Random walks in cones: exponential growth
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Introduction: asymptotics of lattice path models



Context: enumeration of lattice walks

> Nearest-neighbor walks in the plane Z?; admissible steps
6g{)/|<_1’\1/l\|/‘1_>1\{1\l/}

> G-walks: walks in Z? starting at (0,0) and using steps in &

> #g{(O, 0) —% (i,/)}: number of G-walks ending at (i, /) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q)
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6g{)/|<_1’\1/l\|/‘1_>1\1\l/}

> G-walks: walks in Z? starting at (0,0) and using steps in &

> #g{(o, 0) —% (i,/)}: number of G-walks ending at (i, /) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q)

> Example with

G={/, < / =}
#5{(0,0) = (0,0)} =1
#3{(0,0)*5 (0,00} =0
#5{(0,0) = (0,0)} =2
#8{(0,0) = (0,0)} = 11
#8{(0,0) - (0,0)} = 85



Context: enumeration of lattice walks

> Nearest-neighbor walks in the plane Z2?; admissible steps
SC{v, <« Non A= N\

> G-walks: walks in Z2 starting at (0, 0) and using steps in &

#S{(O, 0) —% (i, /)}: number of G-walks ending at (/, /) and
consisting of exactly n steps, possibly confined to some subdomain
of Z? (for us: the quarter plane Q)

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

12,1185 Search | Hims
(Greetings from The On-Line f Integer Sequences')

Search: seq:1,2,11,85
Displaying 1-1 of 1 result found. page |
Sort: relevance | references | mumber | modified | created  Format: long | short | data

A135404 Gessel sequence: the number of paths of length 2m in the planc, starting and ending at (0,1), with *
unit steps in the four directions (north, east, south, west) and staying in the region y>0, x>-y.
1,2, 11, 85, 782, 8004, 88044, 1020162, 12294260, 152787976, 1946310467, 25302036071
334560525538, 448B007045900, 60955295750460, 836B3B395382645, 1159759564424,
162074575606384788, 2281839419729917410, 32340239365121308038, 4611D9215351957525316

6610306901283738684600 (lst; graph; refs; listen; history; text; internal format)




Context: enumeration of lattice walks

> Nearest-neighbor walks in the plane Z?; admissible steps
GQ{/'%r\vT'/‘r_h\Nv\lf}
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Context: enumeration of lattice walks

> Nearest-neighbor walks in the plane Z?; admissible steps
6g{)/|<_1’\1/l\v/‘1_>1\{1\l/}

> G-walks: walks in Z2 starting at (0, 0) and using steps in &

> #8{(0, 0) —% (i,/)}: number of G-walks ending at (i, /) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q). Complete generating function

Qa(tix,y) =Y | Y #6{(0,0) % (i )}x'y | t" € Qlx, y][[t]]
n=0 \/,j=0

Questions: Given &, what can be said about Q(x, y)?
Structure? (algebraic/D-finite) Explicit form? Asymptotics?

Q(0,0) ~ counts G-walks returning to the origin (excursions)
Q(1,1) ~ counts G-walks with prescribed length



Structure of the series of lectures

Counting numbers in cones C C Z9
> Excursions from x to y:

#e{x — v}

Probability: local limit theorem
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Probability: local limit theorem Y
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Structure of the series of lectures

Counting numbers in cones C C Z9
> Excursions from x to y:

#{x — y}

Probability: local limit theorem Y
> Total number of walks starting at x: c
#{x = C}
Probability: persistence probability N .
A rich asymptotic behavior
p: exp. growth ~ Mon.
RW, Cramér transform
s n in IS crit. expo. ~ Tue.
> #Feix — Ch~ k- VI(x) - 0" 07" gy Divichiet problem

/]\

V: harmonic ~ Wed.
Potential theory

Simple remark: V, p, @ depend on C & & — hence also on d



Results on the exponential growth



Existing results on the exponential growth (1/3)

1D: the half-line
> Known formulas

> Banderier & Flajolet '02; Banderier & Wallner '16

_—



Existing results on the exponential growth (1/3)
1D: the half-line

_—

> Known formulas
> Banderier & Flajolet '02; Banderier & Wallner '16

2D: the quarter plane

> Numerical conjectures: values of p for all
quadrant small step models
% Bostan & Kauers '08

> Proof of the conjectures
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Existing results on the exponential growth (1/3)
1D: the half-line
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> Known formulas
> Banderier & Flajolet '02; Banderier & Wallner '16

2D: the quarter plane

> Numerical conjectures: values of p for all
quadrant small step models
% Bostan & Kauers '08

> Proof of the conjectures
X Bousquet-Mélou & Mishna '10; Fayolle & R. '12

> Asymptotic guessing of p

@ Bacher, Kauers & Yatchak '16




Existing results on the exponential growth (2/3)

Combinatorial approach for an upper bound of pg

> For any haIf—pIane Q C H, £Q < PH @ Johnson, Mishna & Yeats '13

> Compute py % Banderier & Flajolet '02

X




Existing results on the exponential growth (2/3)

Combinatorial approach for an upper bound of pg

> For any half—plane Q C H, £Q < PH @ Johnson, Mishna & Yeats '13

> Compute py

Key observations

> For small step quadrant walks,

> There is a best half-space {

® Banderier & Flajolet '02

X

@ Johnson, Mishna & Yeats '13

= min
PQ HDQPH

not necessarily unique
not necessarily L to drift ) _ s
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se6
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Existing results on the exponential growth (3/3)
> Let & C Z9 such that (&) = Z9 and C be any convex cone
Laplace transform

> Laplace transform (exp. gen. function) of &: L%(x Z els)
s€6
Cones, polar cones & dual cones

> Polar cone: {x: (x,y)<0,Vy € C}
> Dual cone: {x:(x,y)>0,Vy € C}
> Orthant Z self-dual

Formula for the exp. growth

>1pg = min L%|=1%(x), xo unique D Garbit & R. '16
dual cone

> If (&) # Z9, p depends on the starting point @ Garbit '16
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A concrete example in the quadrant

> Minimize on ]Rﬁ_ the function

LS(x,y) =TV +e>X+e ¥ +e X
> p = 3.799604753
> p algebraic number of degree 4
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Miscellaneous examples

A concrete example in the quadrant

> Minimize on ]R%r the function

LS(x,y) =TV +e>X+e ¥ +e X
> p = 3.799604753
> p algebraic number of degree 4

Walks in the quarter plane
> Gives in a unified way the already known results (pg are
algebraic numbers of degree at most 8)
Drift in the cone C and maximal exponential growth
> If drift 3 s s € C (possibly 0), then xp = 0 and

pg = L9(0) = #6

~> law of large numbers
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The half-plane identity

Apparition of the polar & dual cones

H
Cone Cone Cone

Polar
cone

Y
<0

Y

y

A three-line proof of the half-plane identity (any convex cone)

> pc < min py & Johnson, Mishna & Yeats '13
HDOC

>lpc= min L9(x) % Garbit & R. '16
x € dual cone

> For H = x*, py = L9(x) % Banderier & Flajolet '02



Exponential growth of the excursions

Obvious remark

> #ef{x oy} < #2{x - C}
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Exponential growth of the excursions

Obvious remark

> #S{x Ly} < #8 x5 = ‘p(excursions) < p‘

Formula for the exponential growth

> p(excursions) = min L° < min L[S =p
Rd dual cone
LS Iglehart '74; Garbit '08; Denisov & Wachtel '15

> Proof: Cramér’'s transform

Reluctant case

Case ‘p(excursions) = p‘ is called reluctant. Results:

> Random generation % Lumbroso, Mishna & Ponty '16

> Exact asymptotics D Duraj '14

> Intuitively: a typical walk is located not far way from the
origin

> 1D: non-positive drift



Main ideas of the proof: RW and Cramér transform
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Reformulation of the problem: probability theory

General hypotheses

> Finite step set & C Z9 (d > 1)
> Convex cone C C RY
RW with steps in &

Let {S(n)}n=0 be a RW whose increments have the uniform law in
S, ie.,
> S(n) = x4+ X(1)+---+ X(n), where the X(/) are i.i.d.
First exit time from the cone C
> 7 =inf{n >1:5(n) ¢ C}: first time that RW exits from C

Main equation combinatorics/probability

#{x 5 C}
(#6)"

> | PX[r > n] =




Why introducing this probability?

Technical reasons

> Possibility of N AWA
using N \/
Brownian motion \ o/
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Donsker theorem | \ '

400

uuuuu




Why introducing this probability?

Technical reasons

> Possibility of -] S
using |
Brownian motion |\ | \
and |\
Donsker theorem \/

400

s0000 100000 150000

Motivations in other fields than combinatorics

> Links with representation theory

> Conditioned RW in cones (quantum RW, random matrices,
non-colliding RW, etc.)

> More details to come tomorrow
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Zero drift case ) 5 =0

Non-exponential decay D Garbit '07
If drift > .55 =0 (<= E[X(/)] = 0) then

= lm P> A=t
n—oo
Proof: Push the RW in C

(1)=2z..,X(v/n)=z,7>n]

(1) = 2V (7 > n — /|

=PO[X(1) = 2]V"P°[Vnz + S(1). ..., V/nz + S(n — v/n) € C]
(1)
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Exponential change of measure (Girsanov or Cramér)
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[5(x)
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Non-zero drift > __ s #0 (1/2)

Exponential change of measure (Girsanov or Cramér)

ey = s =

PIX (i) = 5] = 1504

1
#6

> Choice of exponential (character) ~ see below

> Same measures if x =0

> One has
PY[r > n] = <L;(g)> XYY [r > n, e S (vx)
< (i?) el (v - (x, S(n)) > 0)

An easy upper bound

. mindual cone LG
limsupPY[r > n]¥/" = p <
mewp Pl > = ue #6
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Non-zero drift ) __os#0 (2/2)
Lower bound (reminder)

) min LS
limsup PY[r > n]t/" > ——dualcone =
n—00 #6

A simple case

If global minima of LS on RY reached on the dual cone (say at xp):
1S

PY[r > n] = <#(go)

S n
> (L#(go)> ePONPY[r > n, |S(n)| < V/aje PolvVA

n
> POV [ > ) e (0S()]

General case

Minimum on Q at xp = (x(gl), ,xéd)):

OL®(x0) | =0 Vi '
dxi | =0 Visuch that x{"’ >0



Conclusions and open problems



A few open questions

> Find the exact asymptotics (not only the exponential growth)
~» come tomorrow!

> Existence of the Laplace transform = exponential moments
What about weighted step sets without exponential moments?
(typically, L2-moments)

> Variations of the models (e.g., lattice paths with catastrophes)
X Banderier & Wallner '16
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