Random walks in cones: critical exponents

 Lecture \#2Analytic and probabilistic tools for lattice path enumeration

Kilian Raschel

77th Séminaire Lotharingien de Combinatoire
September 13, 2016
Strobl, Austria

Introduction

Dimension 1: examples \& limits

Central idea in dimension $\geqslant 2$: approximation by Brownian motion

Application \#1: excursions

Application \#2: walks with prescribed length

Random processes (RW \& BM) in cones

First exit time from a cone C

Random processes (RW \& BM) in cones

First exit time from a cone C

Random processes (RW \& BM) in cones

First exit time from a cone C

Random processes (RW \& BM) in cones

First exit time from a cone C

$$
\begin{aligned}
& \triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW}) \\
& \triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})
\end{aligned}
$$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n\right] \sim \kappa \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{X}\left[\tau_{C}>n\right] \sim \nless \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{X}\left[\tau_{C}>n\right] \sim \chi(V)(X) \cdot \rho^{n} \cdot n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n\right] \sim \chi \cdot V(X) \cdot \not \subset R \cdot n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n\right] \sim \chi \cdot V(X) \cdot \not R^{\prime} \cdot n^{-\alpha}$
Local limit theorems \sim excursions
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n, S(n)=y\right] \sim \kappa \cdot V(x, y) \cdot \rho^{n} \cdot n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C
$\triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW})$
$\triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n\right] \sim \chi \cdot V(X) \cdot \not R^{\prime} \cdot n^{-\alpha}$
Local limit theorems \sim excursions
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n, S(n)=y\right] \sim \chi \cdot V(\not X y) \cdot \nless \nmid n^{-\alpha}$

Random processes (RW \& BM) in cones

First exit time from a cone C

$$
\begin{aligned}
& \triangleright \tau_{C}=\inf \{n \in \mathbf{N}: S(n) \notin C\}(S \mathrm{RW}) \\
& \triangleright T_{C}=\inf \left\{t \in \mathbf{R}_{+}: B(t) \notin C\right\}(B \mathrm{BM})
\end{aligned}
$$

Persistence probabilities \sim total number of walks
$\triangleright \mathbf{P}_{x}\left[\tau_{C}>n\right] \sim \chi \cdot V(X) \cdot \not R^{\prime} \cdot n^{-\alpha}$
Local limit theorems \sim excursions

$$
\triangleright \mathbf{P}_{x}\left[\tau_{C}>n, S(n)=y\right] \sim X \cdot V(\not X X y) \cdot \nless n^{\alpha} \cdot n^{-\alpha}
$$

Aim of the talk: understanding the critical exponents α

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}
\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d.

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}
\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n),
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Motivations

\triangleright Persistence probabilities in statistical physics
\triangleright Constructing processes conditioned never to leave cones

Definition of random walks \& motivations

Random walk on \mathbf{Z}^{d}

\triangleright A random walk $\{S(n)\}_{n \geqslant 0}$ is

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d. (e.g., uniform on a step set $\mathfrak{S} \subset \mathbf{Z}^{d}$)
\triangleright Example (Dyck paths): simple random walk $X(i) \in\{-1,1\}$

Motivations

\triangleright Persistence probabilities in statistical physics
\triangleright Constructing processes conditioned never to leave cones
\triangleright Asymptotics of numbers of walks
\triangleright Transcendental nature of functions counting walks in cones \rightsquigarrow Alin Bostan's course at AEC
\triangleright Important \& combinatorial cones (quarter/half/slit plane, orthants, Weyl chambers, etc.)

Introduction

Dimension 1: examples \& limits

Central idea in dimension $\geqslant 2$: approximation by Brownian motion

Application \#1: excursions

Application \#2: walks with prescribed length

Non－constrained walk with $\mathfrak{S}=\{-1,1\}$

Non-constrained walk with $\mathfrak{S}=\{-1,1\}$

$\triangleright \#\{x \xrightarrow{n} \mathbf{Z}\}=2^{n}$
Walk \rightsquigarrow Exponent 0

Non-constrained walk with $\mathfrak{S}=\{-1,1\}$

$\triangleright \#\{x \xrightarrow{n} \mathbf{Z}\}=2^{n}$
Walk \rightsquigarrow Exponent 0
$\triangleright \#\{x \xrightarrow{n} y\}=\binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$ Bridge \rightsquigarrow Exponent $\frac{1}{2}$

Non-constrained walk with $\mathfrak{S}=\{-1,1\}$

$\triangleright \#\{x \xrightarrow{n} \mathbf{Z}\}=2^{n}$
Walk \rightsquigarrow Exponent 0
$\triangleright \#\{x \xrightarrow{n} y\}=\binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$ Bridge \rightsquigarrow Exponent $\frac{1}{2}$
$\triangleright \sum \frac{1}{\sqrt{n}}=\infty$: recurrence of the simple random walk in \mathbf{Z}

Non-constrained walk with $\mathfrak{S}=\{-1,1\}$

$\triangleright \#\{x \xrightarrow{n} \mathbf{Z}\}=2^{n}$
Walk \rightsquigarrow Exponent 0
$\triangleright \#\{x \xrightarrow{n} y\}=\binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$ Bridge \rightsquigarrow Exponent $\frac{1}{2}$
$\triangleright \sum \frac{1}{\sqrt{n}}=\infty$: recurrence of the simple random walk in \mathbf{Z}
\triangleright Constant $\sqrt{\frac{2}{\pi}}$ independent of $x \& y$ in the asymptotics

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

$\triangleright \#_{\mathbf{N}}\{x \xrightarrow{n} \mathbf{N}\} \sim \frac{2^{n}}{\sqrt{n}}$
Meanders \rightsquigarrow Exponent $\frac{1}{2}$

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

$\triangleright \#_{\mathbf{N}}\{x \xrightarrow{n} \mathbf{N}\} \sim \frac{2^{n}}{\sqrt{n}}$
$\triangleright \#_{\mathbf{N}}\{x \xrightarrow{n} y\} \sim \frac{2^{n}}{n^{3 / 2}}$
Meanders \rightsquigarrow Exponent $\frac{1}{2}$
Excursions \rightsquigarrow Exponent $\frac{3}{2}$

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

$\triangleright \#_{N}\{x \xrightarrow{n} \mathbf{N}\} \sim \frac{2^{n}}{\sqrt{n}}$
Meanders \rightsquigarrow Exponent $\frac{1}{2}$
$\triangleright \#_{N}\{x \xrightarrow{n} y\} \sim \frac{2^{n}}{n^{3 / 2}}$
Excursions \rightsquigarrow Exponent $\frac{3}{2}$
\triangleright Reflection principle cancels the first term $\sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

$\triangleright \#_{N}\{x \xrightarrow{n} \mathbf{N}\} \sim \frac{2^{n}}{\sqrt{n}}$
$\triangleright \#_{\mathbf{N}}\{x \xrightarrow{n} y\} \sim \frac{2^{n}}{n^{3 / 2}}$
Meanders \rightsquigarrow Exponent $\frac{1}{2}$
Excursions \rightsquigarrow Exponent $\frac{3}{2}$
\triangleright Reflection principle cancels the first term $\sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$
\triangleright Wiener-Hopf techniques in probability theory

Constrained walk with $\mathfrak{S}=\{-1,1\}$ (Dyck paths)

$\triangleright \#_{N}\{x \xrightarrow{n} \mathbf{N}\} \sim \frac{2^{n}}{\sqrt{n}}$
Meanders \rightsquigarrow Exponent $\frac{1}{2}$
$\triangleright \#_{\mathrm{N}}\{x \xrightarrow{n} y\} \sim \frac{2^{n}}{n^{3 / 2}}$
Excursions \rightsquigarrow Exponent $\frac{3}{2}$
\triangleright Reflection principle cancels the first term $\sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$
\triangleright Wiener-Hopf techniques in probability theory
\triangleright See Bousquet-Mélou \& Petkovšek '00; Banderier \& Flajolet '02

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1
Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1
Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Half-plane: one-dimensional case
\triangleright Dyck paths
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{1}{2}$
\triangleright Excursions: \rightsquigarrow Exponent $2=\frac{3}{2}+\frac{1}{2}$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Quarter plane: product of two one-dimensional cases
\triangleright Reflection principle
\triangleright Total number of walks: \rightsquigarrow Exponent $1=\frac{1}{2}+\frac{1}{2}$
\triangleright Excursions: \rightsquigarrow Exponent 3

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Slit plane:

* Bousquet-Mélou \& Schaeffer '00
\triangleright Highly non-convex cone
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{1}{4}$
\triangleright Excursions:
\rightsquigarrow Exponent $\frac{3}{2}$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

$\triangleright 45^{\circ}$: Gouyou-Beauchamps '86
\triangleright See
Q Bousquet-Mélou \& Mishna '10
\triangleright Total number of walks:
\rightsquigarrow Exponent 2
\triangleright Excursions:
\rightsquigarrow Exponent 5

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges


```
\(\triangleright 135^{\circ}\) : Gessel
\(\triangleright\) See Kauers, Koutschan \& Zeilberger '09, etc.
\(\triangleright\) Total number of walks:
\(\rightsquigarrow\) Exponent \(\frac{2}{3}\)
```

\triangleright Excursions: \rightsquigarrow Exponent $\frac{7}{3}$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Walks avoiding a quadrant
\triangleright See Bousquet-Mélou '15; Mustapha '15
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{1}{3}$
\triangleright Excursions:
\rightsquigarrow Exponent $\frac{5}{3}$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Arbitrary angular sector θ
\triangleright See Varopoulos '99; Denisov \& Wachtel '15

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Arbitrary angular sector θ
\triangleright See Varopoulos '99; Denisov \& Wachtel '15
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{\pi}{2 \theta}$
\triangleright Excursions:
\rightsquigarrow Exponent $\frac{\pi}{\theta}+1$

Beyond the algebraic exponents $0, \frac{1}{2} \& \frac{3}{2}$

Weighted models in dimension 1

Drift $\sum_{s \in \mathfrak{S}^{s}}$ governs the exponents, which are still $0, \frac{1}{2} \& \frac{3}{2}$
The simple walk in two-dimensional wedges

\triangleright Arbitrary angular sector θ
\triangleright See Varopoulos '99; Denisov \& Wachtel '15
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{\pi}{2 \theta}$
\triangleright Excursions:
\rightsquigarrow Exponent $\frac{\pi}{\theta}+1$

Conclusion: 1D case not enough
\triangleright Dramatic change of behavior: every exponent is possible!
\triangleright Non-D-finite behaviors (first observed by Varopoulos '99)

Introduction

Dimension 1: examples \& limits

Central idea in dimension $\geqslant 2$: approximation by Brownian motion

Application \#1: excursions

Application \#2: walks with prescribed length

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Donsker's theorem (functional central limit theorem)

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Donsker's theorem (functional central limit theorem)

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \＆Wachtel＇15（excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$ ）
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \& Wachtel '15 (excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$)
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$
\triangleright Mapping theorem: many asymptotic results concerning RW can be deduced from BM

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \& Wachtel '15 (excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$)
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$
\triangleright Mapping theorem: many asymptotic results concerning RW can be deduced from BM
\triangleright For excursions, $\alpha\{\mathrm{RW}\}=\alpha\{\mathrm{BM}\}$ if $\left\{\begin{array}{l}\mathbf{E}[\mathrm{RW}]=\mathbf{E}[\mathrm{BM}]=0 \\ \mathbf{V}[\mathrm{RW}]=\mathbf{V}[\mathrm{BM}]=\text { id }\end{array}\right.$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \& Wachtel '15 (excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$)
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$
\triangleright Mapping theorem: many asymptotic results concerning RW can be deduced from BM
\triangleright For excursions, $\alpha\{\mathrm{RW}\}=\alpha\{\mathrm{BM}\}$ if $\left\{\begin{array}{l}\mathbf{E}[\mathrm{RW}]=\mathbf{E}[\mathrm{BM}]=0 \\ \mathbf{V}[\mathrm{RW}]=\mathbf{V}[\mathrm{BM}]=\text { id }\end{array}\right.$
\triangleright If $\mathbf{V}[R W] \neq$ id then $\mathbf{V}[M \cdot \mathrm{RW}]=$ id for some $M \in \mathbf{M}_{d}(\mathbf{R})$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \& Wachtel '15 (excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$)
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$
\triangleright Mapping theorem: many asymptotic results concerning RW can be deduced from BM
\triangleright For excursions, $\alpha\{\mathrm{RW}\}=\alpha\{\mathrm{BM}\}$ if $\left\{\begin{array}{l}\mathbf{E}[\mathrm{RW}]=\mathbf{E}[\mathrm{BM}]=0 \\ \mathbf{V}[\mathrm{RW}]=\mathbf{V}[\mathrm{BM}]=\text { id }\end{array}\right.$
\triangleright If $\mathbf{V}[R W] \neq$ id then $\mathbf{V}[M \cdot \mathrm{RW}]=$ id for some $M \in \mathbf{M}_{d}(\mathbf{R})$
\triangleright Cone C becomes $M \cdot C$

Brownian motion on R

Law of large numbers

$$
\frac{X(1)+\cdots+X(n)}{n^{1}} \xrightarrow{\text { a.s. }} \mathbf{E}[X(1)]
$$

Central limit theorem

$$
n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\} \xrightarrow{\text { law }} \mathcal{N}(0, \mathbf{V}[X(1)])
$$

Denisov \& Wachtel '15 (excursions for RW in cones of $\subset \mathbf{Z}^{\mathbf{d}}$)
$\triangleright \mathrm{RW} \longrightarrow \mathrm{BM}$
\triangleright Mapping theorem: many asymptotic results concerning RW can be deduced from BM
\triangleright For excursions, $\alpha\{\mathrm{RW}\}=\alpha\{\mathrm{BM}\}$ if $\left\{\begin{array}{l}\mathbf{E}[\mathrm{RW}]=\mathbf{E}[\mathrm{BM}]=0 \\ \mathbf{V}[\mathrm{RW}]=\mathbf{V}[\mathrm{BM}]=\text { id }\end{array}\right.$
Remainder of this section: computing $\alpha\{\mathrm{BM}\}$ (easier)

Two derivations of the BM persistence probability in R

Reflection principle

$$
\begin{aligned}
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right] & =\mathbf{P}_{0}\left[\min _{0 \leqslant u \leqslant t} B(u)>-x\right] \\
& =\mathbf{P}_{0}[|B(t)|<x] \\
& =\frac{2}{\sqrt{2 \pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2 t}} \mathrm{~d} y
\end{aligned}
$$

Two derivations of the BM persistence probability in R

Reflection principle

$$
\begin{aligned}
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right] & =\mathbf{P}_{0}\left[\min _{0 \leqslant u \leqslant t} B(u)>-x\right] \\
& =\mathbf{P}_{0}[|B(t)|<x] \\
& =\frac{2}{\sqrt{2 \pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2 t}} \mathrm{~d} y
\end{aligned}
$$

Heat equation

Function $g(t ; x)=\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]$ satisfies

$$
\left\{\begin{aligned}
\left(\frac{\partial}{\partial t}-\frac{1}{2} \Delta\right) g(t ; x)=0, & \forall x \in(0, \infty), \quad \forall t \in(0, \infty) \\
g(0 ; x)=1, & \forall x \in(0, \infty) \\
g(t ; 0)=0, & \forall t \in(0, \infty)
\end{aligned}\right.
$$

Dimension d : explicit expression for $\mathbf{P}_{x}\left[T_{C}>t\right]$

Heat equation

For essentially any domain C in any dimension d, $\mathbf{P}_{x}\left[T_{C}>t\right]$ \& $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations

Dimension d ：explicit expression for $\mathbf{P}_{x}\left[T_{C}>t\right]$

Heat equation

\＆Doob＇55
For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ \＆ $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations
Dirichlet eigenvalues problem

$$
\left\{\begin{aligned}
\Delta_{\mathbf{S}^{d-1}} m & =-\lambda m & & \text { in } \mathbf{S}^{d-1} \cap C \\
m & =0 & & \text { in } \partial\left(\mathbf{S}^{d-1} \cap C\right)
\end{aligned}\right.
$$

Dimension d : explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$

Heat equation

\& Doob '55
For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ \& $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations
Dirichlet eigenvalues problem

$$
\left\{\begin{aligned}
\Delta_{\mathbf{S}^{d-1}} m & =-\lambda m & & \text { in } \mathbf{S}^{d-1} \cap C \\
m & =0 & & \text { in } \partial\left(\mathbf{S}^{d-1} \cap C\right)
\end{aligned}\right.
$$

Discrete eigenvalues $0<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \ldots$ and eigenfunctions $m_{1}, m_{2}, m_{3}, \ldots$

Dimension d : explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$

Heat equation

Q Doob '55
For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ \& $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations
Dirichlet eigenvalues problem

\& Chavel ' 84

$$
\left\{\begin{aligned}
\Delta_{\mathbf{S}^{d-1}} m & =-\lambda m & & \text { in } \mathbf{S}^{d-1} \cap C \\
m & =0 & & \text { in } \partial\left(\mathbf{S}^{d-1} \cap C\right)
\end{aligned}\right.
$$

Discrete eigenvalues $0<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \ldots$ and eigenfunctions $m_{1}, m_{2}, m_{3}, \ldots$

Series expansion
 \& DeBlassie '87; Bañuelos \& Smits '97

$\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|)$

Asymptotics of the non-exit probability

Series expansion
 Q DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|)
$$

with
$\triangleright B_{j}$ hypergeometric
\triangleright series expansion very well suited for asymptotics

Asymptotics of the non-exit probability

Series expansion
 Q DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|),
$$

with
$\triangleright B_{j}$ hypergeometric
\triangleright series expansion very well suited for asymptotics

Asymptotic result
 \& DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right] \sim \kappa \cdot u(x) \cdot t^{-\alpha},
$$

Asymptotics of the non-exit probability

Series expansion
 \& DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|)
$$

with
$\triangleright B_{j}$ hypergeometric
\triangleright series expansion very well suited for asymptotics

Asymptotic result
 \& DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right] \sim \kappa \cdot u(x) \cdot t^{-\alpha}
$$

with $\alpha=2 \sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-\left(\frac{d}{2}-1\right)$ linked to the first eigenvalue

Asymptotics of the non-exit probability

Series expansion
 \& DeBlassie '87; Bañuelos \& Smits '97

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|)
$$

with
$\triangleright B_{j}$ hypergeometric
\triangleright series expansion very well suited for asymptotics

Asymptotic result

$$
\mathbf{P}_{x}\left[T_{C}>t\right] \sim \kappa \cdot u(x) \cdot t^{-\alpha}
$$

with $\alpha=2 \sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-\left(\frac{d}{2}-1\right)$ linked to the first eigenvalue

Exercise

Recover the exponent $\frac{\pi}{2 \theta}$ of the persistence probability for a simple random walk in a two-dimensional wedge of opening angle θ

Introduction

Dimension 1: examples \& limits

Central idea in dimension $\geqslant 2$: approximation by Brownian motion

Application \#1: excursions

Application \#2: walks with prescribed length

Example \#1: Gouyou-Beauchamps model

In the quarter plane

Example \＃1：Gouyou－Beauchamps model

In the quarter plane

Hypotheses on the moments：

$$
\begin{aligned}
\mathrm{E}[\mathrm{~GB}] & =(1,0)+(1,-1)+(-1,0)+(-1,1) \\
& =(0,0)
\end{aligned}
$$

Example \#1: Gouyou-Beauchamps model

In the quarter plane

Hypotheses on the moments:

$$
\begin{aligned}
\mathbf{E}[\mathrm{GB}] & =(1,0)+(1,-1)+(-1,0)+(-1,1) \\
& =(0,0) \\
\mathbf{V}[\mathrm{GB}] & =\left(\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right) \neq \mathrm{id}
\end{aligned}
$$

Example \#1: Gouyou-Beauchamps model

In the quarter plane

Hypotheses on the moments:

$$
\begin{aligned}
\mathrm{E}[\mathrm{~GB}] & =(1,0)+(1,-1)+(-1,0)+(-1,1) \\
& =(0,0) \\
\mathbf{V}[\mathrm{GB}] & =\left(\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right) \neq \mathrm{id}
\end{aligned}
$$

Changing the cone

Example \#1: Gouyou-Beauchamps model

In the quarter plane

Hypotheses on the moments:

$$
\begin{aligned}
\mathrm{E}[\mathrm{~GB}] & =(1,0)+(1,-1)+(-1,0)+(-1,1) \\
& =(0,0) \\
\mathbf{V}[\mathrm{GB}] & =\left(\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right) \neq \mathrm{id}
\end{aligned}
$$

Changing the cone

\triangleright Wedge of angle $\theta=\frac{\pi}{4}$
\triangleright Total number of walks:
\rightsquigarrow Exponent $\frac{\pi}{2 \theta}=2$
\triangleright Excursions:
\rightsquigarrow Exponent $\frac{\pi}{\theta}+1=5$

Example \#2: quadrant walks

A scarecrow

Example \#2: quadrant walks

A scarecrow

$$
\triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id}
$$

Example \#2: quadrant walks

A scarecrow

$$
\begin{aligned}
& \triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id} \\
& \triangleright \theta=\arccos \left(-\frac{1}{4}\right) \Longrightarrow \alpha=\frac{\pi}{\theta}+1 \notin \mathbf{Q}
\end{aligned}
$$

Example \＃2：quadrant walks

A scarecrow

$$
\begin{aligned}
& \triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id} \\
& \triangleright \theta=\arccos \left(-\frac{1}{4}\right) \Longrightarrow \alpha=\frac{\pi}{\theta}+1 \notin \mathbf{Q} \\
& \triangleright \sum_{n=0}^{\infty} \#_{\mathbf{N}^{2}}\{(0,0) \xrightarrow{n}(0,0)\} t^{n} \\
& \text { non-D-finite }
\end{aligned}
$$

Example \#2: quadrant walks

A scarecrow

$$
\begin{aligned}
& \triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id} \\
& \triangleright \theta=\arccos \left(-\frac{1}{4}\right) \Longrightarrow \alpha=\frac{\pi}{\theta}+1 \notin \mathbf{Q} \\
& \triangleright \sum_{n=0}^{\infty} \#_{\mathbf{N}^{2}}\{(0,0) \xrightarrow{n}(0,0)\} t^{n} \\
& \text { non-D-finite }
\end{aligned}
$$

In dimension 2 (excursions only)
\triangleright Systematic computation of $\alpha=\arccos \{$ algebraic number $\}$

Example \#2: quadrant walks

A scarecrow

$$
\begin{aligned}
& \triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id} \\
& \triangleright \theta=\arccos \left(-\frac{1}{4}\right) \Longrightarrow \alpha=\frac{\pi}{\theta}+1 \notin \mathbf{Q} \\
& \triangleright \sum_{n=0}^{\infty} \#_{\mathbf{N}^{2}}\{(0,0) \xrightarrow{n}(0,0)\} t^{n} \\
& \text { non-D-finite }
\end{aligned}
$$

In dimension 2 (excursions only)
\triangleright Systematic computation of $\alpha=\arccos \{$ algebraic number $\}$
\triangleright Walks with small steps in \mathbf{N}^{2} :
$\triangleright \alpha \in \mathbf{Q}$ iff
\triangleright generating function of the excursions is D-finite iff
\triangleright the group of the model is finite

Example \#2: quadrant walks

A scarecrow

$$
\begin{aligned}
& \triangleright \mathbf{E}=(0,0) \& \mathbf{V}=\left(\begin{array}{rr}
4 & -3 \\
-3 & 4
\end{array}\right) \neq \mathrm{id} \\
& \triangleright \theta=\arccos \left(-\frac{1}{4}\right) \Longrightarrow \alpha=\frac{\pi}{\theta}+1 \notin \mathbf{Q} \\
& \triangleright \sum_{n=0}^{\infty} \#_{\mathbf{N}^{2}}\{(0,0) \xrightarrow{n}(0,0)\} t^{n} \\
& \text { non-D-finite }
\end{aligned}
$$

In dimension 2 (excursions only)
\& Bostan, R. \& Salvy '14
\triangleright Systematic computation of $\alpha=\arccos \{$ algebraic number $\}$
\triangleright Walks with small steps in \mathbf{N}^{2} :
$\triangleright \alpha \in \mathbf{Q}$ iff
\triangleright generating function of the excursions is D-finite iff
\triangleright the group of the model is finite
\triangleright If $\sum_{s \in \mathfrak{S}} s \neq 0$, first perform a Cramér transform

Three-dimensional models

Example: Kreweras 3D

Model with jumps:

Three-dimensional models

Example: Kreweras 3D

Model with jumps:

$$
\text { Exponent } \alpha=2 \sqrt{\lambda_{1}+\frac{1}{4}}-\frac{1}{2}
$$

Three-dimensional models

Example: Kreweras 3D

Model with jumps:

$$
\text { Exponent } \alpha=2 \sqrt{\lambda_{1}+\frac{1}{4}}-\frac{1}{2}
$$

Three-dimensional models

Example: Kreweras 3D

Model with jumps:

Exponent $\alpha=2 \sqrt{\lambda_{1}+\frac{1}{4}}-\frac{1}{2}$

Value of λ_{1} ? $\lambda_{1} \in \mathbf{Q}$?

Three-dimensional models

Example: Kreweras 3D

Model with jumps:

$$
\text { Exponent } \alpha=2 \sqrt{\lambda_{1}+\frac{1}{4}}-\frac{1}{2}
$$

Value of λ_{1} ? $\lambda_{1} \in \mathbf{Q}$?

General theory (still to be done!)
\triangleright Classification \& resolution of some finite group models
\& Bostan, Bousquet-Mélou, Kauers \& Melczer '16
\triangleright Asymptotic simulation
\& Bacher, Kauers \& Yatchak '16 \rightsquigarrow Conjectured Kreweras exponent: 3.3257569
\triangleright Equivalence finite group iff D-finite generating functions?

Introduction

Dimension 1: examples \& limits

Central idea in dimension $\geqslant 2$: approximation by Brownian motion

Application \#1: excursions

Application \#2: walks with prescribed length

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{S}^{S}}$

Non－universal exponents：six cases

Excursions：formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \＃1：interior drift

Non－universal exponents：six cases

Excursions：formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \＃1：interior drift

\triangleright Law of large numbers： $\mathbf{P}[\forall n, S(n) \in C]>0$
\triangleright Exponent $\alpha=0$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers: $\mathbf{P}[\forall n, S(n) \in C]>0$
\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{S}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{S}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{G}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$

Non-universal exponents: six cases

Excursions: formula for α independent of the drift $\sum_{\boldsymbol{s} \in \mathfrak{S}} \boldsymbol{s}$
Case \#1: interior drift

\triangleright Law of large numbers:

$$
\mathbf{P}[\forall n, S(n) \in C]>0
$$

\triangleright Exponent $\alpha=0$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#2: boundary drift
\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{1}{2}$
\triangleright Cannot be used as a filter to detect non-D-finiteness
\triangleright Exponent $\alpha=\frac{i}{2}$ for non-smooth boundary

Non－universal exponents：six cases

Case \＃3：directed drift

\triangleright Half－plane case
\triangleright Exponent $\alpha=\frac{3}{2}$
\triangleright Cannot be used as a filter to detect non－D－finiteness

Non-universal exponents: six cases

Case \#3: directed drift

\triangleright Half-plane case
\triangleright Exponent $\alpha=\frac{3}{2}$
\triangleright Cannot be used as a filter to detect non-D-finiteness

Case \#4: zero drift

\triangleright See Varopoulos '99; Denisov \& Wachtel '15
\triangleright Exponent

$$
\alpha_{1}=2 \sqrt{\lambda_{1}+\left(\frac{d}{2}-1\right)^{2}}-\left(\frac{d}{2}-1\right)
$$

\triangleright Can be used as a filter to detect non-D-finiteness

Non-universal exponents: six cases
Case \#5: polar interior drift

\triangleright See Duraj '14
\triangleright Exponent $2 \alpha_{1}+1$
\triangleright Can be used as a filter to detect non-D-finiteness

Non－universal exponents：six cases

Case \＃5：polar interior drift

\triangleright See Duraj＇14
\triangleright Exponent $2 \alpha_{1}+1$
\triangleright Can be used as a filter to detect non－D－finiteness

Case \＃6：polar boundary drift

\triangleright Exponent $\alpha_{1}+1$
\triangleright Can be used as a filter to detect non－D－finiteness

Non-universal exponents: six cases

Case \#5: polar interior drift

\triangleright See \otimes Duraj '14
\triangleright Exponent $2 \alpha_{1}+1$
\triangleright Can be used as a filter to detect non-D-finiteness

Case \#6: polar boundary drift

\triangleright Exponent $\alpha_{1}+1$
\triangleright Can be used as a filter to detect non-D-finiteness

Six-exponents-result: joint with R. Garbit \& S. Mustapha

