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Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

Conclusions and open problems



Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}

. S-walks: walks in Z2 starting at (0, 0) and using steps in S

. #S
Q{(0, 0)

n−→ (i , j)}: number of S-walks ending at (i , j) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q)

. Example with
S = {↙, ←, ↗, →}

#S
Q{(0, 0)

0−→ (0, 0)} = 1

#S
Q{(0, 0)

2n+1−→ (0, 0)} = 0

#S
Q{(0, 0)

2−→ (0, 0)} = 2

#S
Q{(0, 0)

4−→ (0, 0)} = 11

#S
Q{(0, 0)

6−→ (0, 0)} = 85
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. S-walks: walks in Z2 starting at (0, 0) and using steps in S

. #S
Q{(0, 0)

n−→ (i , j)}: number of S-walks ending at (i , j) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q). Complete generating function

QS(t; x , y) =
∞∑
n=0

 ∞∑
i ,j=0

#S
Q{(0, 0)

n→ (i , j)}x iy j

 tn ∈ Q[x , y ][[t]]

Questions: Given S, what can be said about Q(x , y)?
Structure? (algebraic/D-finite) Explicit form? Asymptotics?

Q(0, 0) ; counts S-walks returning to the origin (excursions)
Q(1, 1) ; counts S-walks with prescribed length



Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}

. S-walks: walks in Z2 starting at (0, 0) and using steps in S

. #S
Q{(0, 0)

n−→ (i , j)}: number of S-walks ending at (i , j) and
consisting of exactly n steps, possibly confined to some subdomain
of Z2 (for us: the quarter plane Q). Complete generating function

QS(t; x , y) =
∞∑
n=0

 ∞∑
i ,j=0

#S
Q{(0, 0)

n→ (i , j)}x iy j

 tn ∈ Q[x , y ][[t]]

Questions: Given S, what can be said about Q(x , y)?
Structure? (algebraic/D-finite) Explicit form? Asymptotics?

Q(0, 0) ; counts S-walks returning to the origin (excursions)
Q(1, 1) ; counts S-walks with prescribed length



Structure of the series of lectures

Counting numbers in cones C ⊂ Zd

C

x

y
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. Excursions from x to y :
#S

C {x
n−→ y}

Probability: local limit theorem

. Total number of walks starting at x :
#S

C {x
n−→ C}

Probability: persistence probability

A rich asymptotic behavior

. #S
C {x

n−→ C} ∼ κ · V (x) · ρn · n−α

ρ: exp. growth ; Mon.
RW, Cramér transform

↓
← α: crit. expo. ; Tue.

BM, Dirichlet problem
↑

V : harmonic ; Wed.
Potential theory

Simple remark: V , ρ,α depend on C & S — hence also on d
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Existing results on the exponential growth (1/3)

1D: the half-line

-• • • • • . Known formulas
� Banderier & Flajolet ’02; Banderier & Wallner ’16

2D: the quarter plane
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. Numerical conjectures: values of ρ for all

quadrant small step models
� Bostan & Kauers ’08

. Proof of the conjectures
� Bousquet-Mélou & Mishna ’10; Fayolle & R. ’12

. Asymptotic guessing of ρ

3D: the octant

� Bacher, Kauers & Yatchak ’16
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Existing results on the exponential growth (2/3)

Combinatorial approach for an upper bound of ρQ

. For any half-plane Q ⊂ H, ρQ 6 ρH � Johnson, Mishna & Yeats ’13

. Compute ρH � Banderier & Flajolet ’02
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Key observations � Johnson, Mishna & Yeats ’13

. For small step quadrant walks, ρQ = min
H⊃Q

ρH

. There is a best half-space

{
not necessarily unique
not necessarily ⊥ to drift

∑
s∈S s
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Existing results on the exponential growth (3/3)

. Let S ⊂ Zd such that 〈S〉 = Zd and C be any convex cone

Laplace transform

. Laplace transform (exp. gen. function) of S: LS(x) =
∑
s∈S

e〈x ,s〉

Cones, polar cones & dual cones

-
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HH

HY
Cone

Polar
cone

. Polar cone: {x : 〈x , y〉60,∀y ∈ C}

. Dual cone: {x : 〈x , y〉>0,∀y ∈ C}

. Orthant Zd
+ self-dual

Formula for the exp. growth

. ρSC = min
dual cone

LS = LS(x0), x0 unique � Garbit & R. ’16

. If 〈S〉 6= Zd , ρ depends on the starting point � Garbit ’16
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Miscellaneous examples

A concrete example in the quadrant
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. Minimize on R2
+ the function

LS(x , y) = ex+y + e−x + e−y + e−x−y

. ρ ≈ 3.799604753

. ρ algebraic number of degree 4

Walks in the quarter plane

. Gives in a unified way the already known results (ρSQ are
algebraic numbers of degree at most 8)

Drift in the cone C and maximal exponential growth

. If drift
∑

s∈S s ∈ C (possibly 0), then x0 = 0 and

ρSC = LS(0) = #S

; law of large numbers
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The half-plane identity

Apparition of the polar & dual cones
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H

A three-line proof of the half-plane identity (any convex cone)

. ρC 6 min
H⊃C

ρH � Johnson, Mishna & Yeats ’13

. ρC = min
x ∈ dual cone

LS(x) � Garbit & R. ’16

. For H = x⊥, ρH = LS(x) � Banderier & Flajolet ’02
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Exponential growth of the excursions

Obvious remark

. #S
C {x

n−→ y} 6 #S
C {x

n−→ C}

=⇒ ρ(excursions) 6 ρ

Formula for the exponential growth

. ρ(excursions) = min
Rd

LS 6 min
dual cone

LS = ρ

� Iglehart ’74; Garbit ’08; Denisov & Wachtel ’15

. Proof: Cramér’s transform

Reluctant case

Case ρ(excursions) = ρ is called reluctant. Results:

. Random generation � Lumbroso, Mishna & Ponty ’16

. Exact asymptotics � Duraj ’14

. Intuitively: a typical walk is located not far way from the
origin

. 1D: non-positive drift
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Reformulation of the problem: probability theory

General hypotheses

. Finite step set S ⊂ Zd (d > 1)

. Convex cone C ⊂ Rd

RW with steps in S

Let {S(n)}n>0 be a RW whose increments have the uniform law in
S, i.e.,

. S(n) = x + X (1) + · · ·+ X (n), where the X (i) are i.i.d.

. P[X (i) = s] =
1

#S

First exit time from the cone C

. τ = inf{n > 1 : S(n) /∈ C}: first time that RW exits from C

Main equation combinatorics/probability

. Px [τ > n] =
#{x n−→ C}

(#S)n
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Why introducing this probability?

Technical reasons

. Possibility of
using
Brownian motion
and
Donsker theorem
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Motivations in other fields than combinatorics

. Links with representation theory

. Conditioned RW in cones (quantum RW, random matrices,
non-colliding RW, etc.)

. More details to come tomorrow
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Zero drift case
∑

s∈S s = 0

Non-exponential decay � Garbit ’07

If drift
∑

s∈S s = 0 (⇐⇒ E[X (i)] = 0) then

ρ = 1 ⇐⇒ lim
n→∞

Px [τ > n]1/n = 1

Proof: Push the RW in C
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Non-zero drift
∑

s∈S s 6= 0 (1/2)

Exponential change of measure (Girsanov or Cramér)

P[X (i) = s] =
1

#S
−→ P[X (i) = s] =

e〈s,x〉

LS(x)

. Choice of exponential (character) ; see below

. Same measures if x = 0

. One has

Py [τ > n] =

(
LS(x)

#S

)n

e〈x ,y〉Ey [τ > n, e−〈x ,S(n)〉] (∀x)

6

(
LS(x)

#S

)n

e〈x ,y〉 (∀x : 〈x , S(n)〉 > 0)

An easy upper bound

lim sup
n→∞

Py [τ > n]1/n =
ρ

#S
6

mindual cone LS
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Non-zero drift
∑

s∈S s 6= 0 (2/2)

Lower bound (reminder)

lim sup
n→∞

Py [τ > n]1/n >
mindual cone LS

#S

A simple case

If global minima of LS on Rd reached on the dual cone (say at x0):

Py [τ > n] =

(
LS(x0)

#S

)n

e〈x0,y〉Ey [τ > n, e−〈x0,S(n)〉]

>

(
LS(x0)

#S

)n

e〈x0,y〉Py [τ > n, |S(n)| 6
√

n]e−|x0|
√
n

General case

Minimum on Q at x0 = (x
(1)
0 , ... , x

(d)
0 ):

∂LS(x0)

∂xi

{
> 0 ∀i

= 0 ∀i such that x
(i)
0 > 0
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Introduction: asymptotics of lattice path models

Results on the exponential growth

Main ideas of the proof: RW and Cramér transform

Conclusions and open problems



A few open questions

. Find the exact asymptotics (not only the exponential growth)
; come tomorrow!

. Existence of the Laplace transform =⇒ exponential moments
What about weighted step sets without exponential moments?
(typically, L2-moments)

. Variations of the models (e.g., lattice paths with catastrophes)
� Banderier & Wallner ’16
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