{(i-1)}| + 1 = |\lambda^{(i)}|, \\ \mathsf{OR} \quad \lambda^{(i-1)} \supset \lambda^{(i)}, \quad |\lambda^{(i-1)}| - 1 = |\lambda^{(i)}|. \end{split}$$

Example The sequence

$$\emptyset \quad \subset \ \Box \quad \subset \ \Box \quad \supset \ \Box \quad \Box \quad \supset \ \Box$$

is an oscillating tableau of length 5 and shape (1).

**Theorem 1** (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna) Given nonnegative integers k, m and n, the following are equinumerous:

(a) Oscillating tableaux  $(\lambda^{(i)})_{i=0}^k$  of length k and shape (m) (the one-row partition of size m) such that  $l(\lambda^{(i)}) \leq n$  for each i.

Example If k = 4, m = 2 and n = 1, then



**Theorem 1** (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna) Given nonnegative integers k, m and n, the following are equinumerous:

- (a) Oscillating tableaux  $(\lambda^{(i)})_{i=0}^k$  of length k and shape (m) (the one-row partition of size m) such that  $l(\lambda^{(i)}) \leq n$  for each i.
- (b) Standard tableaux whose shape  $\lambda$  satisfies  $|\lambda| = k$ ,  $c(\lambda) = m$ , and  $l(\lambda) \leq 2n$ . Here  $c(\lambda)$  is the number of columns of odd length in the diagram of  $\lambda$ .

Example If k = 4, m = 2 and n = 1, then

**Theorem 1** (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna) Given nonnegative integers k, m and n, the following are equinumerous:

- (a) Oscillating tableaux  $(\lambda^{(i)})_{i=0}^k$  of length k and shape (m) (the one-row partition of size m) such that  $l(\lambda^{(i)}) \leq n$  for each i.
- (b) Standard tableaux whose shape  $\lambda$  satisfies  $|\lambda| = k$ ,  $c(\lambda) = m$ , and  $l(\lambda) \leq 2n$ . Here  $c(\lambda)$  is the number of columns of odd length in the diagram of  $\lambda$ .

Krattenthaler and Burrill et al. gave bijective proofs to this theorem. In this talk, we give another proof and generalizations based on the representation theory of classical groups. **Representation Theoretical Proof of Burrill's Conjecture** 

# Representation theory of $\operatorname{GL}_N(\mathbb{C})$

The irreducible polynomial representations of the general linear group  $\mathbf{GL}_N$  are parametrized by partitions of length  $\leq N$ .

 $\{ \text{irred. polyn. repr. of } \mathbf{GL}_N \} / \cong \longleftrightarrow \{ \text{partitions of length} \le N \}$   $V_{\lambda} \qquad \longleftrightarrow \qquad \lambda$ 

For example,

$$V_{\emptyset} = \mathbb{C} \quad \text{(trivial repr.)}, \quad V_{\Box} = \mathbb{C}^{N} \quad \text{(natural repr.)}, \\ V_{(r)} = S^{r}(V_{\Box}), \quad V_{(1^{r})} = \bigwedge^{r}(V_{\Box}).$$

**Pieri Rule (simplest case)** For a partition  $\mu$  with  $l(\mu) \leq N$ , we have

$$V_{\mu} \otimes V_{\Box} \cong \bigoplus_{\lambda} V_{\lambda},$$

where  $\lambda$  runs over all partitions of length  $\leq N$  such that

$$\lambda \supset \mu, \quad |\lambda| = |\mu| + 1.$$

# Representation theory of $\mathbf{Sp}_{2n}(\mathbb{C})$

The irreducible representations of the symplectic group  $\mathbf{Sp}_{2n} \subset \mathbf{GL}_{2n}$ are parametrized by partitions of length  $\leq n$ .

$$\begin{array}{ll} \{ \text{irred. repr. of } \mathbf{Sp}_{2n} \} / \cong \longleftrightarrow & \{ \text{partitions of length} \le n \} \\ W_{\langle \lambda \rangle} & \longleftrightarrow & \lambda \end{array}$$

For example,

$$\begin{split} W_{\langle \emptyset \rangle} &= \mathbb{C} \quad \text{(trivial repr.)}, \qquad W_{\langle \Box \rangle} = \mathbb{C}^{2n} \quad \text{(natural repr.)}, \\ W_{\langle (r) \rangle} &= S^r(W_{\langle \Box \rangle}), \qquad \qquad W_{\langle (1^r) \rangle} = \bigwedge^r(W_{\langle \Box \rangle}) / \bigwedge^{r-2}(W_{\langle \Box \rangle}). \end{split}$$

**Pieri Rule (simplest case)** For a partition  $\mu$  with  $l(\mu) \leq n$ , we have  $W_{\langle \mu \rangle} \otimes W_{\langle \Box \rangle} \cong \bigoplus_{\lambda} W_{\langle \lambda \rangle},$ 

where  $\lambda$  runs over all partitions of length  $\leq n$  such that

$$\lambda \supset \mu, \ |\lambda| = |\mu| + 1, \quad \text{or} \quad \lambda \subset \mu, \ |\lambda| = |\mu| - 1.$$

**Theorem 1** (Krattenthaler, Burrill–Courtiel–Fusy–Melczer–Mishna) Given nonnegative integers k, m and n, the following are equinumerous:

- (a) Oscillating tableaux  $(\lambda^{(i)})_{i=0}^k$  of length k and shape (m) (the one-row partition of size m) such that  $l(\lambda^{(i)}) \leq n$  for each i.
- (b) Standard tableaux whose shape  $\lambda$  satisfies  $|\lambda| = k$ ,  $c(\lambda) = m$ , and  $l(\lambda) \leq 2n$ . Here  $c(\lambda)$  is the number of columns of odd length in the diagram of  $\lambda$ .

# Representation-theoretical Proof of Theorem 1

We compute the multiplicity

$$\left[\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\Box}^{\otimes k} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}}$$

in two ways, where (m) is the one-row partition of size m. Since  $\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\Box} = W_{\langle \Box \rangle}$ , we have  $\left[\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\Box}^{\otimes k} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}} = \left[W_{\Box}^{\otimes k} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}}.$ 

By iteratively applying Pieri rule for  $\mathbf{Sp}_{2n}$ , we have

$$\begin{split} & \left[ W_{\Box}^{\otimes k} : W_{\langle (m) \rangle} \right]_{\mathbf{Sp}_{2n}} \\ & = \# \left\{ \begin{pmatrix} \lambda^{(i)} \end{pmatrix}_{i=0}^{k} : & \text{oscillating tableau of length } k \text{ and shape } (m) \\ & \text{ such that } l(\lambda^{(i)}) \leq n \text{ for } 0 \leq i \leq k \\ \end{split} \right\} \end{split}$$

#### Representation-theoretical Proof of Theorem 1 (continued)

On the other hand, by iteratively applying Pieri rule for  $\mathbf{GL}_{2n}$ , we have

$$V_{\Box}^{\otimes k} \cong \bigoplus_{\lambda} V_{\lambda}^{\oplus f^{\lambda}},$$

where  $\lambda$  runs over all partition with  $|\lambda| = k$  and  $l(\lambda) \leq 2n$ , and  $f^{\lambda}$  denotes the number of standard tableaux of shape  $\lambda$ . Hence we have

$$\left[\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\Box}^{\otimes k} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}} = \sum_{\lambda} f^{\lambda} \left[\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\lambda} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}}.$$

Therefore the proof is completed by using

**Proposition** For a partition of length  $\leq 2n$ , we have

$$\left[\operatorname{Res}_{\mathbf{Sp}_{2n}}^{\mathbf{GL}_{2n}} V_{\lambda} : W_{\langle (m) \rangle}\right]_{\mathbf{Sp}_{2n}} = \begin{cases} 1 & \text{if } c(\lambda) = m, \\ 0 & \text{otherwise.} \end{cases}$$

# **Generalizations of Burrill's Conjecture**

# Generalization

Our representation-theoretical proof suggests the following generalizations:

• Replace the representation  $V_{\Box}^{\otimes k}$  by

$$S^{\alpha}(V_{\Box}) = S^{\alpha_1}(V_{\Box}) \otimes \cdots \otimes S^{\alpha_k}(V_{\Box}),$$
$$\bigwedge^{\alpha}(V_{\Box}) = \bigwedge^{\alpha_1}(V_{\Box}) \otimes \cdots \otimes \bigwedge^{\alpha_k}(V_{\Box}).$$

• Consider the representations of the orthogonal group  $\mathbf{O}_N$  or  $\mathbf{SO}_N$ .

Classical Pieri rules describe the irreducible decompositions of

 $V_{\lambda} \otimes S^k(V_{\Box}), \quad V_{\lambda} \otimes \bigwedge^k(V_{\Box})$ 

for  $\mathbf{GL}_N$ . We need similar decomposition formula for  $\mathbf{Sp}_{2n}$  and  $\mathbf{O}_N$ ,  $\mathbf{SO}_N$ .

## **Column-strict** tableaux

A column-strict tableau (also called a semistandard tableau) of shape  $\lambda$  and weight  $\alpha = (\alpha_1, \ldots, \alpha_k)$  is a filling of the cells of the diagram of  $\lambda$  by positive integers  $1, 2, 3, \ldots$  such that

- ullet i appears  $lpha_i$  times,
- the entries in each row is weakly increasing,
- the entries in each column are strictly increasing, and

Column-strict tableaux of shape  $\lambda$  and weight  $\alpha$  are in bijection with sequences of partitions

$$\emptyset = \lambda^{(0)}, \ \lambda^{(1)}, \ \dots, \ \lambda^{(k)} = \lambda$$

such that

$$\lambda^{(i)}/\lambda^{(i-1)}$$
 is a horizonal  $\alpha_i$ -strip for each  $i$ .

# Example



#### **Row-strict Tableaux**

A row-strict tableau of shape  $\lambda$  and weight  $\alpha = (\alpha_1, \ldots, \alpha_k)$  is a filling of the cells of the diagram of  $\lambda$  by positive integers  $1, 2, 3, \ldots$  satisfying

- ullet i appears  $lpha_i$  times,
- the entries in each row is strictly increasing, and
- the entries in each column are weakly increasing.

Row-strict tableaux of shape  $\lambda$  and weight  $\alpha$  are in bijection with sequences of partitions

$$\emptyset = \lambda^{(0)}, \ \lambda^{(1)}, \ \dots, \ \lambda^{(k)} = \lambda$$

such that

$$\lambda^{(i)}/\lambda^{(i-1)}$$
 is a vertical  $\alpha_i$ -strip for each  $i$ .

**Pieri rules for**  $Sp_{2n}$  (Sundaram) Given partitions  $\lambda$  and  $\mu$  with  $l(\lambda)$ ,  $l(\mu) \leq n$ , we have  $\left[W_{\langle\mu\rangle}\otimes S^{r}(W_{\langle\Box\rangle}):W_{\langle\lambda\rangle}\right]_{\mathbf{Sp}_{2}}$  $= \# \left\{ \begin{array}{l} \text{partition with } l(\xi) \leq n \text{ such that} \\ \bullet \ \mu \supset \xi \subset \lambda \\ \bullet \ \mu/\xi \text{ and } \lambda/\xi \text{ are horizontal strips} \\ \bullet \ |\mu/\xi| + |\lambda/\xi| = r \end{array} \right\},$  $\left\lfloor W_{\langle \mu \rangle} \otimes \bigwedge^r (W_{\langle \Box \rangle}) : W_{\langle \lambda \rangle} \right\rfloor_{\mathbf{Sp}_{2n}}$  $= \# \left\{ \begin{array}{l} \text{partition with } l(\xi) \leq n \text{ such that} \\ \bullet \ \mu \subset \xi \supset \lambda \\ \bullet \ \xi / \mu \text{ and } \xi / \lambda \text{ are vertical strips} \\ \bullet \ |\xi/\mu| + |\xi/\lambda| = r \end{array} \right\}.$ 

## Generalizations

**Theorem 2** (Krattenthaler) For a sequence  $\alpha = (\alpha_1, \ldots, \alpha_k)$  of nonnegative integers, and nonnegative integers m and n, the following are equinumerous:

(a) **Down-up** sequences

$$\begin{split} \emptyset &= \lambda^{(0)} \supset \lambda^{(1)} \subset \lambda^{(2)} \supset \lambda^{(3)} \subset \lambda^{(4)} \\ & \supset \cdots \subset \lambda^{(2k-2)} \supset \lambda^{(2k-1)} \subset \lambda^{(2k)} = (m) \end{split}$$

of partitions such that

• 
$$l(\lambda^{(i)}) \leq n$$
,  
•  $\lambda^{(2i-2)}/\lambda^{(2i-1)}$  and  $\lambda^{(2i)}/\lambda^{(2i-1)}$  are horizontal strips, and  
•  $|\lambda^{(2i-2)}/\lambda^{(2i-1)}| + |\lambda^{(2i)}/\lambda^{(2i-1)}| = \alpha_i$ .

(b) Column-strict tableaux of weight  $\alpha$  whose shape  $\lambda$  satisfies  $c(\lambda) = m$ and  $l(\lambda) \leq 2n$ .

#### Generalizations

**Theorem 3** For a sequence  $\alpha = (\alpha_1, \dots, \alpha_k)$  of nonnegative integers, and nonnegative integers m and n, the following are equinumerous:

# (a) Up-down sequences

of partitions such that

• 
$$l(\lambda^{(i)}) \leq n$$
,  
•  $\lambda^{(2i-1)}/\lambda^{(2i-2)}$  and  $\lambda^{(2i-1)}/\lambda^{(2i)}$  are both vertical strips, and  
•  $|\lambda^{(2i-1)}/\lambda^{(2i-2)}| + |\lambda^{(2i-1)}/\lambda^{(2i)}| = \alpha_i$ .

(b) Row-strict tableaux of weight  $\alpha$  whose shape  $\lambda$  satisfies  $c(\lambda) = m$ and  $l(\lambda) \leq 2n$ .

## **Orthogonal Group Case**

We can use the representation theory of the orthogonal group  $\mathbf{O}_N(\mathbb{C})$  to prove

**Theorem 4** Given nonnegative integers k, m and N, the following are equinumerous:

- (a) Oscillating tableaux  $(\lambda^{(i)})_{i=0}^k$  of length k and shape  $(1^m)$  (the one-column partition of size m) such that  $(\lambda^{(i)})'_1 + (\lambda^{(i)})'_2 \leq N$  for each i.
- (b) Standard tableaux whose shape  $\lambda$  satisfies  $|\lambda| = k$ ,  $r(\lambda) = m$  and  $l(\lambda) \leq N$ . Here  $r(\lambda)$  is the number of rows of odd length in the diagram of  $\lambda$ .

We have similar (but a bit complicated) Pieri rules for  $O_N$  and  $SO_N$  and equinumerous results analogous to Theorems 2 and 3.