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Integer partitions

Definition A partition is a weakly
decreasing sequence
λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 of
non-negative integers.

We identify λ with its Young
diagram {(i , j) : i ≤ `, j ≤ λi}
We call the number of positive
parts of λ the length of the
partition and denote it by `(λ).

The conjugate of λ is the
partition λ′ = {(j , i) : (i , j) ∈ λ}.

λ = (5, 5, 2, 2, 1, 1, 1, 1)

`(λ) = 8

λ′ = (8, 4, 2, 2, 2)
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Cores – what are they?

Definition Let (i , j) ∈ λ be a cell.

The hook length of (i , j) is
defined as
hλ(i , j) = λi − j + λ′j − i + 1.

A partition λ is called an n-core
if no cell in λ has hook length n.
Denote the set of n-cores by Cn.

A partition λ is called an
n, p-core if λ is an n-core and a
p-core. Denote the set of
n, p-cores by Cn,p.

hλ(1, 2) = 7

λ ∈ C5, λ ∈ C5,8
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Cores – where do they come from?

The Murnaghan–Nakayama formula allows for a recursive
computation of the value of an irreducible character χλ of Sn at a
permutation π ∈ Sn of cycle type ρ by removing a rim-hook from λ
and a cycle from π.

Cores also appear in the modular representation theory of Sn.
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Cores and reflection groups

Lascoux introduced an action of the affine symmetric group
∼
Sn on

n-cores such that

Cn
∼=
∼
Sn/Sn.

Lapointe and Morse use k + 1-cores in the study of k-Schur functions.

Thiel and Williams generalise n, p-cores to other affine Weyl groups
and have results on the maximal size, the expected size and the
variance of the size in simply-laced types.
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Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that Cn,p is finite and
counted by the rational Catalan numbers 1

n+p

(n+p
n

)
by finding a nice

bijection to rational Dyck paths.
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The skew length statistic

Definition (Armstrong) Let
λ ∈ Cn,p. A row of λ is called
n-row if its left-most hook length
is the maximal representative of
its residue class modulo n among
all hook lengths in the first
column.

The skew length skl(λ) is the
number of cells of λ that lie in an
n-row and have hook length less
than p.

(n, p) = (5, 8) skl(λ) = 10
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Rational q, t-Catalan numbers

For relatively prime n and p define the rational q, t-Catalan numbers as

Cn,p(q, t) =
∑
λ∈Cn,p

q`(λ)t(n−1)(p−1)/2−skl(λ).

Conjecture (Armstrong, Hanusa, Jones)

The rational q, t-Catalan numbers are symmetric in q and t, that is,

Cn,p(q, t) = Cn,p(t, q).

The rational q, t-Catalan numbers specialise to

q(n−1)(p−1)/2Cn,p(q, q−1) =
1

[n + p]q

[
n + p
n

]
q

.
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The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively
prime and λ ∈ Cn,p. Then λ can be reconstructed from the partition
formed by the cells contributing to the skew length.

Theorem (Thomas, Williams) The map ζ : Cn,p → Dn,p is a bijection.
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Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively
prime and λ ∈ Cn,p.

The skew length is invariant under conjugation, that is, sklλ = sklλ′.

The skew length is independent of the order of n and p.
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An alternative definition of skew length

Let λ ∈ Cn,p. Denote by Hn,p(λ) the multiset of hook lengths of cells
contained in an n-row and in a p-column of λ.

Proposition We have skl(λ) = #Hn,p(λ).
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Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have
Hn,p(λ) = Hp,n(λ).
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Sketch of proof

The proof uses induction on the size of λ.
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Two conjectures

Conjecture Let n and p be
relatively prime and λ ∈ Cn,p.

Then every hook length of λ
appears in the multiset
Hn,p(λ) with multiplicity at
least one.

Let z be non-negative. Then
z + n ∈ Hn,p(λ) implies
z ∈ Hn,p(λ). Equivalently,
also z + p ∈ Hn,p(λ) implies
z ∈ Hn,p(λ).
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This is the end.

Thank you!
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