Random walks in cones: exponential growth

Lecture #1 Analytic and probabilistic tools for lattice path enumeration

KILIAN RASCHEL

77th Séminaire Lotharingien de Combinatoire September 12, 2016 Strobl, Austria

Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

Conclusions and open problems

 \triangleright *Nearest-neighbor walks* in the plane \mathbb{Z}^2 ; admissible steps

 $\mathfrak{S} \subseteq \{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

▷ \mathfrak{S} -walks: walks in \mathbb{Z}^2 starting at (0,0) and using *steps in* \mathfrak{S} ▷ $\#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\}$: number of \mathfrak{S} -walks ending at (i,j) and consisting of exactly *n* steps, possibly *confined to* some subdomain of \mathbb{Z}^2 (for us: *the quarter plane Q*)

 \triangleright *Nearest-neighbor walks* in the plane \mathbb{Z}^2 ; admissible steps

 $\mathfrak{S} \subseteq \{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

▷ \mathfrak{S} -walks: walks in \mathbb{Z}^2 starting at (0,0) and using *steps in* \mathfrak{S} ▷ $\#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\}$: number of \mathfrak{S} -walks ending at (i,j) and consisting of exactly *n* steps, possibly *confined to* some subdomain of \mathbb{Z}^2 (for us: *the quarter plane Q*)

Example with

$$\mathfrak{S} = \{\swarrow, \leftarrow, \nearrow, \rightarrow\}$$

 $\begin{aligned} \#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{0} (0,0)\} &= 1 \\ \#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{2n+1} (0,0)\} &= 0 \\ \#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{2} (0,0)\} &= 2 \\ \#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{4} (0,0)\} &= 11 \\ \#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{6} (0,0)\} &= 85 \end{aligned}$

(日) (國) (필) (필) (필) 표

 \triangleright *Nearest-neighbor walks* in the plane \mathbb{Z}^2 ; admissible steps

 $\mathfrak{S} \subseteq \{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

▷ \mathfrak{S} -walks: walks in \mathbb{Z}^2 starting at (0,0) and using *steps in* \mathfrak{S} ▷ $\#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\}$: number of \mathfrak{S} -walks ending at (i,j) and consisting of exactly *n* steps, possibly *confined to* some subdomain of \mathbb{Z}^2 (for us: *the quarter plane Q*)

THE ON–LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

	1,2,11,85 (Greetings from The On-Line Encyc	opedia of Integer Sequences!)	Search Hints
Scarch: seq:1,2,11,85			
Displaying 1-1 of	1 result found.		page 1
Sort: relevance re	ferences number modified created	Format: long short data	
A135404 G ur	essel sequence: the number of pa it steps in the four directions (no	ths of length 2m in the plane orth, east, south, west) and st	e, starting and ending at $(0,1)$, with $\frac{+20}{6}$ aying in the region y>0, x>-y.
1, 2, 11, 8 334560525538 162074575606 661030699128	5, 782, 8004, 88044, 10201 , 4488007049900, 609552957 984788, 228183941972991741 3738684600 (list: graph: refs: listen:	62, 12294260, 152787976, 50460, 836838395382645, 0, 32340239369121304038, history: text: internal format)	1946310467, 25302036071, 11597595644244186, 461109219391987625316,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \triangleright *Nearest-neighbor walks* in the plane \mathbb{Z}^2 ; admissible steps

 $\mathfrak{S} \subseteq \{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

▷ \mathfrak{S} -walks: walks in \mathbb{Z}^2 starting at (0,0) and using *steps in* \mathfrak{S} ▷ $\#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\}$: number of \mathfrak{S} -walks ending at (i,j) and consisting of exactly *n* steps, possibly *confined to* some subdomain of \mathbb{Z}^2 (for us: *the quarter plane Q*). Complete generating function

$$Q_{\mathfrak{S}}(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} \#_{Q}^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\} x^{i} y^{j} \right) t^{n} \in \mathbb{Q}[x,y][[t]]$$

 \triangleright *Nearest-neighbor walks* in the plane \mathbb{Z}^2 ; admissible steps

 $\mathfrak{S} \subseteq \{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}$

▷ \mathfrak{S} -walks: walks in \mathbb{Z}^2 starting at (0,0) and using *steps in* \mathfrak{S} ▷ $\#_Q^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\}$: number of \mathfrak{S} -walks ending at (i,j) and consisting of exactly *n* steps, possibly *confined to* some subdomain of \mathbb{Z}^2 (for us: *the quarter plane Q*). Complete generating function

$$Q_{\mathfrak{S}}(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} \#_{Q}^{\mathfrak{S}}\{(0,0) \xrightarrow{n} (i,j)\} x^{i} y^{j} \right) t^{n} \in \mathbb{Q}[x,y][[t]]$$

Questions: Given \mathfrak{S} , what can be said about Q(x, y)? *Structure*? (algebraic/D-finite) *Explicit form*? *Asymptotics*?

 $Q(0,0) \sim$ counts \mathfrak{S} -walks returning to the origin (excursions) $Q(1,1) \sim$ counts \mathfrak{S} -walks with prescribed length

Counting numbers in cones $C \subset \mathbb{Z}^d$

Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*

(=) (

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

< □ > < @ > < 注 > < 注 > ... 注

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

< □ > < @ > < 注 > < 注 > ... 注

$$\triangleright \ \#^{\mathfrak{S}}_{C}\{x \xrightarrow{n} C\} \sim \kappa \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$$

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

< □ > < @ > < 注 > < 注 > ... 注

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

$$\rho: \text{ exp. growth } \sim \text{ Mon.}$$

$$RW, Cram\acute{er} transform$$

$$\downarrow^{\phi} \alpha: \text{ crit. expo. } \sim \text{ Tue.}$$

$$BM, Dirichlet problem$$

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

< □ > < @ > < 注 > < 注 > ... 注

Counting numbers in cones $C \subset \mathbb{Z}^d$

- Excursions from x to y: $#<math>{}^{\mathfrak{S}}_{C} \{x \xrightarrow{n} y\}$ Probability: *local limit theorem*
- $\triangleright \quad \text{Total number of walks starting at } x: \\ \#_C^{\mathfrak{S}} \{ x \xrightarrow{n} C \} \\ \text{Probability: persistence probability} \end{cases}$

A rich asymptotic behavior

Simple remark: *V*, ρ , α depend on *C* & \mathfrak{S} — hence also on *d*

Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

Conclusions and open problems

1D: the half-line

Known formulas

Banderier & Flajolet '02; Banderier & Wallner '16

(1/3)

1D: the half-line

Known formulas

Banderier & Flajolet '02; Banderier & Wallner '16

2D: the quarter plane

 \triangleright Numerical conjectures: values of ρ for all quadrant small step models

🔊 Bostan & Kauers '08

(日) (四) (王) (王) (王)

æ

Proof of the conjectures

[®] Bousquet-Mélou & Mishna '10; Fayolle & R. '12

(1/3)

1D: the half-line

Known formulas

Banderier & Flajolet '02; Banderier & Wallner '16

2D: the quarter plane

 \triangleright Numerical conjectures: values of ρ for all quadrant small step models

🔊 Bostan & Kauers '08

Proof of the conjectures

Bousquet-Mélou & Mishna '10; Fayolle & R. '12

 $\triangleright\,$ Asymptotic guessing of $\rho\,$

🔊 Bacher, Kauers & Yatchak '16

・ロト ・個ト ・ヨト ・ヨト

크

Combinatorial approach for an upper bound of ρ_Q

▷ For any half-plane Q ⊂ H, $\rho_Q \le \rho_H$ ▷ Compute ρ_H ▷ Sompute ρ_H

(2/3)

< □ > < □ > < □ > < □ > < □ > < □ >

Combinatorial approach for an upper bound of ρ_Q

 $\label{eq:product} \begin{array}{l} \triangleright \mbox{ For any half-plane } Q \subset H, \end{tabular} \rho_Q \leqslant \rho_H \end{array} \end{tabular} \begin{tabular}{l} \& \mbox{ Johnson, Mishna & Yeats '13} \\ \triangleright \end{tabular} \begin{tabular}{l} \& \mbox{ Compute } \rho_H \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} \& \mbox{ Johnson, Mishna & Yeats '13} \\ \& \end{tabular} \begin{tabular}{l} \& \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} \& \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} \& \end{tabular} \end{tab$

 \triangleright For small step quadrant walks, $\rho_Q = \min_{H \supset Q} \rho_H$

 $\triangleright \text{ There is a best half-space } \begin{cases} \text{ not necessarily unique} \\ \text{ not necessarily } \bot \text{ to } drift \sum_{s \in \mathfrak{S}} s \end{cases}$

▷ Let $\mathfrak{S} \subset \mathbb{Z}^d$ such that $\langle \mathfrak{S} \rangle = \mathbb{Z}^d$ and *C* be any *convex cone* Laplace transform

 \triangleright Laplace transform (exp. gen. function) of \mathfrak{S} : $L^{\mathfrak{S}}(x) = \sum e^{\langle x,s \rangle}$

(3/3)

s∈̃G

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Existing results on the exponential growth (3/3) \triangleright Let $\mathfrak{S} \subset \mathbb{Z}^d$ such that $\langle \mathfrak{S} \rangle = \mathbb{Z}^d$ and *C* be any *convex cone* Laplace transform ▷ Laplace transform (exp. gen. function) of \mathfrak{S} : $L^{\mathfrak{S}}(x) = \sum e^{\langle x,s \rangle}$ s∈̃G Cones, polar cones & dual cones ▷ Polar cone: $\{x : \langle x, y \rangle \leq 0, \forall y \in C\}$ Cone ▷ Dual cone: $\{x : \langle x, y \rangle \ge 0, \forall y \in C\}$ Polar cone \triangleright Orthant \mathbb{Z}^d_+ self-dual

Existing results on the exponential growth (3/3) \triangleright Let $\mathfrak{S} \subset \mathbb{Z}^d$ such that $\langle \mathfrak{S} \rangle = \mathbb{Z}^d$ and *C* be any *convex cone* Laplace transform ▷ Laplace transform (exp. gen. function) of \mathfrak{S} : $L^{\mathfrak{S}}(x) = \sum e^{\langle x,s \rangle}$ s∈̃G Cones, polar cones & dual cones ▷ Polar cone: $\{x : \langle x, y \rangle \leq 0, \forall y \in C\}$ Cone ▷ Dual cone: $\{x : \langle x, y \rangle \ge 0, \forall y \in C\}$ Polar cone \triangleright Orthant \mathbb{Z}^d_+ self-dual

Formula for the exp. growth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Existing results on the exponential growth (3/3) \triangleright Let $\mathfrak{S} \subset \mathbb{Z}^d$ such that $\langle \mathfrak{S} \rangle = \mathbb{Z}^d$ and *C* be any *convex cone* Laplace transform \triangleright Laplace transform (exp. gen. function) of \mathfrak{S} : $L^{\mathfrak{S}}(x) = \sum e^{\langle x, s \rangle}$ s∈̃G Cones, polar cones & dual cones ▷ Polar cone: $\{x : \langle x, y \rangle \leq 0, \forall y \in C\}$ Cone \triangleright Dual cone: $\{x : \langle x, y \rangle \ge 0, \forall y \in C\}$ Polar cone \triangleright Orthant \mathbb{Z}^d_+ self-dual

Formula for the exp. growth

Miscellaneous examples

A concrete example in the quadrant

▷ Minimize on \mathbb{R}^2_+ the function $L^{\mathfrak{S}}(x, y) = e^{x+y} + e^{-x} + e^{-y} + e^{-x-y}$ ▷ $\rho \approx 3.799604753$

<ロト <四ト <注入 <注下 <注下 <

 $\triangleright \rho$ algebraic number of degree 4

Miscellaneous examples

A concrete example in the quadrant

 $\begin{array}{l} \triangleright \quad \textit{Minimize} \ \text{on} \ \mathbb{R}^2_+ \ \textit{the function} \\ L^{\mathfrak{S}}(x,y) = e^{x+y} + e^{-x} + e^{-y} + e^{-x-y} \\ \triangleright \ \rho \approx 3.799604753 \\ \triangleright \ \rho \ \textit{algebraic number} \ \text{of degree 4} \end{array}$

(日) (國) (필) (필) (필) 표

Walks in the quarter plane

▷ Gives in a unified way the already known results ($\rho_Q^{\mathfrak{S}}$ are algebraic numbers of degree at most 8)

Miscellaneous examples

A concrete example in the quadrant

 $\begin{array}{l} \triangleright \quad \textit{Minimize on } \mathbb{R}^2_+ \ \textit{the function} \\ L^{\mathfrak{S}}(x,y) = e^{x+y} + e^{-x} + e^{-y} + e^{-x-y} \\ \triangleright \quad \rho \approx 3.799604753 \\ \triangleright \quad \rho \ \textit{algebraic number of degree 4} \end{array}$

Walks in the quarter plane

▷ Gives in a unified way the already known results ($\rho_Q^{\mathfrak{S}}$ are algebraic numbers of degree at most 8)

Drift in the cone C and maximal exponential growth

▷ If drift $\sum_{s \in \mathfrak{S}} s \in C$ (possibly 0), then $x_0 = 0$ and

$$\rho^{\mathfrak{S}}_{C} = L^{\mathfrak{S}}(\mathbf{0}) = \# \mathfrak{S}$$

 \sim law of large numbers

◆□>
◆□>

æ

Apparition of the polar & dual cones

Apparition of the polar & dual cones

Apparition of the polar & dual cones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

A three-line proof of the half-plane identity (any convex cone)

$$\rho_{C} \leq \min_{H \supset C} \rho_{H}$$

$$\rho_{C} = \min_{x \in \text{dual cone}} L^{\mathfrak{S}}(x)$$

$$\rho_{C} = \Gamma H = x^{\perp} \quad \rho_{H} = L^{\mathfrak{S}}(x)$$

🖄 Johnson, Mishna & Yeats '13

🔍 Garbit & R. '16

12

🔊 Banderier & Flajolet '02

・ロト ・個ト ・ヨト ・ヨト

Obvious remark

$$\triangleright \ \#_C^{\mathfrak{S}}\{x \xrightarrow{n} y\} \leqslant \#_C^{\mathfrak{S}}\{x \xrightarrow{n} C\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Obvious remark

$$\triangleright \ \#_{C}^{\mathfrak{S}}\{\mathbf{x} \xrightarrow{n} \mathbf{y}\} \leqslant \#_{C}^{\mathfrak{S}}\{\mathbf{x} \xrightarrow{n} C\} \Longrightarrow \rho(\text{excursions}) \leqslant \rho$$

Obvious remark

$$\triangleright \ \#_{C}^{\mathfrak{S}}\{\mathbf{x} \stackrel{n}{\longrightarrow} \mathbf{y}\} \leqslant \#_{C}^{\mathfrak{S}}\{\mathbf{x} \stackrel{n}{\longrightarrow} C\} \Longrightarrow \rho(\text{excursions}) \leqslant \rho$$

Formula for the exponential growth

$$\triangleright \ \rho(\text{excursions}) = \min_{\mathbb{R}^d} L^{\mathfrak{S}} \leqslant \min_{\substack{\text{dual cone}}} L^{\mathfrak{S}} = \rho$$

Iglehart '74; Garbit '08; Denisov & Wachtel '15

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof: Cramér's transform

Obvious remark

$$\triangleright \ \#_{C}^{\mathfrak{S}}\{\mathbf{x} \stackrel{n}{\longrightarrow} \mathbf{y}\} \leqslant \#_{C}^{\mathfrak{S}}\{\mathbf{x} \stackrel{n}{\longrightarrow} C\} \Longrightarrow \rho(\text{excursions}) \leqslant \rho$$

Formula for the exponential growth

$$\triangleright \ \rho(\text{excursions}) = \min_{\mathbb{R}^d} L^{\mathfrak{S}} \leqslant \min_{\text{dual cone}} L^{\mathfrak{S}} = \rho$$

Iglehart '74; Garbit '08; Denisov & Wachtel '15

Proof: Cramér's transform

Reluctant case

Case $|\rho(\text{excursions}) = \rho|$ is called *reluctant*. Results:

- Random generation Sumbroso, Mishna & Ponty '16
- Exact asymptotics
- Intuitively: a typical walk is located not far way from the origin
- ▷ 1D: non-positive drift

🔊 Duraj '14

Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions and open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

General hypotheses

General hypotheses

▷ Finite step set $\mathfrak{S} \subset \mathbb{Z}^d$ $(d \ge 1)$ ▷ Convex cone $C \subset \mathbb{R}^d$

RW with steps in $\ensuremath{\mathfrak{S}}$

Let $\{S(n)\}_{n\geq 0}$ be a *RW* whose increments have the *uniform law in* \mathfrak{S} , i.e.,

▷ $S(n) = x + X(1) + \dots + X(n)$, where the X(i) are i.i.d. ▷ $\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}}$

General hypotheses

▷ Finite step set $\mathfrak{S} \subset \mathbb{Z}^d$ $(d \ge 1)$ ▷ Convex cone $C \subset \mathbb{R}^d$

RW with steps in $\ensuremath{\mathfrak{S}}$

Let $\{S(n)\}_{n\geq 0}$ be a *RW* whose increments have the *uniform law in* \mathfrak{S} , i.e.,

▷ $S(n) = x + X(1) + \dots + X(n)$, where the X(i) are i.i.d. ▷ $\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}}$

First exit time from the cone C

▷ $\tau = \inf\{n \ge 1 : S(n) \notin C\}$: first time that RW exits from C

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

General hypotheses

▷ Finite step set $\mathfrak{S} \subset \mathbb{Z}^d$ $(d \ge 1)$ ▷ Convex cone $C \subset \mathbb{R}^d$

RW with steps in $\ensuremath{\mathfrak{S}}$

Let $\{S(n)\}_{n\geq 0}$ be a *RW* whose increments have the *uniform law in* \mathfrak{S} , i.e.,

▷ $S(n) = x + X(1) + \dots + X(n)$, where the X(i) are i.i.d. ▷ $\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}}$

First exit time from the cone C

▷ $\tau = \inf\{n \ge 1 : S(n) \notin C\}$: first time that RW exits from C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main equation combinatorics/probability

$$\triangleright \quad \mathbb{P}^{\mathsf{x}}[\tau > n] = \frac{\#\{\mathsf{x} \xrightarrow{n} C\}}{(\#\mathfrak{S})^n}$$

Why introducing this probability?

Technical reasons

 Possibility of using Brownian motion and Donsker theorem

(ロ) (部) (E) (E)

Why introducing this probability?

Technical reasons

 Possibility of using Brownian motion and Donsker theorem

Motivations in other fields than combinatorics

- ▷ Links with *representation theory*
- Conditioned RW in cones (quantum RW, random matrices, non-colliding RW, etc.)
- More details to come tomorrow

Zero drift case $\sum_{s \in \mathfrak{S}} s = 0$

Non-exponential decay If drift $\sum_{s \in \mathfrak{S}} s = 0 \iff \mathbb{E}[X(i)] = 0$ then

$$\rho = 1 \qquad \Longleftrightarrow \qquad \lim_{n \to \infty} \mathbb{P}^{\times} [\tau > n]^{1/n} = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

🖾 Garbit '07

Zero drift case $\sum_{s \in \mathfrak{S}} s = 0$ Non-exponential decay 🖾 Garbit '07 If drift $\sum_{s \in \mathfrak{S}} s = 0$ ($\iff \mathbb{E}[X(i)] = 0$) then $\rho = 1 \quad \Longleftrightarrow \quad \lim_{n \to \infty} \mathbb{P}^{\mathsf{x}}[\tau > n]^{1/n} = 1$ **Proof:** Push the RW in C

(日) (四) (문) (문) (문)

 $\mathbb{P}^{\mathbf{0}}[\tau > n] \geq \mathbb{P}^{\mathbf{0}}[X(1) = z, \dots, X(\sqrt{n}) = z, \tau > n]$

Zero drift case $\sum_{s \in G} s = 0$ Non-exponential decay 🕲 Garbit '07 If drift $\sum_{s \in \mathfrak{S}} s = 0$ ($\iff \mathbb{E}[X(i)] = 0$) then $\rho = 1 \quad \Longleftrightarrow \quad \lim_{n \to \infty} \mathbb{P}^{\times} [\tau > n]^{1/n} = 1$ **Proof:** Push the RW in C $\mathbb{P}^{0}[\tau > n] \geq \mathbb{P}^{0}[X(1) = z, \dots, X(\sqrt{n}) = z, \tau > n]$ $= \mathbb{P}^{0}[X(1) = z]^{\sqrt{n}} \mathbb{P}^{\sqrt{n}z}[\tau > n - \sqrt{n}]$

・ロト ・四ト ・ヨト ・ヨト ・ 日ト

Zero drift case $\sum_{s \in G} s = 0$ Non-exponential decay 🕲 Garbit '07 If drift $\sum_{s \in \mathfrak{S}} s = 0$ ($\iff \mathbb{E}[X(i)] = 0$) then $\rho = 1 \quad \Longleftrightarrow \quad \lim_{n \to \infty} \mathbb{P}^{\times} [\tau > n]^{1/n} = 1$ **Proof:** Push the RW in C $\mathbb{P}^{0}[\tau > n] \geq \mathbb{P}^{0}[X(1) = z, \dots, X(\sqrt{n}) = z, \tau > n]$

 $=\mathbb{P}^{0}[X(1)=z]^{\sqrt{n}}\mathbb{P}^{\sqrt{n}z}[\tau>n-\sqrt{n}]$

Zero drift case $\sum_{s \in G} s = 0$ Non-exponential decay 🕲 Garbit '07 If drift $\sum_{s \in \mathfrak{S}} s = 0 \iff \mathbb{E}[X(i)] = 0$ then $\rho = 1 \quad \iff \quad \lim_{n \to \infty} \mathbb{P}^{\times} [\tau > n]^{1/n} = 1$ **Proof:** Push the RW in C

 $\mathbb{P}^{0}[\tau > n] \ge \mathbb{P}^{0}[X(1) = z, \dots, X(\sqrt{n}) = z, \tau > n]$ = $\mathbb{P}^{0}[X(1) = z]^{\sqrt{n}}\mathbb{P}^{\sqrt{n}z}[\tau > n - \sqrt{n}]$ = $\mathbb{P}^{0}[X(1) = z]^{\sqrt{n}}\mathbb{P}^{0}[\sqrt{n}z + S(1), \dots, \sqrt{n}z + S(n - \sqrt{n}) \in C]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

Zero drift case $\sum_{s \in G} s = 0$ Non-exponential decay 🕲 Garbit '07 If drift $\sum_{s \in \mathfrak{S}} s = 0$ ($\iff \mathbb{E}[X(i)] = 0$) then $\rho = 1 \quad \iff \quad \lim_{n \to \infty} \mathbb{P}^{\mathsf{x}}[\tau > n]^{1/n} = 1$ **Proof:** Push the RW in C $\mathbb{P}^{0}[\tau > n] \geq \mathbb{P}^{0}[X(1) = z, \dots, X(\sqrt{n}) = z, \tau > n]$ $= \mathbb{P}^{0}[X(1) = z]^{\sqrt{n}} \mathbb{P}^{\sqrt{nz}}[\tau > n - \sqrt{n}]$

 $egin{aligned} &= \mathbb{P}^0[X(1)=z]^{\sqrt{n}}\mathbb{P}^0[\sqrt{n}z+S(1),\ldots,\sqrt{n}z+S(n-\sqrt{n})\in C]\ &pprox \mathbb{P}^0[X(1)=z]^{\sqrt{n}}\mathbb{P}^0[z+B_t\in C,orall t\in [0,1]] \end{aligned}$

Non-zero drift
$$\sum_{s \in \mathfrak{S}} s \neq 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Exponential change of measure (Girsanov or Cramér)

$$\mathbb{P}[X(i) = s] = rac{1}{\#\mathfrak{S}} \longrightarrow \mathbb{P}[X(i) = s] = rac{e^{\langle s, x
angle}}{L^{\mathfrak{S}}(x)}$$

Non-zero drift
$$\sum_{s \in \mathfrak{S}} s \neq 0$$

Exponential change of measure (Girsanov or Cramér)

$$\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}} \longrightarrow$$

$$\mathbb{P}[X(i)=s]=\frac{e^{\langle s,x\rangle}}{L^{\mathfrak{S}}(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▷ Choice of exponential *(character)* → see below

Non-zero drift
$$\sum_{s \in \mathfrak{S}} s \neq 0$$

Exponential change of measure (Girsanov or Cramér)

$$\mathbb{P}[X(i) = s] = rac{1}{\#\mathfrak{S}} \longrightarrow$$

$$\mathbb{P}[X(i)=s]=\frac{e^{\langle s,x\rangle}}{L^{\mathfrak{S}}(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \triangleright Choice of exponential *(character)* \rightsquigarrow see below

 \triangleright Same measures if x = 0

Non-zero drift
$$\sum_{s\in\mathfrak{S}} s\neq 0$$

Exponential change of measure (Girsanov or Cramér)

$$\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}} \longrightarrow$$

$$\mathbb{P}[X(i)=s]=\frac{e^{\langle s,x\rangle}}{L^{\mathfrak{S}}(x)}$$

- ▷ Choice of exponential *(character)* ~→ see below
- \triangleright Same measures if x = 0
- ▷ One has

$$\mathbb{P}^{y}[\tau > n] = \left(\frac{L^{\mathfrak{S}}(x)}{\#\mathfrak{S}}\right)^{n} e^{\langle x, y \rangle} \mathbb{E}^{y}[\tau > n, e^{-\langle x, S(n) \rangle}] \qquad (\forall x)$$
$$\leq \left(\frac{L^{\mathfrak{S}}(x)}{\#\mathfrak{S}}\right)^{n} e^{\langle x, y \rangle} \qquad (\forall x : \langle x, S(n) \rangle \ge 0)$$

Non-zero drift
$$\sum_{s \in \mathfrak{S}} s \neq 0$$

Exponential change of measure (Girsanov or Cramér)

$$\mathbb{P}[X(i) = s] = \frac{1}{\#\mathfrak{S}} \longrightarrow$$

$$\mathbb{P}[X(i)=s]=\frac{e^{\langle s,x\rangle}}{L^{\mathfrak{S}}(x)}$$

. ~

- ▷ Choice of exponential *(character)* ~→ see below
- \triangleright Same measures if x = 0
- ▷ One has

$$\mathbb{P}^{y}[\tau > n] = \left(\frac{L^{\mathfrak{S}}(x)}{\#\mathfrak{S}}\right)^{n} e^{\langle x, y \rangle} \mathbb{E}^{y}[\tau > n, e^{-\langle x, S(n) \rangle}] \quad (\forall x)$$
$$\leq \left(\frac{L^{\mathfrak{S}}(x)}{\#\mathfrak{S}}\right)^{n} e^{\langle x, y \rangle} \quad (\forall x : \langle x, S(n) \rangle \ge 0)$$

An easy upper bound

$$\limsup_{n \to \infty} \mathbb{P}^{y}[\tau > n]^{1/n} = \frac{\rho}{\#\mathfrak{S}} \leqslant \frac{\min_{\text{dual cone}} L^{\mathfrak{S}}}{\#\mathfrak{S}}$$

Non-zero drift $\sum_{s \in \mathfrak{S}} s \neq 0$ (2/2) Lower bound (reminder) $\limsup_{n \to \infty} \mathbb{P}^{y} [\tau > n]^{1/n} \ge \frac{\min_{\text{dual cone}} L^{\mathfrak{S}}}{\#\mathfrak{S}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Non-zero drift $\sum_{s \in \mathfrak{S}} s \neq 0$ (2/2) Lower bound (reminder) $\limsup_{n \to \infty} \mathbb{P}^{y} [\tau > n]^{1/n} \ge \frac{\min_{\text{dual cone}} L^{\mathfrak{S}}}{\#\mathfrak{S}}$

A simple case

If global minima of $L^{\mathfrak{S}}$ on \mathbb{R}^d reached on the dual cone (say at x_0):

$$\mathbb{P}^{y}[\tau > n] = \left(\frac{L^{\mathfrak{S}}(x_{0})}{\#\mathfrak{S}}\right)^{n} e^{\langle x_{0}, y \rangle} \mathbb{E}^{y}[\tau > n, e^{-\langle x_{0}, S(n) \rangle}]$$
$$\geq \left(\frac{L^{\mathfrak{S}}(x_{0})}{\#\mathfrak{S}}\right)^{n} e^{\langle x_{0}, y \rangle} \mathbb{P}^{y}[\tau > n, |S(n)| \leq \sqrt{n}] e^{-|x_{0}|\sqrt{n}}$$

Non-zero drift $\sum_{s \in \mathfrak{S}} s \neq 0$ (2/2)Lower bound (reminder) $\limsup_{n \to \infty} \mathbb{P}^{y}[\tau > n]^{1/n} \ge \frac{\min_{\text{dual cone}} L^{\mathfrak{S}}}{\#\mathfrak{S}}$

 $n \rightarrow \infty$

If global minima of $L^{\mathfrak{S}}$ on \mathbb{R}^d reached on the dual cone (say at x_0):

$$\mathbb{P}^{y}[\tau > n] = \left(\frac{L^{\mathfrak{S}}(x_{0})}{\#\mathfrak{S}}\right)^{n} e^{\langle x_{0}, y \rangle} \mathbb{E}^{y}[\tau > n, e^{-\langle x_{0}, S(n) \rangle}]$$
$$\geq \left(\frac{L^{\mathfrak{S}}(x_{0})}{\#\mathfrak{S}}\right)^{n} e^{\langle x_{0}, y \rangle} \mathbb{P}^{y}[\tau > n, |S(n)| \leq \sqrt{n}] e^{-|x_{0}|\sqrt{n}}$$

General case

Minimum on *Q* at $x_0 = (x_0^{(1)}, ..., x_0^{(d)})$:

$$\frac{\partial L^{\mathfrak{S}}(x_0)}{\partial x_i} \begin{cases} \ge 0 & \forall i \\ = 0 & \forall i \text{ such that } x_0^{(i)} > 0 \end{cases}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

(=) (

Conclusions and open problems

A few open questions

- ▷ Find the *exact asymptotics* (not only the exponential growth) → come tomorrow!
- ▷ Existence of the Laplace transform ⇒ exponential moments What about weighted step sets without exponential moments? (typically, L²-moments)
- Variations of the models (e.g., lattice paths with catastrophes)
 [®] Banderier & Wallner '16

(日) (四) (문) (문) (문)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで