A refinement of the skew length statistic

Robin Sulzgruber

Universität Wien

$77^{\text {th }}$ Séminaire Lotharingien de Combinatoire September $11^{\text {th }}-14^{\text {th }} 2016 \bullet$ Strobl • Austria

Integer partitions

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of non-negative integers.

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of non-negative integers.

$$
\lambda=(5,5,2,2,1,1,1,1)
$$

Integer partitions

Definition A partition is a weakly
decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of
non-negative integers.
We identify λ with its Young
diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$

$$
\lambda=(5,5,2,2,1,1,1,1)
$$

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of non-negative integers.
We identify λ with its Young
diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$

$\lambda=(5,5,2,2,1,1,1,1)$

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of non-negative integers.
We identify λ with its Young diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$
We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.

$$
\lambda=(5,5,2,2,1,1,1,1)
$$

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of non-negative integers.
We identify λ with its Young diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$
We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.

$$
\begin{aligned}
\lambda & =(5,5,2,2,1,1,1,1) \\
\ell(\lambda) & =8
\end{aligned}
$$

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of
non-negative integers.
We identify λ with its Young
diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$
We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.
The conjugate of λ is the partition $\lambda^{\prime}=\{(j, i):(i, j) \in \lambda\}$.

$\lambda=(5,5,2,2,1,1,1,1)$
$\ell(\lambda)=8$

Integer partitions

Definition A partition is a weakly decreasing sequence
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ of
non-negative integers.
We identify λ with its Young
diagram $\left\{(i, j): i \leq \ell, j \leq \lambda_{i}\right\}$
We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.
The conjugate of λ is the partition $\lambda^{\prime}=\{(j, i):(i, j) \in \lambda\}$.

$$
\begin{aligned}
\lambda & =(5,5,2,2,1,1,1,1) \\
\ell(\lambda) & =8 \\
\lambda^{\prime} & =(8,4,2,2,2)
\end{aligned}
$$

Cores - what are they?

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.

$$
h_{\lambda}(1,2)=7
$$

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.
A partition λ is called an n-core if no cell in λ has hook length n. Denote the set of n-cores by \mathfrak{C}_{n}.

$$
h_{\lambda}(1,2)=7
$$

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.
A partition λ is called an n-core if no cell in λ has hook length n.
Denote the set of n-cores by \mathfrak{C}_{n}.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

$$
h_{\lambda}(1,2)=7
$$

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.
A partition λ is called an n-core if no cell in λ has hook length n. Denote the set of n-cores by \mathfrak{C}_{n}.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

$$
\begin{aligned}
& \quad h_{\lambda}(1,2)=7 \\
& \lambda \in \mathfrak{C}_{5}
\end{aligned}
$$

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.
A partition λ is called an n-core
if no cell in λ has hook length n.
Denote the set of n-cores by \mathfrak{C}_{n}.
A partition λ is called an
n, p-core if λ is an n-core and a
p-core. Denote the set of
n, p-cores by $\mathfrak{C}_{n, p}$.

$$
\begin{aligned}
& \quad h_{\lambda}(1,2)=7 \\
& \lambda \in \mathfrak{C}_{5}
\end{aligned}
$$

Cores - what are they?

Definition Let $(i, j) \in \lambda$ be a cell.
The hook length of (i, j) is defined as
$h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{\prime}-i+1$.
A partition λ is called an n-core if no cell in λ has hook length n.
Denote the set of n-cores by \mathfrak{C}_{n}.
A partition λ is called an
n, p-core if λ is an n-core and a

p-core. Denote the set of
n, p-cores by $\mathfrak{C}_{n, p}$.

$$
\begin{aligned}
h_{\lambda}(1,2) & =7 \\
\lambda \in \mathfrak{C}_{5}, \lambda & \in \mathfrak{C}_{5,8}
\end{aligned}
$$

Cores - where do they come from?

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

Cores - where do they come from?

- The Murnaghan-Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_{n} at a permutation $\pi \in \mathfrak{S}_{n}$ of cycle type ρ by removing a rim-hook from λ and a cycle from π.

- Cores also appear in the modular representation theory of \mathfrak{S}_{n}.

Cores and reflection groups

Cores and reflection groups

- Lascoux introduced an action of the affine symmetric group $\widetilde{\mathfrak{S}}_{n}$ on n-cores such that

$$
\mathfrak{C}_{n} \cong \widetilde{\mathfrak{S}}_{n} / \mathfrak{S}_{n}
$$

Cores and reflection groups

- Lascoux introduced an action of the affine symmetric group $\widetilde{\mathfrak{S}}_{n}$ on n-cores such that

$$
\mathfrak{C}_{n} \cong \widetilde{\mathfrak{S}}_{n} / \mathfrak{S}_{n}
$$

- Lapointe and Morse use $k+1$-cores in the study of k-Schur functions.

Cores and reflection groups

- Lascoux introduced an action of the affine symmetric group $\widetilde{\mathfrak{S}}_{n}$ on n-cores such that

$$
\mathfrak{C}_{n} \cong \widetilde{\mathfrak{S}}_{n} / \mathfrak{S}_{n}
$$

- Lapointe and Morse use $k+1$-cores in the study of k-Schur functions.
- Thiel and Williams generalise n, p-cores to other affine Weyl groups and have results on the maximal size, the expected size and the variance of the size in simply-laced types.

Cores and rational Dyck paths

Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that $\mathfrak{C}_{n, p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that $\mathfrak{C}_{n, p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that $\mathfrak{C}_{n, p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	-1	-6	-11	-16
	11	6	1	-4	-9	-14	-19	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	-10	-15	-20	-25	-30	-35	-40

Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that $\mathfrak{C}_{n, p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	-1	-6	-11	-16
	11	6	1	-4	-9	-14	-19	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	-10	-15	-20	-25	-30	-35	-40

Cores and rational Dyck paths

When n and p are relatively prime Anderson proved that $\mathfrak{C}_{n, p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	-1	-6	-11	-16
	11	6	1	-4	-9	-14	-19	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	-10	-15	-20	-25	-30	-35	-40

\longrightarrow| 12 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 11 | | | | |
| 7 | | | | |
| 6 | | | | |
| 4 | | | | |
| 3 | | | | |
| 2 | | | | |
| 1 | | | | |

The skew length statistic

The skew length statistic

Definition (Armstrong) Let
$\lambda \in \mathfrak{C}_{n, p}$. A row of λ is called
n-row if its left-most hook length
is the maximal representative of
its residue class modulo n among
all hook lengths in the first
column.

The skew length statistic

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n, p}$. A row of λ is called n-row if its left-most hook length is the maximal representative of its residue class modulo n among all hook lengths in the first column.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

$$
(n, p)=(5,8)
$$

The skew length statistic

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n, p}$. A row of λ is called n-row if its left-most hook length is the maximal representative of its residue class modulo n among all hook lengths in the first column.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

$$
(n, p)=(5,8)
$$

The skew length statistic

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n, p}$. A row of λ is called n-row if its left-most hook length is the maximal representative of its residue class modulo n among all hook lengths in the first column.

The skew length $\operatorname{skl}(\lambda)$ is the number of cells of λ that lie in an n-row and have hook length less than p.

$$
(n, p)=(5,8)
$$

The skew length statistic

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n, p}$. A row of λ is called n-row if its left-most hook length is the maximal representative of its residue class modulo n among all hook lengths in the first column.

The skew length $\operatorname{skl}(\lambda)$ is the number of cells of λ that lie in an n-row and have hook length less than p.

$$
(n, p)=(5,8) \quad \operatorname{skl}(\lambda)=10
$$

Rational q, t-Catalan numbers

Rational q, t-Catalan numbers

For relatively prime n and p define the rational q, t-Catalan numbers as

$$
C_{n, p}(q, t)=\sum_{\lambda \in \mathfrak{C}_{n, p}} q^{\ell(\lambda)} t^{(n-1)(p-1) / 2-\operatorname{skl}(\lambda)}
$$

Rational q, t-Catalan numbers

For relatively prime n and p define the rational q, t-Catalan numbers as

$$
C_{n, p}(q, t)=\sum_{\lambda \in \mathfrak{C}_{n, p}} q^{\ell(\lambda)} t^{(n-1)(p-1) / 2-\operatorname{skl}(\lambda)} .
$$

Conjecture (Armstrong, Hanusa, Jones)

- The rational q, t-Catalan numbers are symmetric in q and t, that is,

$$
C_{n, p}(q, t)=C_{n, p}(t, q)
$$

Rational q, t-Catalan numbers

For relatively prime n and p define the rational q, t-Catalan numbers as

$$
C_{n, p}(q, t)=\sum_{\lambda \in \mathfrak{C}_{n, p}} q^{\ell(\lambda)} t^{(n-1)(p-1) / 2-\operatorname{skl}(\lambda)}
$$

Conjecture (Armstrong, Hanusa, Jones)

- The rational q, t-Catalan numbers are symmetric in q and t, that is,

$$
C_{n, p}(q, t)=C_{n, p}(t, q)
$$

- The rational q, t-Catalan numbers specialise to

$$
q^{(n-1)(p-1) / 2} C_{n, p}\left(q, q^{-1}\right)=\frac{1}{[n+p]_{q}}\left[\begin{array}{c}
n+p \\
n
\end{array}\right]_{q}
$$

The Zeta map

The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

The Zeta map

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

Theorem (Thomas, Williams) The map $\zeta: \mathfrak{C}_{n, p} \rightarrow \mathfrak{D}_{n, p}$ is a bijection.

Skew length and conjugation

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

12	11	7	6	4	3	2	1
7	6	2	1				
4	3						
3	2						
2	1						

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.
- The skew length is independent of the order of n and p.

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.
- The skew length is independent of the order of n and p.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.
- The skew length is independent of the order of n and p.

$4 \rightarrow$	12	7	4	3	2
3	\rightarrow	11	6	3	2

Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda=\operatorname{skl} \lambda^{\prime}$.
- The skew length is independent of the order of n and p.

$4 \rightarrow$	12	7	4	3	2
3	\rightarrow	11	6	3	2

An alternative definition of skew length

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

Proposition We have skl $(\lambda)=\# H_{n, p}(\lambda)$.

An alternative definition of skew length

Let $\lambda \in \mathfrak{C}_{n, p}$. Denote by $H_{n, p}(\lambda)$ the multiset of hook lengths of cells contained in an n-row and in a p-column of λ.

Proposition We have skl $(\lambda)=\# H_{n, p}(\lambda)$.

	$\begin{aligned} & 4 \\ & \downarrow \end{aligned}$	7 \downarrow		3 \downarrow	2 \downarrow
$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

$2 \rightarrow$	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
$4 \rightarrow$	4				
$3 \rightarrow$	3				
	2				
	1				

Main theorem

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

$2 \rightarrow$	12	7	4	3	2	
$1 \rightarrow$	11	6	3	2	1	
	7	2				
	6	1				
$4 \rightarrow$	4	$H_{5,8}(\lambda)$				
$3 \rightarrow$	3					
	2					
	1					

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

	2				
	\downarrow				
$4 \rightarrow$	12	7	4	3	2
$3 \rightarrow$	11	6	3	2	1
$7 \rightarrow$	7	2			
$6 \rightarrow$	6	1			
	4				
	3				
$2 \rightarrow$	2				
$1 \rightarrow$	1				

Main theorem

Theorem For all positive integers n and p and all n, p-cores λ we have $H_{n, p}(\lambda)=H_{p, n}(\lambda)$.

	2				
	\downarrow				
$4 \rightarrow$	12	7	4	3	2
$3 \rightarrow$	11	6	3	2	1
$7 \rightarrow$	7	2			
$6 \rightarrow$	6	1			
	4				
	3				
$2 \rightarrow$	2				
$1 \rightarrow$	1				

Sketch of proof

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

19	14	11	9	6	4	3	1	14	11	9	6	4	3	1
17	12	9	7	4	2	1		12	9	7	4	2	1	
14	9	6	4	1				9	6	4	1			
12	7	4	2					7	4	2				
11	6	3	1					6	3	1				
9	4	1						4	1					
7	2							2						
6	1							1						
4														
3														
2														
1														

Sketch of proof

The proof uses induction on the size of λ.

19	14	11	9	6	4	3	1	\rightarrow	14	11	9	6	4	3	1
17	12	9	7	4	2	1		\rightarrow	12	9	7	4	2	1	
14	9	6	4	1					9	6	4	1			
12	7	4	2						7	4	2				
11	6	3	1					\rightarrow	6	3	1				
9	4	1							4	1					
7	2								2						
6	1								1						
4															
3															
2															
1															

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

\rightarrow																
	19	14	11	9	6	4	3	1	\rightarrow	14	11	9	6	4	3	1
\rightarrow	17	12	9	7	4	2	1		\rightarrow	12	9	7	4	2	1	
	14	9	6	4	1					9	6	4	1			
	12	7	4	2						7	4	2				
\rightarrow	11	6	3	1					\rightarrow	6	3	1				
	9	4	1							4	1					
	7	2								2						
	6	1								1.						
	4															
\rightarrow	3															
	2															
	1															

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

	\downarrow	\downarrow	\downarrow	\downarrow			
\rightarrow	14	11	9	6	4	3	1
\rightarrow	12	9	7	4	2	1	
	9	6	4	1			
	7	4	2				
\rightarrow	6	3	1				
	4	1					
	2						
	1						

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

Sketch of proof

The proof uses induction on the size of λ.

	\downarrow	\downarrow		\downarrow d				
\rightarrow	19	14	11	9	6	4	3	1
\rightarrow	17	12	9	7	4	2	1	
	14	9	6	4	1			
	12	7	4	2				
\rightarrow	11	6	3	1				
	9	4	1					
	7	2						
	6	1						
	4							
\rightarrow	3							
	2							
	1							

	\downarrow		\downarrow			\downarrow		
\rightarrow	19	14	11	9	6	4	3	1
\rightarrow	17	12	9	7	4	2	1	
\rightarrow	14	9	6	4	1			
\rightarrow	12	7	4	2				
	11	6	3	1				
	9	4	1					
\rightarrow	7	2						
	6	1						
	4							
	3							
\rightarrow	2							
	1							

Sketch of proof

The proof uses induction on the size of λ.

	\downarrow	\downarrow		\downarrow d				
\rightarrow	19	14	11	9	6	4	3	1
\rightarrow	17	12	9	7	4	2	1	
	14	9	6	4	1			
	12	7	4	2				
\rightarrow	11	6	3	1				
	9	4	1					
	7	2						
	6	1						
	4							
\rightarrow	3							
	2							
	1							

	\downarrow		\downarrow			\downarrow		
\rightarrow	19	14	11	9	6	4	3	1
\rightarrow	17	12	9	7	4	2	1	
\rightarrow	14	9	6	4	1			
\rightarrow	12	7	4	2				
	11	6	3	1				
	9	4	1					
\rightarrow	7	2						
	6	1						
	4							
	3							
\rightarrow	2							
	1							

Two conjectures

Two conjectures

Conjecture Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- Then every hook length of λ appears in the multiset $H_{n, p}(\lambda)$ with multiplicity at least one.

Two conjectures

Conjecture Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- Then every hook length of λ appears in the multiset $H_{n, p}(\lambda)$ with multiplicity at least one.
- Let z be non-negative. Then $z+n \in H_{n, p}(\lambda)$ implies

$$
z \in H_{n, p}(\lambda)
$$

Two conjectures

Conjecture Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- Then every hook length of λ appears in the multiset $H_{n, p}(\lambda)$ with multiplicity at least one.
- Let z be non-negative. Then
$z+n \in H_{n, p}(\lambda)$ implies
$z \in H_{n, p}(\lambda)$. Equivalently, also $z+p \in H_{n, p}(\lambda)$ implies $z \in H_{n, p}(\lambda)$.

Two conjectures

Conjecture Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n, p}$.

- Then every hook length of λ appears in the multiset $H_{n, p}(\lambda)$ with multiplicity at least one.
- Let z be non-negative. Then $z+n \in H_{n, p}(\lambda)$ implies $z \in H_{n, p}(\lambda)$. Equivalently, also $z+p \in H_{n, p}(\lambda)$ implies $z \in H_{n, p}(\lambda)$.

	4	7		3	2	
	\downarrow	\downarrow		\downarrow	\downarrow	
$2 \rightarrow$	12	7	4	3	2	
$1 \rightarrow$	11	6	3	2	1	
	7	2				
	6	1				
$3 \rightarrow$	4	$H_{5,8}(\lambda)$				
	3					
	2					
	1					

This is the end.

Thank you!

