A refinement of the skew length statistic

Robin Sulzgruber

Universität Wien

77th Séminaire Lotharingien de Combinatoire September 11th-14th 2016 • Strobl • Austria

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

(日) (四) (三) (三) (三)

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers.

(日) (周) (三) (三)

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers.

$\lambda = (5, 5, 2, 2, 1, 1, 1, 1)$

- 32

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i, j) : i \le \ell, j \le \lambda_i\}$

$\lambda = (5, 5, 2, 2, 1, 1, 1, 1)$

< 回 ト < 三 ト < 三 ト

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i, j) : i \le \ell, j \le \lambda_i\}$

$$\lambda = (5, 5, 2, 2, 1, 1, 1, 1)$$

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i, j) : i \le \ell, j \le \lambda_i\}$ We call the number of positive

parts of λ the length of the partition and denote it by $\ell(\lambda)$.

$$\lambda = (5, 5, 2, 2, 1, 1, 1, 1)$$

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i, j) : i \le \ell, j \le \lambda_i\}$ We call the number of positive

parts of λ the length of the partition and denote it by $\ell(\lambda)$.

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i,j) : i \le \ell, j \le \lambda_i\}$ We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.

The conjugate of λ is the partition $\lambda' = \{(j, i) : (i, j) \in \lambda\}.$

Definition A partition is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ of non-negative integers. We identify λ with its Young diagram $\{(i,j) : i \le \ell, j \le \lambda_i\}$ We call the number of positive parts of λ the length of the partition and denote it by $\ell(\lambda)$.

The conjugate of λ is the partition $\lambda' = \{(j, i) : (i, j) \in \lambda\}.$

2 / 15

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

イロン イヨン イヨン イヨン

Definition Let $(i,j) \in \lambda$ be a cell.

3

Definition Let $(i,j) \in \lambda$ be a cell.

Image: A match a ma

September 2016 3 / 15

3

-

Definition Let $(i, j) \in \lambda$ be a cell. The hook length of (i, j) is defined as $h_{\lambda}(i, j) = \lambda_i - j + \lambda'_j - i + 1.$

3

4 E b

Definition Let $(i, j) \in \lambda$ be a cell. The hook length of (i, j) is defined as $h_{\lambda}(i, j) = \lambda_i - j + \lambda'_j - i + 1.$

 $h_{\lambda}(1,2) = 7$

Definition Let $(i, j) \in \lambda$ be a cell. The hook length of (i, j) is defined as $h_{\lambda}(i, j) = \lambda_i - j + \lambda'_j - i + 1.$ A partition λ is called an *n*-core if no cell in λ has hook length *n*. Denote the set of *n*-cores by \mathfrak{C}_n .

$$h_{\lambda}(1,2)=7$$

Definition Let $(i,j) \in \lambda$ be a cell. The hook length of (i,j) is defined as $h_{\lambda}(i,j) = \lambda_i - j + \lambda'_j - i + 1.$ A partition λ is called an *n*-core if no cell in λ has hook length *n*. Denote the set of *n*-cores by \mathfrak{C}_n .

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

$$h_{\lambda}(1,2)=7$$

Definition Let $(i,j) \in \lambda$ be a cell. The hook length of (i,j) is defined as $h_{\lambda}(i,j) = \lambda_i - j + \lambda'_j - i + 1.$ A partition λ is called an *n*-core if no cell in λ has hook length *n*. Denote the set of *n*-cores by \mathfrak{C}_n .

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4		-		
3				
2				
1				
$h_\lambda(1,2)=7$				

$$\lambda \in \mathfrak{C}_5$$

Definition Let $(i, j) \in \lambda$ be a cell. The hook length of (i, j) is defined as $h_{\lambda}(i,j) = \lambda_i - j + \lambda'_i - i + 1.$ A partition λ is called an *n*-core if no cell in λ has hook length *n*. Denote the set of *n*-cores by \mathfrak{C}_n . A partition λ is called an *n*, *p*-core if λ is an *n*-core and a *p*-core. Denote the set of *n*, *p*-cores by $\mathfrak{C}_{n,p}$.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4		-		
3				
2				
1				
$h_{\lambda}(1,2) = 7$				

Definition Let $(i, j) \in \lambda$ be a cell. The hook length of (i, j) is defined as $h_{\lambda}(i,j) = \lambda_i - j + \lambda'_i - i + 1.$ A partition λ is called an *n*-core if no cell in λ has hook length *n*. Denote the set of *n*-cores by \mathfrak{C}_n . A partition λ is called an *n*, *p*-core if λ is an *n*-core and a *p*-core. Denote the set of *n*, *p*-cores by $\mathfrak{C}_{n,p}$.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4		-		
3				
2				
1				
$h_\lambda(1,2)=7$				
λ (€€	$5, \lambda$	$\in \mathfrak{C}$	5.8

3

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

Cores – where do they come from?

• The Murnaghan–Nakayama formula allows for a recursive computation of the value of an irreducible character χ^{λ} of \mathfrak{S}_n at a permutation $\pi \in \mathfrak{S}_n$ of cycle type ρ by removing a rim-hook from λ and a cycle from π .

• Cores also appear in the modular representation theory of \mathfrak{S}_n .

周 ト イ ヨ ト イ ヨ ト

Cores and reflection groups

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Cores and reflection groups

 Lascoux introduced an action of the affine symmetric group G_n on n-cores such that

$$\mathfrak{C}_n\cong \widetilde{\mathfrak{S}}_n/\mathfrak{S}_n.$$

Image: A test in te

• Lascoux introduced an action of the affine symmetric group $\widetilde{\mathfrak{S}}_n$ on *n*-cores such that

$$\mathfrak{C}_n\cong \widetilde{\mathfrak{S}}_n/\mathfrak{S}_n.$$

• Lapointe and Morse use k + 1-cores in the study of k-Schur functions.

• Lascoux introduced an action of the affine symmetric group $\widetilde{\mathfrak{S}}_n$ on *n*-cores such that

$$\mathfrak{C}_n\cong \widetilde{\mathfrak{S}}_n/\mathfrak{S}_n.$$

- Lapointe and Morse use k + 1-cores in the study of k-Schur functions.
- Thiel and Williams generalise *n*, *p*-cores to other affine Weyl groups and have results on the maximal size, the expected size and the variance of the size in simply-laced types.

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

イロト イポト イヨト イヨト

When *n* and *p* are relatively prime Anderson proved that $\mathfrak{C}_{n,p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

イロト 不得下 イヨト イヨト

When *n* and *p* are relatively prime Anderson proved that $\mathfrak{C}_{n,p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

When *n* and *p* are relatively prime Anderson proved that $\mathfrak{C}_{n,p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	$^{-1}$	-6	$^{-11}$	$^{-16}$
16	11	6	1	-4	-9	-14	-19	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	$^{-10}$	-15	-20	-25	-30	-35	-40

イロト イポト イヨト イヨト

When *n* and *p* are relatively prime Anderson proved that $\mathfrak{C}_{n,p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	$^{-1}$	-6	$^{-11}$	$^{-16}$
16	11	6	1	-4	-9	-14	-19	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	$^{-10}$	-15	-20	-25	-30	-35	-40

イロト イポト イヨト イヨト

When *n* and *p* are relatively prime Anderson proved that $\mathfrak{C}_{n,p}$ is finite and counted by the rational Catalan numbers $\frac{1}{n+p}\binom{n+p}{n}$ by finding a nice bijection to rational Dyck paths.

32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	$^{-1}$	-6	$^{-11}$	$^{-16}$
16	11	6	1	-4	-9	-14	$^{-19}$	-24
8	3	-2	-7	-12	-17	-22	-27	-32
0	-5	$^{-10}$	-15	-20	-25	-30	-35	-40

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

3

イロト イポト イヨト イヨト

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n,p}$. A row of λ is called *n*-row if its left-most hook length is the maximal representative of its residue class modulo *n* among all hook lengths in the first column.

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n,p}$. A row of λ is called *n*-row if its left-most hook length is the maximal representative of its residue class modulo *n* among all hook lengths in the first column.

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4		-		
3				
2				
1				

$$(n,p)=(5,8)$$

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n,p}$. A row of λ is called *n*-row if its left-most hook length is the maximal representative of its residue class modulo *n* among all hook lengths in the first column.

2 →	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
4 →	4				
3 →	3				
	2				
	1				
		_			

(n,p) = (5,8)

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n,p}$. A row of λ is called *n*-row if its left-most hook length is the maximal representative of its residue class modulo *n* among all hook lengths in the first column.

The skew length $skl(\lambda)$ is the number of cells of λ that lie in an *n*-row and have hook length less than *p*.

2 →	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
4 →	4				
3 →	3				
	2				
	1				

(n, p) = (5, 8)

Definition (Armstrong) Let $\lambda \in \mathfrak{C}_{n,p}$. A row of λ is called *n*-row if its left-most hook length is the maximal representative of its residue class modulo *n* among all hook lengths in the first column.

The skew length $skl(\lambda)$ is the number of cells of λ that lie in an *n*-row and have hook length less than *p*.

2 →	12	7	4	3	2
$1 \rightarrow$	11	6	3	2	1
	7	2			
	6	1			
4 →	4				
3 →	3				
	2				
	1				

$$(n,p)=(5,8)$$
 skl $(\lambda)=10$

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

イロト イポト イヨト イヨト

For relatively prime n and p define the rational q, t-Catalan numbers as

$$\mathcal{C}_{n,p}(q,t) = \sum_{\lambda \in \mathfrak{C}_{n,p}} q^{\ell(\lambda)} t^{(n-1)(p-1)/2 - \mathsf{skl}(\lambda)}$$

3

For relatively prime n and p define the rational q, t-Catalan numbers as

$$\mathcal{C}_{n,p}(q,t) = \sum_{\lambda \in \mathfrak{C}_{n,p}} q^{\ell(\lambda)} t^{(n-1)(p-1)/2 - \mathsf{skl}(\lambda)}$$

Conjecture (Armstrong, Hanusa, Jones)

• The rational q, t-Catalan numbers are symmetric in q and t, that is,

$$C_{n,p}(q,t)=C_{n,p}(t,q).$$

イロト イポト イモト イモト

For relatively prime n and p define the rational q, t-Catalan numbers as

$$\mathcal{C}_{n,p}(q,t) = \sum_{\lambda \in \mathfrak{C}_{n,p}} q^{\ell(\lambda)} t^{(n-1)(p-1)/2 - \mathsf{skl}(\lambda)},$$

Conjecture (Armstrong, Hanusa, Jones)

• The rational q, t-Catalan numbers are symmetric in q and t, that is,

$$C_{n,p}(q,t)=C_{n,p}(t,q).$$

• The rational q, t-Catalan numbers specialise to

$$q^{(n-1)(p-1)/2}C_{n,p}(q,q^{-1}) = rac{1}{[n+p]_q} \begin{bmatrix} n+p\\n \end{bmatrix}_q$$

イロト 不得下 イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

(日) (四) (日) (日) (日)

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

Conjecture (Armstrong, Loehr, Warrington) Let n and p be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$. Then λ can be reconstructed from the partition formed by the cells contributing to the skew length.

Theorem (Thomas, Williams) The map $\zeta : \mathfrak{C}_{n,p} \to \mathfrak{D}_{n,p}$ is a bijection.

(日) (四) (日) (日) (日)

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

2

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

• The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.

< 回 ト < 三 ト < 三 ト

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

• The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.

10 / 15

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

• The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

• The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

• The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.
- The skew length is independent of the order of *n* and *p*.

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.
- The skew length is independent of the order of *n* and *p*.

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.
- The skew length is independent of the order of n and p.

10 / 15
Skew length and conjugation

Theorem (Xin • Ceballos, Denton, Hanusa) Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- The skew length is invariant under conjugation, that is, skl $\lambda = \text{skl } \lambda'$.
- The skew length is independent of the order of n and p.

10 / 15

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

3

(日) (周) (三) (三)

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

< 回 ト < 三 ト < 三 ト

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

12	7	4	3	2
11	6	3	2	1
7	2			
6	1			
4				
3				
2				
1				

12 N 4 12 N

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

Proposition We have $skl(\lambda) = #H_{n,p}(\lambda)$.

11 / 15

Let $\lambda \in \mathfrak{C}_{n,p}$. Denote by $H_{n,p}(\lambda)$ the multiset of hook lengths of cells contained in an *n*-row and in a *p*-column of λ .

Proposition We have $skl(\lambda) = #H_{n,p}(\lambda)$.

E 990

・ロト ・四ト ・ヨト ・ヨト

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

イロト イポト イヨト イヨト

Robin Sulzgruber (Universität Wien)

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

A 🖓

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

47 ▶

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

 $H_{8,5}(\lambda)$

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

▲ 同 ▶ → 三 ▶

Theorem For all positive integers *n* and *p* and all *n*, *p*-cores λ we have $H_{n,p}(\lambda) = H_{p,n}(\lambda)$.

3

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

・ロト ・四ト ・ヨト ・ヨト

The proof uses induction on the size of λ .

3

(日) (同) (三) (三)

The proof uses induction on the size of λ .

19	14	11	9	6	4	3	1
17	12	9	7	4	2	1	
14	9	6	4	1			
12	7	4	2				
11	6	3	1				
9	4	1		•			
7	2		-				
6	1						
4		-					
3							
2							
1							

14	11	9	6	4	3	1
12	9	7	4	2	1	
9	6	4	1			
7	4	2		•		
6	3	1				
4	1		-			
2						
1						

• • • • • • • • • • • •

The proof uses induction on the size of λ .

19	14	11	9	6	4	3	1		→	14	11	9	6	4	3	1
17	12	9	7	4	2	1		_	→	12	9	7	4	2	1	
14	9	6	4	1			-			9	6	4	1			-
12	7	4	2		-					7	4	2		-		
11	6	3	1						→	6	3	1				
9	4	1		•						4	1		•			
7	2									2						
6	1									1						
4		•									•					
3																
2																
1																

3

(日) (同) (三) (三)

The proof uses induction on the size of λ .

\rightarrow	19	14	11	9	6	4	3	1	→	14	11	9	6	4	3	1
→	17	12	9	7	4	2	1		→	12	9	7	4	2	1	
	14	9	6	4	1			-		9	6	4	1			
	12	7	4	2		-				7	4	2		-		
→	11	6	3	1					→	6	3	1				
	9	4	1		•					4	1		•			
	7	2								2						
	6	1								1						
	4		•													
→	3															
	2															
	1															

3

(日) (同) (三) (三)

The proof uses induction on the size of λ .

										-		
→	19	14	11	9	6	4	3	1	\rightarrow	14	11	9
→	17	12	9	7	4	2	1		\rightarrow	12	9	7
	14	9	6	4	1			-		9	6	4
	12	7	4	2		•				7	4	2
→	11	6	3	1					\rightarrow	6	3	1
	9	4	1		-					4	1	
	7	2		•						2		
	6	1								1		
	4		•								•	
→	3											
	2											
	1											

 $\downarrow \downarrow \downarrow \downarrow \downarrow$

¥	14	11	9	6	4	3	1
>	12	9	7	4	2	1	
	9	6	4	1			•
	7	4	2		•		
>	6	3	1				
	4	1		•			
	2		•				
	1						

(日) (同) (三) (三)

The proof uses induction on the size of λ .

 $\downarrow \downarrow \downarrow \downarrow \downarrow$

>	14	11	9	6	4	3	1
>	12	9	7	4	2	1	
	9	6	4	1			
	7	4	2		•		
>	6	3	1				
	4	1		-			
	2						
	1						

Robin Sulzgruber (Universität Wien)

September 2016

3

13 / 15

The proof uses induction on the size of λ .

 $\downarrow \uparrow \uparrow \downarrow \downarrow$

A 🖓

The proof uses induction on the size of λ .

 $\downarrow \uparrow \uparrow \downarrow \downarrow$

A 🖓

The proof uses induction on the size of λ .

 $\downarrow \downarrow \downarrow \downarrow \downarrow$

A 🖓

The proof uses induction on the size of λ .

 $\downarrow \uparrow \uparrow \downarrow \downarrow$

A 🖓

The proof uses induction on the size of λ .

						r	
19	14	11	9	6	4	3	1
17	12	9	7	4	2	1	
14	9	6	4	1			-
12	7	4	2				
11	6	3	1				
9	4	1		•			
7	2		•				
6	1						
4		•					
3							
2							
1							

The proof uses induction on the size of λ .

A refinement of the skew length statistic

The proof uses induction on the size of λ .

A refinement of the skew length statistic

The proof uses induction on the size of λ .

Robin Sulzgruber (Universität Wien)

A refinement of the skew length statistic

September 2016 13 / 15

The proof uses induction on the size of λ .

A refinement of the skew length statistic

The proof uses induction on the size of λ .

Robin Sulzgruber (Universität Wien)

A refinement of the skew length statistic

September 2016 13 / 15
Sketch of proof

The proof uses induction on the size of λ .

Robin Sulzgruber (Universität Wien)

A refinement of the skew length statistic

September 2016

13 / 15

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

<ロ> (日) (日) (日) (日) (日)

Conjecture Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

 Then every hook length of λ appears in the multiset H_{n,p}(λ) with multiplicity at least one.

Conjecture Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- Then every hook length of λ appears in the multiset H_{n,p}(λ) with multiplicity at least one.
- Let z be non-negative. Then $z + n \in H_{n,p}(\lambda)$ implies $z \in H_{n,p}(\lambda)$.

3

一日、

Conjecture Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- Then every hook length of λ appears in the multiset H_{n,p}(λ) with multiplicity at least one.
- Let z be non-negative. Then $z + n \in H_{n,p}(\lambda)$ implies $z \in H_{n,p}(\lambda)$. Equivalently, also $z + p \in H_{n,p}(\lambda)$ implies $z \in H_{n,p}(\lambda)$.

3

Conjecture Let *n* and *p* be relatively prime and $\lambda \in \mathfrak{C}_{n,p}$.

- Then every hook length of λ appears in the multiset H_{n,p}(λ) with multiplicity at least one.
- Let z be non-negative. Then $z + n \in H_{n,p}(\lambda)$ implies $z \in H_{n,p}(\lambda)$. Equivalently, also $z + p \in H_{n,p}(\lambda)$ implies $z \in H_{n,p}(\lambda)$.

(人間) トイヨト イヨト

3

This is the end.

Thank you!

Robin Sulzgruber (Universität Wien) A refinement of the skew length statistic

3

<ロ> (日) (日) (日) (日) (日)