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BINOMIAL SPECIES AND COMBINATORIAL EXPONENTIATION

GILBERT LABELLE

LACIM, UQAM, Canada

Abstract. We introduce a “binomial” species, B(X,Y ) = (1+X)↑Y = E(Y Lg(1+X)),
where E(X) is the species of finite sets and Lg(1+X) is the combinatorial logarithm. The
expansion of B includes, by specialization of variables, the classical binomial expansion,
binomial expansions for symmetric functions, and (q, t)-series. We also define and study
a new exponentiation operation, F ↑G, between species.

1. Introduction

The present paper is written under the framework of the theory of combinatorial species
of structures founded in 1981 by André Joyal [Joy81]. We assume that the reader already
possesses a minimal knowledge concerning “ordinary” species. See, for example, the book
[BLL98] for basic concepts, results and early references about species. For completeness
and to help the reader, we recall the notion of a multisort weighted species on variables
X, Y, . . . , called sorts and variables u, v, . . . , called weight counters .

Informally speaking, a multisort weighted species is a class F = F (X, Y, . . . ) of weighted
structures built on arbitrary finite sets of elements of sorts X, Y, . . . . Each structure is
given a weight in the form of a power product uivj · · · in the weight-counter variables.
The class F must be closed under relabelling its structures along bijections between the
sets of their underlying elements that preserve sorts and weights. A structure in the class
F is called an F -structure, for short.1

In the special case where the weight of each F -structure is 1 = u0v0 · · · (the trivial
monomial), F is called an ordinary multisort species.

Many operations between species have been defined in order to describe or recursively
define various species. The main operations on species include sum (+), difference (−),
Cauchy or juxtaposition product (·), Hadamard or superposition product (×), division (/),
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singletons, generalized binomial coefficients, combinatorial exponentiation.
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1Algebraically speaking, a species is simply a functor of the form F : S×S×· · · −→ Sw, where S is the

category of finite sets and bijections and Sw is a category of finite weighted sets and weight-preserving
functions between them. In the Cartesian product S×S×· · · , an object U in the first factor is interpreted
as a finite set of elements of sort X, an object of the second factor is interpreted as a finite set of elements
of sort Y , etc. Given [U, V, . . . ] in S×S× · · · , an element s ∈ F [U, V, . . . ] is called an F -structure on the
disjoint union U t V t · · · . When an infinite family of sorts is given, the Cartesian product S× S× · · ·
is interpreted in the weak sense, i.e., the objects [U, V, . . . ] are such that U t V t · · · is finite.
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substitution2 (◦), partial derivations (∂/∂X, ∂/∂Y, . . . ).

Example 1.1. Figure 1 shows a G-structure belonging to the two-sort weighted species
G = G(X, Y ) of simple graphs on finite sets made of black nodes (sort X) and white
nodes (sort Y ). The weight of a graph being given by

u#connected black componentsv#connected white componentst#connected mixed components. (1.1)

Figure 1. A G(X, Y )-structure on {1, . . . , 9} t {a, . . . , k} having weight u2v4t2.

Example 1.2. Let L = L(X) and C = C(X) be the species of finite linear orders and
(nonempty) oriented cycles. Figure 2 describes the fact that any oriented cycle made on
a set of black nodes (X-structures) t a set of white nodes each having weight u (uY -
structures) can be naturally viewed as either an oriented cycle made of black nodes only
(C(X)-structure) or an oriented cycle made of weighted white nodes each of which being
followed by a linearly ordered set of black nodes (C(uY L(X))-structure).

Figure 2. The combinatorial equation C(X + uY ) = C(X) + C(uY L(X)).

Example 1.3. Let E = E(X) be the species of finite sets3 and A = A(X) be the one-sort
unweighted species of arborescences (= rooted trees). Figure 3 shows that the species
A(X) can be recursively defined by the combinatorial equation

A(X) = XE(A(X)) (1.2)

2If F = F (X) is 1-sort, F ◦G is also written F (G). If F = F (X,Y, . . . ), we usually write F (G,R, . . . )
instead of F ◦ (G,R, . . . ). Also, F ·G is generally written in the form FG.

3E is the first letter of the french word ensembles which means sets.
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since any rooted tree can be naturally viewed as a root (i.e., an X-structure) followed
by a set of rooted tree (i.e., an E(A(X))-structure). In this figure, the underlying set is
U = {0, 1, . . . , 9, a, b, . . . , k}.

Figure 3. The combinatorial recursive definition A(X) = XE(A(X)).

Example 1.4. Given a species F = F (X, Y, . . . ), the derivative species ∂
∂X
F (X, Y, . . . ) is

defined as follows: s is a ∂
∂X
F -structure on U t V t · · · if and only if s is an F -structure

on (U t {•}) t V t · · · where • is an unlabelled element of sort X outside U . The
weight of s, as a ∂

∂X
F -structure, is that of s, as an F -structure4. Take, for example, the

species Φu = Φu(X, Y ) whose structures are functions from finite sets of black elements
(X-structures) to finite sets of white elements (Y -structures), the weight of a function
being given by u#non empty fibers of f . Figure 4 shows that ∂

∂X
Φu(X, Y ) = uE(X)Y Φu(X, Y )

(the underlying set of the ∂
∂X

Φu-structure in this case is {a, b, . . . , g} t {1, 2, . . . , 5}, and
the weight is u3). One can check that the following combinatorial differential equality
also holds: ∂

∂Y
Φu(X, Y ) = Φu(X, Y ) + uE+(X)Φu(X, Y ), where E+(X) is the species of

nonempty finite sets of elements of sort X.

Figure 4. The combinatorial equation ∂
∂X

Φu(X, Y ) = uE(X)Y Φu(X, Y ).

We include/recall in Subsections 1.1–1.3 of this introduction some more advanced mate-
rial and special notational conventions about species that will be used later: combinatorial
power series versus species, underlying formal power series, substitution of power series
into species. Subsection 1.4 contains an overview of the main items of the remaining
Sections 2–4 of the paper: the tools of combinatorial logarithm and pseudo-singletons,
binomial species, generalized binomial coefficients, and a new operation of exponentia-
tion between species. Appendix A recalls the substitution formulas for weighted species.
Appendix B discusses formal summability for families of species.

4Similarly, ∂
∂Y F is defined by adding an extra unlabelled element ◦ of sort Y on the set V , etc.
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1.1. Encoding species by combinatorial power series. Yeong-Nan Yeh has shown
in [Yeh86] that weighted multisort species F = F (X, Y, . . . ) with weight counters u, v, . . .
can conveniently be encoded by combinatorial power series. These are series of the form∑

n,k,...,H

fn,k,...,HX
nY k · · · /H, (1.3)

where, for any tuple (n, k, . . . ) of integers, H runs through a system of representatives of
the conjugacy classes of the Young subgroup Sn,k,... of Sn+k+··· in Sn+k+···,

5 and

fn,k,...,H = fn,k,...,H(u, v, . . . ) ∈ C[[u, v, . . . ]] (1.4)

are formal power series with complex coefficients in the weight variables u, v, . . . .
In fact, the subgroups H are taken (up to conjugacy) as the stabilizers of the F -

structures (up to isomorphism) built on the multi-sorted set [n]t [k]t· · · (disjoint union),
where [n] = {1, 2, . . . , n}. The elements of the summands [n], [k], . . . in this disjoint union
are interpreted as singletons of sorts X, Y, . . . , respectively. Since automorphisms of
structures must be sort-preserving, the elements h ∈ H are sort-preserving permutations
of [n] t [k] t · · · , that is, elements of Sn,k,.... Since Sn,k,... ∼= Sn × Sk × · · · , the elements
h ∈ H will be written in the form h = (h1, h2, . . . ), where h1 ∈ Sn, h2 ∈ Sk, . . . .

An alternate form for the combinatorial power series (1.3) puts emphasis on the indi-
vidual terms in its full expansion. It can be written as∑

µ,H

cµ,H µX
nY k · · · /H, (1.5)

where µ = uivj · · · runs through all power products of the variables u, v, . . . , and the
coefficients cµ,H are complex numbers depending on µ and H. Note that H determines
n, k, . . . in (1.5) and that i+ j + · · ·+ n+ k + · · · <∞ in each term.

Under this setting, (1.3) (or (1.5)) is called by Yeh the molecular expansion of the
species F into its molecular (i.e., irreducible) components XnY k · · · /H. The coefficients
fn,k,...,H ∈ N[[u, v, . . . ]] in (1.3) are power series with nonnegative integer coefficients de-
scribing the family of weights assigned to F -structures (up to isomorphism) whose sta-
bilizer is conjugate to H and the coefficients cµ,H in (1.5) are nonnegative integers (see
Example 1.5 below in the case of a 1-sort weighted species).

Two species F (X, Y, . . . ) and G(X, Y, . . . ) are naturally equivalent (as functors) if and
only if they have the same expansion (1.3) or (1.5). In this case, we say that F and G are
combinatorially equal and simply write F = G.

Allowing negative integral coefficients in fn,k,...,H in (1.3) (that is, fn,k,...,H ∈
Z[[u, v, . . . ]]), or negative integral coefficients cµ,H in (1.5) (that is, cµ,H ∈ Z), we are
led to the notion of weighted virtual species in the sense of Joyal [Joy85]. These are
formal differences, F −G, between weighted species F and G.

5Two combinatorial monomials XnY k · · · /H and Xn′Y k
′ · · · /H ′ are considered as equal (or similar)

if n = n′, k = k′, . . . and H,H ′ are conjugate in Sn,k,.... Hence, similar terms are collected in (1.3) and
(1.5).



BINOMIAL SPECIES AND COMBINATORIAL EXPONENTIATION 5

The above main operations on species, +, −, ·, ×, /, ◦, ∂/∂X, ∂/∂Y, . . . , have all been
extended by Joyal [Joy85] and Yeh [Yeh86] to allow complex coefficients in fn,k,...,H (that
is, fn,k,...,H ∈ C[[u, v, . . . ]]) in (1.3).6

Because of these facts, any series of the form (1.3) or (1.5), in any number of variables,
X, Y, . . . , will generally be called a species in the present text. The set of species will be
denoted, for short, by

Cu,v,... ‖X, Y, . . .‖, where Cu,v,... = C[[u, v, . . . ]]. (1.6)

Since XnY k · · · /{idn,k,...} ∼= XnY k · · · , monomials in the usual sense in X, Y, . . . are
special cases of combinatorial monomials XnY k · · · /H. We have the inclusions

N ⊂ Z ⊂ C ⊂ C[[X]] ⊂ C[[X, Y, . . . ]] ⊂ Cu,v,...[[X, Y, . . . ]] ⊂ Cu,v,... ‖X, Y, . . .‖ . (1.7)

This implies that non-negative integers, complex numbers and power series in the usual
sense are all special cases of combinatorial (weighted) power series.

Recall that “ordinary” species are elements of N ‖ X, Y, . . . ‖ and that “ordinary”
weighted species are elements of Nu,v,... ‖X, Y, . . .‖.

Example 1.5. To illustrate the notion of molecular expansion in the case of ordinary
weighted species on one sort, X, of singletons, consider, for example, the species Aw =
Aw(X) of arborescences weighted by

w(rooted tree) = u#internal nodes 6= rootv#leaves. (1.8)

Denote by Xn = Xn/{idn} the species of linear orders of length n (where {idn} denotes
the trivial subgroup of Sn) and by En = En(X) = Xn/Sn the species of n-sets7 (that
is, linear orders of length n up to an arbitrary permutation of their elements). Figure 5
(in which the labels of the underlying elements have been omitted for greater readability)
shows that some of the first terms of the molecular expansion of the species Aw look as
follows:

Aw = Aw(X) = X + vX2 + v2XE2 + uvX3 + v3XE3 + uv2X2E2 + (uv2 + u2v)X4

+ · · ·+ (2uv3 + u2v2)X3E2 + · · · . (1.9)

Hence, Aw = Aw(X) ∈ Nu,v‖X ‖⊂ Cu,v‖X ‖, in this case.

Example 1.6. Virtual species (i.e., elements of Zu,v,... ‖X, Y, . . .‖) are combinatorially also
very useful. For instance, substituting an ordinary (non virtual) species into a virtual
species may well produce another ordinary (non virtual) species.8 For example, consider

6Although most operations are routinely extended from ordinary to virtual species, substitution (◦)
for virtual species is rather delicate to define. In fact, Yeh has shown that these extensions can be made
using coefficients cµ,H ∈ K, where K is any binomial ring ; that is, a ring with torsion-free additive group,
containing k(k − 1) · · · (k − n+ 1)/n! for every k ∈ K and integer n ≥ 0. In the present paper, we find it
convenient to take K = C. Appendix A describes this substitution for species in Cu,v,... ‖X,Y, . . .‖.

7In particular, E0(X) = X0/S0 = 1 is called the species of the empty set, and E1(X) = X1/S1 = X is
the species of singletons (i.e., 1-element sets). The species of all finite sets is expanded as E = E(X) =∑
n≥0X

n/Sn.
8The situation is similar to the Cardano method for solving real third degree polynomial equations:

one uses complex numbers when the three roots are real.
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Figure 5. Some molecular components of the species Aw(X) of arbores-
cences weighted by w(rooted tree) = u#internal nodes 6= rootv#leaves.

the ordinary species A(X) and a(X) of rooted and unrooted (free) trees. Pierre Leroux
has shown (see [BLL98, p. 280]) that

a(X) = V ◦ A(X), (1.10)

where V(X) is the virtual species defined by

V(X) = X + E2(X)−X2. (1.11)

Combinatorial equation (1.10) is called the dissymmetry theorem for trees. Its importance
stems from the fact that one can easily deduce from it all the combinatorial, enumerative
and asymptotic properties of trees from those of rooted trees, despite the fact that trees
have more complicated automorphisms than rooted trees.

Example 1.7. Virtual species are also used to define the multiplicative inverse of species
by making use of geometric series. Here is how it works. Let F = F (X, Y, . . . ) be an
ordinary weighted species satisfying9 F (0) = 1. Since F can then be rewritten in the
form F = 1 + F+ with F+(0) = 0, the expression 1/F (also denoted F−1) is defined by
the virtual species

1/F = 1− F+ + F 2
+ − F 3

+ + · · ·+ (−1)nF n
+ + · · · . (1.12)

More generally, Equation (1.12) is used to define 1/F for any F ∈ Cu,v,... ‖ X, Y, . . . ‖
satisfying F (0) = 1.

The multiplicative inverse of the species E(X) =
∑

n≥0X
n/Sn = 1 + E+(X) of finite

sets has a special status. It can be expressed in another form:

1/E(X) = E(−X). (1.13)

This is a consequence of the standard combinatorial equalities

E(X + Y ) = E(X)E(Y ), E(0) = 1, (1.14)

9If F = F (X,Y, . . . ), then F (0) is a shorthand notation for the result of the simultaneous substitutions
X = 0, Y = 0, . . . , u = 0, v = 0, . . . in F .
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that reflect the facts that any finite set made of X-singletons and Y -singletons is naturally
the same as a finite set made ofX-singletons “followed” by a finite set made of Y -singletons
and that an assembly of nothing is an empty set. The substitution Y := −X in (1.14)
gives 1 = E(0) = E(X −X) = E(X)E(−X), from which we deduce (1.13).

1.2. Other formal power series associated to species. Apart from the basic combi-
natorial power series expansion

F (X, Y, . . . ) =
∑

n,k,...,H

fn,k,...,HX
nY k · · · /H ∈ Cu,v,... ‖X, Y, . . .‖, (1.15)

various other underlying formal power series are associated to species. The main one is
the cycle index series

ZF = ZF (x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . ), (1.16)

where x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . are countable families of extra formal variables that
are associated to X, Y, . . . , respectively. These variables are distinct from the weight
variables u, v, . . . . We recall the definition of the cycle index series in the case of an
ordinary weighted species:

ZF =
∑
n,k,...

1

n! k! · · ·
∑

σ∈Sn, τ∈Sk, ...

|F [σ, τ, . . . ]|xc1(σ)
1 x

c2(σ)
2 x

c3(σ)
3 · · · yc1(τ)

1 y
c2(τ)
2 y

c3(τ)
3 · · · , (1.17)

in which |F [σ, τ, . . . ]| ∈ N[[u, v, . . . ]] denotes the total weight10 of the F -structures on
[n] t [k] t · · · for which (σ, τ, . . . ) is an automorphism, and ci(σ) denotes the number of
cycles of length i in the permutation σ.

When the ordinary weighted species F is written as a combinatorial power series (1.3),
it is not difficult to show, using Pólya theory, that

ZF =
∑

n,k,...,H

fn,k,...,HPH(x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . ), (1.18)

where PH is the classical Pólya cycle indicator polynomial of the group H acting on the
multi-sorted set [n] t [k] t · · · :

PH =
1

|H|
∑

(h1,h2,... )∈H

x
c1(h1)
1 x

c2(h1)
2 x

c3(h1)
3 · · · yc1(h2)

1 y
c2(h2)
2 y

c3(h2)
3 · · · , (1.19)

Because of this fact, it is natural to define ZF by (1.18) for any combinatorial power series
F ∈ Cu,v,... ‖X, Y, . . .‖. Hence, ZF is a (generally infinite) C[[u, v, . . . ]]-linear combination
of monomials in the variables x1, x2, x3, . . . ; y1, y2, y3, . . . . In other words,

ZF ∈ C[[u, v, . . . ;x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . ]]. (1.20)

Many operations, including ZF +ZG, ZF ·ZG, ZF ×ZG, ZF (ZG, ZR, . . . ),
∂
∂x1
ZF , between

cycle index series, have been defined in such a way that the map F 7→ ZF turns out to be

10or total number, if the weight of each structure is 1.
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compatible with the corresponding combinatorial operations on species:

ZF+G = ZF + ZG, ZF ·G = ZF · ZG, ZF×G = ZF × ZG, (1.21)

ZF (G,R,... ) = ZF (ZG, ZR, . . . ), Z ∂
∂X

F = ∂
∂x1
ZF , etc. (1.22)

The first equality in (1.22) is satisfied if 0 = G(0) = R(0) = · · · or if F = F (X, Y, . . . )
is of finite total degree in X, Y, . . . . The notation ZF (ZG, ZR, . . . ) refers to plethystic
substitution of cycle-index series which is defined as follows.

Definition 1.1. The plethystic substitution, f(g, r, . . . ), of cycle index series

g, r, · · · ∈ C[[u, v, . . . ;x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . ]] (1.23)

in the cycle index series f = f(u, v, . . . ;x1, x2, x3, . . . ; y1, y2, y3, . . . ; . . . ) is the cycle index
series h given by the formula

h = f(u, v, . . . , g1, g2, g3, . . . ; r1, r2, r3, . . . ; . . . ), (1.24)

where, for each integer k ≥ 1, the following notation is used:

fk = f(uk, vk, . . . ;xk, x2k, x3k, . . . ; yk, y2k, y3k, . . . ; . . . ). (1.25)

Note. In (1.25), each weight variable is raised to the power k and the lower index of
each variable x, y, . . . is multiplied by k. Summability conditions11 must be satisfied for
existence of series (1.24).

For ordinary weighted species, F = F (X, Y, . . . ), the other classical “counting” series,
namely the exponential generating series, F (x, y, . . . ), and the type generating series,

F̃ (x, y, . . . )12, respectively, are classically defined by

F (x, y, . . . ) =
∑
n,k,...

|F [n, k, . . . ]| x
n

n!

yk

k!
· · · , (1.26)

F̃ (x, y, . . . ) =
∑
n,k,...

|F̃ [n, k, . . . ]|xnyk · · · , (1.27)

where |F [n, k, . . . ]| is the total weight of the F -structures on [n]t[k]t· · · and |F̃ [n, k, . . . ]|
is the total weight13 of the unlabelled ones (that is isomorphism types of such structures).
These two series are extended to any combinatorial power series F ∈ Cu,v,... ‖X, Y, . . . ‖
by the obvious formulas

F (x, y, . . . ) = ZF (x, 0, 0, . . . ; y, 0, 0, . . . ; . . . ), (1.28)

F̃ (x, y, . . . ) = ZF (x, x2, x3, . . . ; y, y2, y3, . . . ; . . . ). (1.29)

11See Appendix B for a general discussion of summability.
12Again, x, y, . . . are auxiliary formal variables, distinct from the weight variables u, v, . . . , that are

associated to X,Y, . . .
13By definition, the weight of an unlabelled structure is the weight of one of its labelled representatives.
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This implies, of course, that for general species given in the form (1.15), we have

F (x, y, . . . ) =
∑
n,k,...

 ∑
H≤Sn,k,...

cn,k,...,H
|H|

xnyk · · · , (1.30)

F̃ (x, y, . . . ) =
∑
n,k,...

 ∑
H≤Sn,k,...

cn,k,...,H

xnyk · · · , (1.31)

where H ≤ Sn,k,... means that H runs through a system of representatives of the conjugacy
classes of the group Sn,k,....

Table 1 describes the underlying series of some common species/series that will play a
role in the sequel. These are those of singletons, X, finite sets, E(X), analytic exponential,
exp(X), cyclic permutations, C(X), analytic logarithm14, log(1+X), permutations, S(X),
linear orders, L(X) = 1 +X +X2 + · · · , and 2-sort functions, Φ(X, Y )15.

F (X, Y, . . . ) ZF (x1, x2, . . . ; y1, y2, . . . ; . . . ) F (x, y, . . . ) F̃ (x, y, . . . )

X x1 x x

E(X) =
∑

n≥0X
n/Sn exp

(∑
i≥1

xi
i

)
exp(x) 1

1−x

exp(X) =
∑

n≥0
1
n!
Xn exp(x1) exp(x) exp(x)

C(X) =
∑

n≥1X
n/Cn

∑
i≥1

φ(i)
i

log
(

1
1−xi

)
log
(

1
1−x

)
x

1−x

log(1 +X) =
∑

n≥1
(−1)n−1

n
Xn log(1 + x1) log(1 + x) log(1 + x)

S(X) = E(C(X))
∏

i≥1
1

1−xi
1

1−x
∏

i≥1
1

1−xi

L(X) =
∑

n≥0X
n 1

1−x1
1

1−x
1

1−x

Φ(X, Y ) = E(E(X)Y ) exp
(∑

i≥1
yi
i

exp
(∑

j≥1
xij
j

))
exp(exp(x)y)

∏
i≥0

1
1−xiy

Table 1. Underlying series of some common species/series.

The species E(X) of finite sets is often called the combinatorial exponential. It is
important to note that

E(X) 6= exp(X). (1.32)

Example 1.8. A typical example of a cycle index series associated to a weighted 2-sort
species involves the species Aw(X, Y ) of rooted trees with internal nodes (including the
root) of sort X and leaves of sort Y weighted by

w(rooted tree) = u#internal nodes. (1.33)

14The corresponding series for the combinatorial logarithm, Lg(1 +X), will be given in Section 2.
15In Table 1, Cn is the standard cyclic subgroup of Sn, φ denotes the Euler totient function, and a

Φ-structure on [n] t [k] is a function f : [n]→ [k].
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Then since each Aw-structure is canonically a node, weighted by u, followed by a (possibly
empty) set of leaves or Aw-structures, the following combinatorial equation holds:

Aw(X, Y ) = uXE(Y +Aw(X, Y )). (1.34)

From this equation, the cycle index series a = a(x1, x2, x3, . . . , y1, y2, y3, . . . ) = ZAw can
be recursively computed to any degree in a computer algebra system using the formula

a = ux1 exp

(∑
k≥1

yk + ak
k

)
. (1.35)

1.3. Substituting power series into species. Since C ⊂ Cu,v,... ⊂ Cu,v,... ‖X, Y, . . . ‖,
every complex number c ∈ C or power series α ∈ Cu,v,... can be considered as species. In
particular if F = F (X, Y, . . . ) is a species, a, b, · · · ∈ C and α, β, · · · ∈ Cu,v,..., then

F ◦ (a, b, . . . ) = F (a, b, . . . ) and F ◦ (α, β, . . . ) = F (α, β, . . . ) (1.36)

should be species. In fact, we will see that

F (a, b, . . . ) and F (α, β, . . . ) ∈ Cu,v,... (1.37)

assuming summability conditions. Here is how it works in the case of 1-sort species F (X).
First of all, recall that 1 = X0/S0 is the species of the empty set (there is only one

1-structure and it “lives” on the empty set). Hence, F (1) is the species whose structures
are F -assemblies of 1-structures. That is, F -assemblies of empty sets. Such structures
are precisely the unlabelled F -structures, each of which is living on the empty set. By
Pólya theory, we then must have

F (1) = ZF (1, 1, 1, . . . ) = total weight of all unlabelled F -structures, (1.38)

which is an element of Cu,v,... assuming summability of the right-hand side of (1.38).
More generally, for any k ∈ N, k = k · 1 is the species whose structures are empty sets

“coloured” by a colour i ∈ [k]. There are exactly k such structures:

{}1, {}2, . . . , {}i, . . . , {}k, (1.39)

each of which lives on the empty underlying set. This time, an F (k)-structure is a k-
coloured unlabelled F -structure living on the empty set. By Pólya theory, we must have

F (k) = ZF (k, k, k, . . . ) = total weight of all unlabelled k-coloured F -structures. (1.40)

Now take the series α = u+v+ · · · ∈ Cu,v,... (i.e., the formal sum of all variables u, v, . . . ).
Then, since u+v+ · · · = u ·1+v ·1+ · · · , a (u+v+ · · · )-structure is an empty set weighted
by u, or by v, etc. Hence, an F (u+v+· · · )-structure is an F -assembly of indistinguishable
dots each of which being weighted by u, or by v, etc. Accordingly, invoking again Pólya
theory, this means that

F (u+ v + · · · ) = ZF (u+ v + · · · , u2 + v2 + · · · , u3 + v3 + · · · , . . . ). (1.41)
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Similarly, using the same kind of combinatorial arguments, for m,n, · · · ∈ N, we have

F (mu+ nv + · · · ) = F (u+ u+ · · ·︸ ︷︷ ︸
m

+ v + v + · · ·︸ ︷︷ ︸
n

+ · · · )

= ZF (mu+ nv + · · · ,mu2 + nv2 + · · · ,mu3 + nv3 + · · · , . . . ).
(1.42)

More generally, we can replace u, v, . . . in (1.42) by power products µ, ν, · · · ∈ Cu,v,... and
obtain

F (mµ+ nν + · · · ) = ZF (mµ+ nν + · · · ,mµ2 + nν2 + · · · ,mµ3 + nν3 + · · · , . . . ). (1.43)

Finally, since the coefficient ci,j,... = ci,j,...(m,n, . . . ) of each individual monomial
ci,j,...u

ivj · · · in the expansion of (1.43) is a polynomial in m,n, . . . with coefficients in
Q, we can replace m,n, . . . by any complex numbers a, b, . . . and we have the following
facts.

Lemma 1.1. Let F (X) be a 1-sort species and α = α(u, v, . . . ) ∈ Cu,v,... be a formal
power series in the weight variables u, v, . . . . Then, assuming summability,

F (α) = ZF (α1, α2, α3, . . . ), (1.44)

where, for k = 1, 2, . . . ,

αk = αk(u, v, . . . ) = α(uk, vk, . . . ). (1.45)

More generally, let F (X, Y, . . . ) be a species on many sorts X, Y, . . . of singletons and
α, β, · · · ∈ Cu,v,.... Then, assuming summability,

F (α, β, . . . ) = ZF (α1, α2, α3, . . . ; β1, β2, β3, . . . ; . . . ). (1.46)

Notational convention. Recall that auxiliary variables are lower case indeterminates
x, y, z, . . . associated to sorts X, Y, Z, . . . that are distinct from weight variables and
complex numbers. We will find it convenient, from a notational point of view, to extend
(1.46) to series α, β, · · · ∈ Cx,y,...;u,v,... so as to include possible substitutions of the auxiliary
variables x, y, . . . . This is done by considering the auxiliary variables as “plethystically
vanishing” by making use of the following notational convention:

Given α = α(x, y, . . . ;u, v, . . . ) ∈ Cx,y,...;u,v,..., define αk, k = 1, 2, 3, . . . , by

α1 = α1(x, y, . . . ;u, v, . . . ) = α(x, y, . . . ;u, v, . . . ), (1.47)

αk = αk(x, y, . . . ;u, v, . . . ) = α(0, 0, . . . ;uk, vk, . . . ), if k > 1. (1.48)

For each k ≥ 1, the transformation α 7→ αk is a C-algebra endomorphism

(∗)k : Cx,y,...;u,v,... −→ Cx,y,...;u,v,.... (1.49)

Making use of this convention, one can consider expressions such as

F (x, β, . . . ), F

(
u+ 2v

1− v
, 3u2y, . . .

)
, (1.50)
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as compact encodings for the (generally more complicated) series

ZF (x, 0, 0, . . . ; β1, β2, β3, . . . ; . . . ), (1.51)

ZF

(
u+ 2v

1− v
,
u2 + 2v2

1− v2
,
u3 + 2v3

1− v3
, . . . ; 3u2y, 0, 0, . . . ; . . .

)
. (1.52)

As a consequence of (1.44) and (1.46) this notational convention is compatible with sums,
Cauchy products and substitution:

(F +G+ · · · )(α, β, . . . ) = F (α, β, . . . ) +G(α, β, . . . ) + · · · , (1.53)

(F ·G · · · · )(α, β, . . . ) = F (α, β, . . . ) ·G(α, β, . . . ) · · · · , (1.54)

F ◦ (G,R, . . . )(α, β, . . . ) = F (G(α, β, . . . ), R(α, β, . . . ), . . . ), (1.55)

under the condition that both sides in (1.53)–(1.55) are formally summable in the sense
of Definition B.1 in Appendix B. For substitution, the standard conditions are:

(i) the constant terms G(0), R(0), . . . in the species G,R, . . . are all 0,

or

(ii) the total degree of F (X, Y, . . . ) in X, Y, . . . is finite.

Formulas (1.53)–(1.55) can be used to generate various power series identities from com-
binatorial identities between species.

Partial substitutions of series into species can also be considered. Expressions such as

F (α, Y, . . . ), F

(
X

1− q
, β, . . .

)
, (1.56)

where F ∈ Cu,v,... ‖X, Y, . . . ‖, α, β ∈ Cx,y,...;u,v,..., and q is a weight variable, will then be
perfectively legitimate and freely used in the present paper.

Example 1.9. The notational convention presented in (1.46)–(1.48) provides a uniform
compact notation for all basic “enumerative” series that are associated to species. For
example, let F = F (X) be a 1-sort species, x an auxiliary variable, and u, q be weight
variables. Then F (x), F (u) and Fq(u) = F (u/(1−q)) compactly denote the three series16

F (x) = ZF (x, 0, 0, . . . ) =
∑
n≥0

|F [n]|x
n

n!
, F (u) = ZF (u, u2, u3, . . . ) =

∑
n≥0

|F̃ [n]|un,

(1.57)

Fq(u) = F (u/(1− q)) = ZF

(
u

1− q
,

u2

1− q2
, . . .

)
=
∑
n≥0

|Fq[n]| un

(q; q)n
, (1.58)

where

(a; q)n =
n−1∏
k=0

(1− aqk). (1.59)

16The last series in (1.57) is denoted by F̃ (u) in the classical theory of species (see (1.27) above). Since
u is a weight variable, the tilde on F is now unnecessary due to our notational convention.
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The last equality in (1.58) is due to Hélène Décoste [Déc93], and the coefficients |Fq[n]| can
be considered as “q-inventories” (or q-enumerations) of F -structures17. More precisely,
Décoste [Déc93] showed that |Fq[n]| is a polynomial in q, of degree at most n(n − 1)/2,
with nonnegative integer coefficients, which simultaneously “q-counts” (or “q-weights”)
both labelled and unlabelled F -structures in the following sense:

lim
q→1
|Fq[n]| = |F [n]|, lim

q→0
|Fq[n]| = |F̃ [n]|. (1.60)

Example 1.10. The symbol Fq in (1.58) can be thought of as a “q-analogue” of the species
F :

Fq = Fq(X) = F

(
1

1− q
X

)
= F (X + qX + q2X + q3X + · · · ). (1.61)

This means that Fq-structures are F -structures in which each underlying singleton is
weighted by qk, where k is an arbitrary integer ≥ 0.

A (q, t)-series can also be associated to any 2-sort species F (X, Y ) as follows:

Fq,t(u, v) = F

(
1

1− q
u,

1

1− t
v

)
=
∑
n,k≥0

|Fq,t[n, k]| un

(q; q)n
· vk

(t; t)k
, (1.62)

where Fq,t = Fq,t(X, Y ) = F ( 1
1−qX,

1
1−tY ) is the (q, t)-analogue of the species F (X, Y ).

Example 1.11. Take the species of finite sets F = E = E(X), α = aµ+ bν + · · · ∈ Cu,v,...,
where a, b, · · · ∈ C and µ, ν, . . . are power products in the weight variables u, v, . . . Then,
by (1.44) and Table 1,

E(α) = E(aµ+ bν + · · · ) =
1

(1− µ)a(1− ν)b · · ·
, (1.63)

and, in particular, taking µ = u, ν = v, . . . we get

E(α) = E(au+ bv + · · · ) =
1

(1− u)a(1− v)b · · ·
. (1.64)

Also, if q is a weight variable 6= u and α = u+ uq + uq2 + · · · = u/(1− q), we have

Eq(u) = E(u/(1− q)) =
∏
k≥0

1

1− uqk
=
∑
n≥0

un

(q; q)n
, (1.65)

which is one form of the classical q-analogue of the exponential series.
Furthermore, making also use of auxiliary variables x, y, z, . . . , we have, for example,

E(ax+ buv3 + cz) = exp(ax)
1

(1− uv3)b
exp(cz), a, b, c ∈ C. (1.66)

Example 1.12. Let C = C(X) be the species of cyclic permutations and consider the
weighted species Oct(X, Y ) = C(X + t(Y 2 + Y 3 + · · · )) of 2-sort octopuses18 weighted

17If F = Pk = EkE, is the species of k-subsets of sets, then |Fq[n]| = |Pq[n]| =
(
n
k

)
q

= (q;q)n
(q;q)k(q;q)n−k

,

the usual q-analogue of the binomial coefficient
(
n
k

)
.

18Such a structure is an oriented cycle made of non-trivial tentacles (i.e., linearly ordered sets made
of at least 2 points of sort Y ) and “non-tentacle points” of sort X. A better name for such a structure
would be polypus.
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according to their number of tentacles: t#tentacles, t being a weight variable. Let x, y be
auxiliary variables and u, v be weight variables distinct from t. From Table 1, it is easy
to see that

Oct(x, y) = − log

(
1− x− ty2

1− y

)
=
∑
i,j,k

ai,j,k
xi

i!

yj

j!
tk, (1.67)

Oct(u, y) = − log

(
1− u− ty2

1− y

)
−
∑
i>1

φ(i)

i
log
(
1− ui

)
=
∑
i,j,k

bi,j,ku
iy
j

j!
tk, (1.68)

Oct(x, v) = − log

(
1− x− tv2

1− v

)
−
∑
i>1

φ(i)

i
log

(
1− tiv2i

1− vi

)
=
∑
i,j,k

ci,j,k
xi

i!
vjtk,

(1.69)

Oct(u, v) = −
∑
i≥1

φ(i)

i
log

(
1− ui − tiv2i

1− vi

)
=
∑
i,j,k

di,j,ku
ivjtk, (1.70)

where

ai,j,k = #k-tentacle octopuses with i non-tentacle points, j tentacle points, (1.71)

bi,j,k = #k-tentacle octopuses with i unlabelled non-tentacle points,

j tentacle points, (1.72)

ci,j,k = #k-tentacle octopuses with i non-tentacle points,

j unlabelled tentacle points, (1.73)

di,j,k = #k-tentacle octopuses with i unlabelled non-tentacle points,

j unlabelled tentacle points. (1.74)

Note. As said before, summability conditions must be satisfied when series are substituted
into species. For example, take F = S(X), the 1-sort species of permutations, and α = 1
in (1.44). Then αk = 1k = 1 for every k ≥ 1, and, since

ZS =
∏
n≥1

1

(1− xn)
=
∏
n≥1

∑
k≥0

xkn, (1.75)

we have S(1) = ZS(1, 1, 1, . . . ) = ∞. That is, S(1) is not summable. However, S(x)
and S(u), where x is an auxiliary variable and u is a weight variable, are the familiar
summable series

S(x) =
1

1− x
= 1 + x+ x2 + · · · , S(u) =

∏
n≥1

1

(1− un)
=
∑
k≥0

p(k)uk, (1.76)

where p(k) is the number of integer partitions of k.

1.4. Overview of the remaining sections of the paper. The first goal of the present
paper is to extend the classical 2-variable “analytic” Newton binomial expansion

(1 +X)∧Y = (1 +X)Y = exp(Y log(1 +X)) =
∑
n≥0

(
Y

n

)
Xn ∈ Q[[X, Y ]] (1.77)
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to the context of 2-sort combinatorial species. In order to do so, we proceed by analogy by
simply replacing the analytic exponential and logarithmic series exp(X) and log(1 + X)
appearing in (1.77) by the species E(X), of sets, and a virtual species Lg(1 +X), due to
Joyal [Joy86], called the combinatorial logarithm.19 More precisely, the analogy consists
in replacing (1.77) by

(1 +X)↑Y =
def
E(Y Lg(1 +X)) =

∑
n≥0

(
X, Y

n

)
∈ Z‖X, Y ‖, (1.78)

in which the expressions
(
X,Y
n

)
, n = 0, 1, 2, . . . , denote the 2-sort species obtained by

collecting all terms of degree n in X in the molecular expansion of E(Y Lg(1 +X)). We
call them generalized binomial coefficients and (1 +X)↑Y is called the binomial species.20

The binomial species is denoted by

B(X, Y ) = (1 +X)↑Y. (1.79)

Our second goal is to apply the binomial species to generate various identities and to de-
fine a new combinatorial operation of exponentiation F ↑ G between species. Specifically,
the remaining sections are are arranged as follows.

− In Section 2, we recall some basic facts about the two main tools used in the present
paper: the combinatorial logarithm, denoted by Lg(1 + X), and the species of pseudo-

singletons, denoted by X̂.
The combinatorial logarithm is a virtual species defined as the inverse, under combina-

torial substitution (◦), of the species of non empty finite sets.

The species of pseudo-singletons, X̂ ∈ Q‖X ‖, was introduced by the present author

in [Lab90] as the analytic logarithm of the species E(X) of finite sets. The species X̂
of pseudo-singletons is similar to the species X of singletons and will be used to make a
connection between the two kinds of logarithms Lg(1 +X) and log(1 +X).

− In Section 3, definitions and basic properties of the binomial species B(X, Y ) and
generalized binomial coefficients

(
X,Y
n

)
are presented together with their underlying cycle

index and counting series. Various formulas and identities are obtained through special-
ization of variables and plethystic notation. These identities include the classical binomial
expansion of Newton and corresponding binomial expansions in the context of symmet-
ric functions and (q, t)-series. A computational method for the expansion of the species
B(X, Y ) and

(
X,Y
n

)
to arbitrary large degrees in X is also presented.

− In Section 4, we use the binomial species to introduce a new operation of com-
binatorial exponentiation between species, F ↑G, and study its properties with respect
to other classical combinatorial operations and underlying series. Specific examples and
applications of the combinatorial exponentiation are also presented.

19In fact, Joyal used the notation log(1 + X) for the combinatorial logarithm, but we prefer to use
Lg(1 +X) in order to distinguish it from the analytic logarithm.

20We intentionally use the “uparrow notation” (1 +X)↑Y instead of (1 +X)∧Y to make a distinction
between the species (1.78) and the series (1.77). Of course, (1 +X)↑Y 6= (1 +X)∧Y in Z‖X,Y ‖.
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2. Basic facts about the combinatorial logarithm and pseudo-singletons

2.1. Definitions and underlying cycle index series. By analogy with the fact that
log(1 +X) is the analytic substitutional inverse of

exp+(X) = exp(X)− 1 =
∑
n≥1

1

n!
Xn, (2.1)

the combinatorial logarithm is defined as follows.

Definition 2.1 ([Joy86]). The combinatorial logarithm, denoted by Lg(1 + X), is the
virtual species which is the combinatorial substitutional inverse of the species

E+(X) = E(X)− 1 =
∑
n≥1

Xn/Sn (2.2)

of nonempty finite sets. In other words,

Lg(1 +X) =
def
E<−1>

+ (X), (2.3)

where F<−1>(X) denotes the substitutional inverse of F (X) in C‖X‖. This inverse exists
and is unique by the “implicit species theorem” (see [Joy86]).

We will often use the notation

Ω(X) = Lg(1 +X), (2.4)

for the combinatorial logarithm. Then the following combinatorial equations hold:

E+◦ Ω = Ω ◦ E+ = X, E ◦ Ω = (1 + E+) ◦ Ω = 1 +X. (2.5)

Furthermore, by analogy with the fact that the species X of singletons can be thought
of as the combinatorial logarithm of the species E of sets (since E = E(X)), the species

X̂ of pseudo-singletons is defined as its analytic logarithm in the following way.

Definition 2.2 ([Lab90]). Consider the classical power series expansion of the analytic

logarithm log(1+X) =
∑

n≥1(−1)n−1Xn/n ∈ Q[[X]]. The species X̂ of pseudo-singletons
is defined by the summable series

X̂ =
def

log(E) = log(1 + E+) =
∑
n≥1

(−1)n−1

n
En

+ ∈ Q‖X‖ . (2.6)

Hence, the species of sets is the analytic exponential of that of pseudo-singletons,

E(X) = exp(X̂), (2.7)

while E(X) 6= exp(X), see (1.32). The connection between the combinatorial logarithm
Lg(1 + X) and the analytic logarithm log(1 + X) =

∑
n≥1(−1)n−1Xn/n is easily made

using the species X̂ of pseudo-singletons. In fact, if we define F̂ by X̂ ◦ F , the following
basic combinatorial equation holds:

̂Lg(1 +X) = log(1 +X), (2.8)
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as a consequence of the equalities

̂Lg(1 +X) = X̂ ◦ Ω = log(1 + E+) ◦ Ω =
∑
k≥1

(−1)k−1

k
Ek

+ ◦ Ω =
∑
k≥1

(−1)k−1

k
Xk

= log(1 +X), (2.9)

since Ek
+ ◦ Ω = (E+◦ Ω)k = Xk by (2.5).

For purposes of comparison, the underlying series of X, log(1 + X), and of their com-

binatorial counterparts X̂, Lg(1 + X), are given in Table 2, in which µ(k) denotes the
Möbius function of k.

F (X) ZF (x1, x2, x3, . . . ) F (x) F̃ (x)

X x1 x x

log(1 +X) log(1 + x1) log(1 + x) log(1 + x)

X̂
∑

i≥1
xi
i

x log( 1
1−x)

Lg(1 +X)
∑

k≥1
µ(k)
k

log(1 + xk) log(1 + x) x− x2

Table 2. Underlying series of X, log(1 +X), X̂, Lg(1 +X).

In Table 2, the fact that ZX = x1 is immediate, and the expression for Zlog(1+X) follows
from ZXn = Zn

X = xn1 by linearity. The expression for ZX̂ follows from the computation

ZX̂ = Zlog(ZE) = log(ZE) = log(exp
∑

i≥1 xi/i) =
∑

i≥1 xi/i. (2.10)

Moreover, the expression for ZLg(1+X) is a consequence of (2.8) and Möbius inversion. To
see this, define ω = ZLg(1+X) and ` = Zlog(1+X) = log(1 + x1). Then, taking the cycle
index of both sides of (2.8), we obtain∑

i≥1

ωi
i

= ` = `1, and hence
∑
n|k

ωk
k

=
`n
n
. (2.11)

Thus,

ω = ω1 =
∑
k≥1

ωk
k

∑
n|k

µ(n) =
∑
n≥1

µ(n)
∑
n|k

ωk
k

=
∑
n≥1

µ(n)

n
`n =

∑
n≥1

µ(n)

n
log(1 + xn).

(2.12)
Finally, the last entry in Table 2, x− x2, can be established as follows:

L̃g(1 + x) =
∑
k≥1

µ(k)

k
log(1 + xk) =

∑
n≥1

∑
d|n

(−1)d−1µ(n/d)
xn

n
= x− x2, (2.13)

since the Dirichlet convolution c(n) = (−1)n−1 ∗µ(n) of the two arithmetic multiplicative
functions (−1)n−1 and µ(n) satisfies c(1) = 1, c(2) = −2, and c(n) = 0 for n > 2.
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Note. One can avoid the above Dirichlet convolution in establishing (2.13) by making use
of the following lemma which involves Lambert series.

Lemma 2.1. The Möbius function µ(n) satisfies the identities

(a)
∑
n≥1

µ(n)
xn

1− xn
= x, (b)

∑
n≥1

µ(n)
xn

1 + xn
= x− 2x2. (2.14)

Proof. Identity (2.14a) is an immediate consequence of the fact that
∑

d|k µ(d) = 1 if

k = 1 and 0 if k > 1. Identity (2.14b) follows from identity (2.14a) via the computation

x− 2x2 =
∑
n≥1

µ(n)
xn

1− xn
−
∑
n≥1

µ(n)
2x2n

1− x2n

=
∑
n≥1

µ(n)
xn

1− xn

(
1− 2xn

1 + xn

)
=
∑
n≥1

µ(n)
xn

1 + xn
. �

Corollary 2.2. The Möbius function µ(n) satisfies the identities

(a) −
∑
n≥1

µ(n)

n
log(1− xn) = x, (b)

∑
n≥1

µ(n)

n
log(1 + xn) = x− x2. (2.15)

Proof. These identities follow by integration since application of the operator x d
dx

to
(2.15a) and (2.15b) gives (2.14a) and (2.14b). �

The behaviour of the combinatorial species E and Lg relative to sum, product and
derivation is similar to that of the analytic exp and log.

Lemma 2.3. Let X and Y be two sorts of singletons. Then we have

E(X + Y ) = E(X)E(Y ), exp(X + Y ) = exp(X) exp(Y ), (2.16)

d

dX
E(X) = E(X),

d

dX
exp(X) = exp(X), (2.17)

d

dX
Lg(1 +X) =

1

1 +X
,

d

dX
log(1 +X) =

1

1 +X
, (2.18)

Lg((1 +X)(1 + Y )) = Lg(1 +X) + Lg(1 + Y ), (2.19)

log((1 +X)(1 + Y )) = log(1 +X) + log(1 + Y ), (2.20)

where Lg((1 +X)(1 + Y )) is interpreted as

Lg(1 + (X + Y +XY )) = Lg(1 +X) ◦ (X + Y +XY ). (2.21)

Proof. We prove only the formulas relative to E and Lg. Formula (2.16 left) was discussed
in the introduction. Formula (2.17 left) is classical and is a consequence of the fact
that, for any finite set U , the set U t {•} with an extra outside unlabelled element
• can be canonically identified with the set U itself. Formula (2.18 left) follows from
the combinatorial chain-rule: application of d

dX
to both sides of E(Lg(1 +X)) = X gives
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E ′(Lg(1+X))·Lg′(1+X) = 1. Hence, E(Lg(1+X))·Lg′(1+X) = (1+X)·Lg′(1+X) = 1.
The proof of Equation (2.19) runs as follows: let

A = Lg((1 +X)(1 + Y )), B = Lg(1 +X) + Lg(1 + Y ).

Then by (2.5), (2.16), and (2.21),

E(A) = E ◦ Lg(1 +X) ◦ (X + Y +XY ) = (1 +X) ◦ (X + Y +XY ) = (1 +X)(1 + Y ),

E(B) = E(Lg(1 +X) + Lg(1 + Y )) = E(Lg(1 +X))E(Lg(1 + Y )) = (1 +X)(1 + Y ).

Hence, E(A) = E(B), and A = B by the uniqueness of inverse species. �

Note. By (2.18), Lg(1+X) and log(1+X) have the same derivative but their difference is
far from being a constant. Such a phenomenon is quite frequent in the theory of species.

2.2. Molecular expansions and identities involving Lg(1+X) and X̂. Joyal [Joy86]
obtained an expansion of Lg(1 + X) involving (positive and negative) species of strictly
increasing sequences in the lattices of equivalence relations on finite sets. Ira M. Gessel and
Ji Li [GL11, Li12] obtained expressions for Lg(1 +X) in terms of special classes of graphs
and cographs. The explicit expansion of the combinatorial logarithm as a countable Z-
linear combination of irreducible species (molecular expansion) has been obtained recently
by the author in [Lab13]. Its first terms, up to degree 6, are given by

Lg(1 +X) = Lg(1 +X)+ − Lg(1 +X)−, (2.22)

where

Lg(1 +X)+ = X +XE2 +XE3 + E2 ◦ E2 +X3E2 +XE4 + E2E3 +X3E3

+ 2X2E2
2 +XE5 + E2E4 + E3 ◦ E2 + E2 ◦ E3 + · · · , (2.23)

Lg(1 +X)− = E2 + E3 +X2E2 + E4 +X2E3 +XE2
2 + E5 +X4E2 +X2E4

+ 2XE2E3 + E2 · (E2 ◦ E2) + E6 + E2 ◦ (XE2) + · · · , (2.24)

in which, for example, E3 ◦ E2 = X6/(S3 o S2), where ◦ denotes substitution of species
and o denotes the wreath product of groups.

One of the main classical applications of the combinatorial logarithm is to see that any
expansion of it provides a kind of intricate “inclusion-exclusion” principle by which one
can express the species F conn of connected F -structures in terms of the species F itself.
More precisely, if F = 1 + F+ is a species satisfying F (0) = 1 and made of “connected
structures”, then

F conn = Lg(F ) = Lg(1 + F+) = Lg(1 +X) ◦ F+, (2.25)

and (2.23)–(2.25) can be used to express F conn in terms of F . One of the most interesting
facts about (2.25) is that it can be used to define a (in general, virtual) species F conn

under the sole condition F (0) = 1 even in the case when F is not of the form F = E(G).
That is, even when F -structures are not sets of “connected” structures. In particular,

Lg(1 +X) = (1 +X)conn. (2.26)
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By (2.25) and Table 2, the corresponding underlying series for the species F conn of con-
nected F -structures are given by the formulas

F conn(x) = log(F (x)), ZF conn(x1, x2, x3, . . . ) =
∑
k≥1

µ(k)

k
logZF (xk, x2k, x3k, . . . ).

(2.27)

Example 2.1. The virtual species, −Lg(1−X), turns out to be closely related to Lyndon
words and free Lie algebras and has been called Lie(X) by Joyal [Joy86]. Recall that
a Lyndon word [Lyn54] is an aperiodic word on a totally ordered alphabet which is
lexicographically minimal among all its circular shifts. Lyndon words can be used to
build a basis for free Lie algebras. The following combinatorial equations hold:

Lie(X) = −Lg(1−X) = Lg

(
1

1−X

)
= Lg(L(X)), (2.28)

where L(X) = 1 +X +X2 + · · · is the species of linear orders. Hence, we can write

Lie = Lconn, (2.29)

so that Lie can be thought of as the virtual species of “connected” linear orders and

ZLie(x1, x2, x3, . . . ) =
∑
k≥1

µ(k)

k
log

1

1− xk
, Lie(x) = log

1

1− x
, L̃ie(x) = x, (2.30)

by Corollary 2.2, since L̃ie(x) = −
∑

k≥1
µ(k)
k

log 1
1−xk . Equations (2.28)–(2.30) are of fun-

damental importance. They will be used later in our treatment of the classical cyclotomic
identity and a symmetric extension of it, due to Volker Strehl (see Example 3.1 below).

On the other hand, the molecular expansion of the species X̂ of pseudo-singletons is
much simpler than that of the combinatorial logarithm. It can be obtained by simply
expanding (2.6) as a sum of monomials in E1 = X,E2, E3, . . . . Its first few terms, up to
degree 6, are given by

X̂ = X̂+ − X̂−, (2.31)

where

X̂+ = X + E2 +
1

3
X3 + E3 +X2E2 + E4 +

1

5
X5 +X2E3 +XE2

2 + E5

+X4E2 +X2E4 + 2XE2E3 +
1

3
E3

2 + E6 + · · · , (2.32)

X̂− =
1

2
X2 +XE2 +

1

4
X4 +XE3 +

1

2
E2

2 +X3E2 +XE4 + E2E3

+
1

6
X6 +X3E3 +

3

2
X2E2

2 +XE5 + E2E4 +
1

2
E2

3 + · · · . (2.33)

In order to collect the homogeneous components of degree m = 1, 2, . . . in the expansion

(2.6) for X̂ we proceed as follows. Consider the species Em(tX) of finite m-sets of single-
tons in which each singleton has weight t. Since the weights behave multiplicatively, the
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weight of each m-set is tm. This means that the following expansion holds in Nt||X||:

E(tX) = 1 + E+(tX) = 1 + tE1(X) + t2E2(X) + · · ·+ tmEm(X) + · · · . (2.34)

Now, denote by Pm(X)/m ∈ Q||X|| the coefficient of tm in the expansion of the analytic
logarithm of (2.34) in ascending powers of t,

log(E(tX)) = log(1 + E+(tX)) =
∑
m≥1

tmPm(X)

m
. (2.35)

Equivalently, we can write

E(tX) = exp

(∑
m≥1

tmPm(X)

m

)
. (2.36)

Application of the differential operator t d
dt

to both sides of (2.34), taking (2.36) into
account, produces the combinatorial equality∑

m≥1

mtmEm(X) =

(∑
i≥1

tiPi(X)

)
·

(∑
j≥0

tjEj(X)

)
. (2.37)

Comparing the coefficient of tm on both sides, we deduce the following recursive scheme
for the computation of Pm(X):

P1 = X, mEm = Pm + E1Pm−1 + E2Pm−2 + · · ·+ Em−1P1, m > 1, (2.38)

which exhibits a similarity with the Newton-type relations between homogeneous and
power sum symmetric functions hm and pm.21 Note that this implies that Pm = Pm(X) ∈
Z||X|| are virtual species of degree m, and that Pm(1) = Em(1) = 1. Also, letting t = 1
in (2.35) and (2.36), we get the two fundamental equations

X̂ =
∑
m≥1

1

m
Pm(X), (2.39)

E(X) = exp

(∑
m≥1

1

m
Pm(X)

)
. (2.40)

An important and very useful property of the virtual species Pm is that they are plethys-
tic linear of order m in the following sense.

Proposition 2.4 ([Lab08]). For every power series α, β, · · · ∈ Cu,v,... and sorts of single-
tons X, Y, . . . , we have

Pm ◦ (αX + βY + · · · ) = αmPm(X) + βmPm(Y ) + · · · , (2.41)

where the notational convention (1.47)–(1.48) for αm, βm, . . . is used. In particular:

21The Newton relation reads mhm = pm + h1pm−1 + · · · + hm−1p1. In fact, the species Em(X) and
Pm(X) can be seen as “combinatorial liftings” to Z||X|| of the series hm and pm (see (2.42)). Note that
ZPm = xm, but Pm(Pn(X)) 6= Pmn(X) in general, while (pm)n = pmn.
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(a) Taking α = u+ v + . . . , 0 = β = γ = · · · , X := 1, we have

Pm(u+ v + · · · ) = um + vm + · · · = pm(u, v, . . . ), (2.42)

which is the usual m-th power sum symmetric function in the variables u, v, . . . .
(b) Taking α = a, β = b, . . . , where a, b, . . . are complex numbers, we have

Pm ◦ (aX + bY + · · · ) = aPm(X) + bPm(Y ) + · · · , (2.43)

which means that Pm is C-linear in the usual sense.
(c) Moreover, X̂ is also C-linear:

(aX + bY + · · · )̂= aX̂ + bŶ + · · · . (2.44)

Proof. By (1.14) we have E(kX) = E(X)k for any k ∈ N. Hence, replacing t in (2.36) by
any power product µ in the variables u, v, . . . , we obtain

E(kµX) = E(µX)k = exp

(
k
∑
m≥1

µmPm(X)

m

)
= exp

(∑
m≥1

kµmPm(X)

m

)
.

More generally, using again (1.14), it follows that, for α = kµ+ `ν+ · · · ∈ Nu,v,..., we have

E(αX) = E((kµ+ `ν + · · · )X) = E(kµX)E(`νX) · · · (2.45)

= exp

(∑
m≥1

(kµm + `νm + · · · )Pm(X)

m

)
= exp

(∑
m≥1

αmPm(X)

m

)
. (2.46)

Since the coefficient ci,j,... = ci,j,...(k, `, . . . ) of each individual term

ωXn/H =

(∑
i,j,...

ci,j,...u
ivj · · ·

)
Xn/H

appearing in the full molecular expansions of (2.45)–(2.46) is a polynomial22 in k, `, . . .
with coefficients in Q, we can replace k, `, . . . by any complex numbers a, b, . . . and (2.45)–
(2.46) hold for every α ∈ Cu,v,.... Finally, (2.41) follows from the fact that

E(αX + βY + · · · ) = E(αX)E(βY ) · · · . �

Note. Using notational convention (1.47)–(1.48), we can define Pm ◦ (αX + βY + · · · ) by
(2.41) for any α, β, · · · ∈ Cx,y,...;u,v,..., where x, y, . . . are auxiliary variables.

The following computational scheme for the expansion of the combinatorial logarithm,
Lg(1 +X), will be used in the following sections of this paper. It is a consequence of the
plethystic linearity of the virtual species Pm(X).

22This is essentially due to the fact

E(kµX) = E(µX)k = (1 + E+(µX))k =
∑
i≥0

k(k − 1) · · · (k − i+ 1)

i!
E+(µX)i.
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Proposition 2.5 ([Lab08]). Let

Lg(1 +X) = Ω(X) = Ω1(X) + Ω2(X) + · · ·+ Ωn(X) + · · · , (2.47)

where Ωn(X) is of degree n in X. Then Ω1 = X, and, for n > 1, we have

Ωn(X) =
(−1)n−1

n
Xn −

∑
1<d|n

1

d
Pd ◦ Ωn/d(X). (2.48)

Proof. We give a more direct proof than that given in [Lab08]. By (2.8), (2.39), and
(2.47), we can write

̂Lg(1 +X) =

(∑
d≥1

1

d
Pd

)
◦

(∑
k≥1

Ωk

)
= log(1 +X). (2.49)

Now, since Pd ◦ Ωk is of degree kd in X, collecting terms of degree n in X on both sides
of (2.49), we get ∑

d|n

1

d
Pd ◦ Ωn/d(X) =

(−1)n−1

n
Xn,

from which (2.48) immediately follows since P1(X) = X. �

The reader is referred to [Lab08] and [Lab13] for more information about pseudo-
singletons and the combinatorial logarithm together with applications to the computa-
tion of the molecular expansion of certain classes of species (including rooted trees, for
example).

3. The binomial species, basic properties, and associated expansions

3.1. Definition of the binomial species and generalized binomial coefficients.
The classical Newton binomial expansion of the 2-variable series

(1 +X)∧Y = (1 +X)Y = exp(Y log(1 +X)) (3.1)

can be stated as

(1 +X)Y =
∑
n≥0

(
Y

n

)
Xn, where

(
Y

n

)
=
Y (Y − 1)(Y − 2) · · · (Y − n+ 1)

n!
. (3.2)

Hence, (1 +X)Y ∈ Q[[X, Y ]]. By analogy, we define the 2-sort binomial species B(X, Y )
and associate to it “generalized binomial coefficients” as follows.

Definition 3.1. Let X and Y be two sorts of singletons. The binomial species, B(X, Y ) =
(1 +X)↑Y , is a (virtual) species defined by the combinatorial equation23

(1 +X)↑Y = E(Y Lg(1 +X)), (3.3)

23Recall that the notation (1 + X)↑Y is used instead of (1 + X)∧Y = exp(Y log(1 + X)) ∈ Q[[X,Y ]]
to put the emphasis on the fact that B(X,Y ) is a species, not a power series in the variables X and Y .
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where E = E(X) is the species of finite sets and Lg(1+X) is the combinatorial logarithm.
The generalized binomial coefficients,

(
X,Y
n

)
, n = 0, 1, 2, . . . , are the species defined by

(1 +X)↑Y =
∑
n≥0

(
X, Y

n

)
, (3.4)

where
(
X,Y
n

)
is the sum of the terms of degree n in the variable X in the molecular

expansion of B(X, Y ).

Making use of first terms of the expansion of the combinatorial logarithm in (2.23)–
(2.24) and the basic properties of the species E of finite sets, the first few generalized
binomial coefficients are(
X, Y

0

)
= 1,

(
X, Y

1

)
= XY,

(
X, Y

2

)
= −Y E2(X) + E2(XY ), (3.5)(

X, Y

3

)
=− Y E3(X) +XY E2(X)−XY 2E2(X) + E3(XY ), (3.6)(

X, Y

4

)
=− Y E4(X) + Y E2 ◦ E2(X) +XY E3(X)−X2Y E2(X)−XY 2E3(X)

+X2Y 2E2(X) + Y 2(E2(X))2 − E2(Y E2(X))− Y E2(X)E2(XY ) + E4(XY ).
(3.7)

Note. For each n,
(
X,Y
n

)
is a finite sum, and, since the basic combinatorial operations on

species are compatible with the corresponding analytic operations on formal power series,
we see, by Tables 1 and 2, that the underlying exponential generating series B(x, y) of
B(X, Y ) and

(
x,y
n

)
of
(
X,Y
n

)
satisfy

B(x, y) = (1 + x)y,

(
x, y

n

)
=

(
y

n

)
xn. (3.8)

In fact, B(X, Y ) and
(
X,Y
n

)
are (much) more refined mathematical objects than their

analytic counterparts (3.8). For example, by regrouping similar terms in the computation
of the underlying exponential power series of (3.6), we get(

x, y

3

)
=

(
X, Y

3

)
X=x,Y=y

= (−yE3(x) + xyE2(x))− xy2E2(x) + E3(xy)

= (−yx
3

3!
+ xy

x2

2!
)︸ ︷︷ ︸−xy2x

2

2!
+

(xy)3

3!

= y
x3

3
− y2x

3

2
+ y3x

3

6
=

1

3!
y(y − 1)(y − 2)x3 =

(
y

3

)
x3.

Such nice factorizations do not occur in general for
(
X,Y
n

)
. For example, X or Y cannot

be factored out in
(
X,Y
n

)
for each value of n ≥ 2.



BINOMIAL SPECIES AND COMBINATORIAL EXPONENTIATION 25

3.2. Basic properties of B(X, Y ) and
(
X,Y
n

)
. Although structurally more complicated

than their analytic counterparts, the binomial species and generalized binomial coefficients
share with them some basic identities.

Proposition 3.1. The binomial species B(X, Y ) = (1 +X)↑Y satisfies the equations

(1 +X)↑(Y + Z) = (1 +X)↑Y · (1 +X)↑Z, (3.9)

((1 +X)(1 + Y ))↑Z = (1 +X)↑Z · (1 + Y )↑Z, (3.10)

(1 +X)↑(Y · Z) = ((1 +X)↑Y )↑Z, (3.11)

∂

∂X
(1 +X)↑Y = (1 +X)↑Y · Y

1 +X
, (3.12)

∂

∂Y
(1 +X)↑Y = (1 +X)↑Y · Lg(1 +X), (3.13)

where X, Y, Z denote three sorts of singletons.

Proof. Formulas (3.9)–(3.10) follow from (1.14). Indeed, let Ω = Ω(X) = Lg(1 + X).
Then

(1 +X)↑(Y + Z) = E((Y + Z)Ω(X)) = E(Y Ω(X) + ZΩ(X))

= E(Y Ω(X))E(Y Ω(X)) = (1 +X)↑Y · (1 +X)↑Z,

((1 +X)(1 + Y ))↑Z = (1 + (X + Y +XY ))↑Z = E(Z Lg((1 +X + Y +XY ))

= E(ZΩ(X) + ZΩ(Y )) = E(ZΩ(X))E(ZΩ(Y ))

= (1 +X)↑Z · (1 + Y )↑Z.

The proof of (3.11) is more involved:

((1 +X)↑Y )↑Z = (1 +X)↑Z|X:=E+(Y Ω(X)) = E(ZΩ(X))|X:=E+(Y Ω(X))

= E(Z · Ω ◦ E+(Y Ω(X))) = E(Z · Y Ω(X)) = (1 +X)↑(Y · Z),

since Ω ◦ E+(X) = X. The differential formulas (3.12)–(3.13) are consequences of the
combinatorial chain-rule and (2.17)–(2.18):

∂

∂X
(1 +X)↑Y =

∂

∂X
E(Y Lg(1 +X)) = E(Y Lg(1 +X))

∂

∂X
Y Lg(1 +X)

= (1 +X)↑Y · Y

1 +X
,

∂

∂Y
(1 +X)↑Y =

∂

∂Y
E(Y Lg(1 +X)) = E(Y Lg(1 +X))

∂

∂Y
Y Lg(1 +X)

= (1 +X)↑Y · Lg(1 +X). �

Corollary 3.2. The binomial coefficients
(
X,Y
n

)
satisfy the “Vandermonde-like” identities(

X, Y + Z

n

)
=
∑
i+j=n

(
X, Y

i

)(
X,Z

j

)
, n = 0, 1, 2, . . . . (3.14)



26 GILBERT LABELLE

In particular, substitution of Z := 1 gives(
X, Y + 1

n

)
=

(
X, Y

n

)
+

(
X, Y

n− 1

)
X, n = 1, 2, . . . . (3.15)

Proof. For (3.14), simply collect terms of degree n in X on both sides of (3.9), for each
n ≥ 0. Formula (3.15) follows from (3.14) using the fact that

(1 +X)1 = E(1 · Lg(1 +X)) = 1 +X =

(
X, 1

0

)
+

(
X, 1

1

)
+ 0,

so that
(
X,1

0

)
= 1,

(
X,1

1

)
= X, and

(
X,1
j

)
= 0 for j ≥ 2. �

Note. Taking underlying exponential power series of identities (3.14) and (3.15), we are
led to the classical identities(

y + z

n

)
=
∑
i+j=n

(
y

i

)(
z

j

)
,

(
y + 1

n

)
=

(
y

n

)
+

(
y

n− 1

)
, (3.16)

since
(
x,y
n

)
=
(
y
n

)
xn by (3.8).

Corollary 3.3. The combinatorial partial derivative ∂
∂X

(
X,Y
n

)
is given by

∂

∂X

(
X, Y

n

)
= Y

n−1∑
i=0

(−1)iX i

(
X, Y

n− 1− i

)
. (3.17)

Proof. Since the operator ∂
∂X

decreases the degree in X of its operand by 1, the partial

derivative ∂
∂X

(
X,Y
n

)
is the sum of terms of X- degree n− 1 in ∂

∂X
(1 +X)↑Y . Explicitly, by

(3.12) we have

∂

∂X

(
X, Y

n

)
= sum of terms of X- degree n− 1 in Y

∑
i≥0

(−1)iX i
∑
j≥0

(
X, Y

j

)
. �

Corollary 3.4. The binomial species B(X, Y ) satisfies

B(−X,−Y ) = B(X/(1−X), Y ) (3.18)

= B(X, Y )B(X2, Y )B(X4, Y )B(X8, Y ) · · · . (3.19)

Proof. First, by (1.12), we have

1

1−X
= 1 +X +X2 +X3 + · · · = 1 +X · (1 +X +X2 + · · · ) = 1 +

X

1−X
.

Hence, by (1.13) and (3.9) we get

B(−X,−Y ) = E(−Y Lg(1−X)) = 1/E(Y Lg(1−X)) = 1/(1−X)↑Y

=

(
1

1−X

)↑
Y =

(
1 +

X

1−X

)↑
Y = B(X/(1−X), Y ),
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which establishes (3.18). On the other hand, (3.19) follows by a passage to the limit,(
1

1−X

)↑
Y = ((1 +X)(1 +X2)(1 +X4)(1 +X8) · · · )↑Y

= (1 +X)↑Y · (1 +X2)↑Y · (1 +X4)↑Y · (1 +X8)↑Y · · ·
= B(X, Y )B(X2, Y )B(X4, Y )B(X8, Y ) · · · ,

making use of (3.10). �

Corollary 3.5. The cycle index series ZB = ZB(x1, x2, x3, . . . ; y1, y2, y3, . . . ) of the bino-
mial species B(X, Y ) is given by

ZB = Z(1+X)↑Y =
∏
k≥1

(1 + xk)
1
k

∑
d|k µ(d)yk/d . (3.20)

Proof. By Tables 1 and 2, and plethystic substitution, we have

ZB = ZE(Y Lg(1+X)) = ZE ◦ (ZY · ZLg(1+X)) = exp
∑
i≥1

1
i
(ZY · ZLg(1+X))i

= exp
∑
i≥1

1
i
yi ·
∑
j≥1

µ(j)
j

log(1 + xij) = exp
∑
k≥1

1

k

(∑
ij=k

µ(j)yi

)
log(1 + xk)

=
∏
k≥1

(1 + xk)
1
k

∑
ij=k µ(j)yi . �

3.3. Formulas obtained by specializing variables in B(X, Y ). A variety of more
or less “exotic” formulas, identities and q-identities will now be obtained by substitut-
ing power series for X and Y in the binomial species B(X, Y ) and by making use of
Proposition 3.1, Corollaries 3.2–3.4 together with Tables 1 and 2.

Making use of the notational convention (1.46)–(1.48), we state and prove first the
following general proposition in which

(1 + α)↑β means (1 +X)↑Y |X=α,Y=β, and

(
α, β

n

)
means

(
X, Y

n

)∣∣∣∣
X=α,Y=β

, (3.21)

while (1 + α)β means the usual “analytic/algebraic exponentiation” of power series:∑
n≥0

β(β − 1)(β − 2) · · · (β − n+ 1)

n!
αn =

∑
n,k≥0

s(n, k)

n!
αnβk, (3.22)

in which the s(n, k)’s are the (signed) Stirling numbers of the first kind.

Proposition 3.6 (Substitution of series in B). Let B(X, Y ) = (1 + X)↑Y =∑
n≥0

(
X,Y
n

)
be the binomial species, u, v, q, t, . . . be weight variables, and x, y, . . . be aux-

iliary variables. Then, for power series α, β ∈ Cx,y,...;u,v,q,t,..., we have, assuming summa-
bility,

B(α, β) = (1 + α)↑β =
∏
k≥1

(1 + αk)
1
k

∑
d|k µ(d)βk/d =

∑
n≥0

(
α, β

n

)
. (3.23)
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The binomial coefficients
(
α,β
n

)
, n ≥ 0, are series satisfying the recursive scheme(

α, β

0

)
= 1,

(
α, β

n

)
=

1

n

[
θ(1)

(
α, β

n− 1

)
+ · · ·+ θ(`)

(
α, β

n− `

)
+ · · ·

]
, n > 0, (3.24)

in which the θ(`)’s are explicitly given by

θ(1) = α1β1, θ(2) = α2β2 − α2
1β1 − α2β1, θ(3) = α3β3 + α3

1β1 − α3β1, (3.25)

θ(`) =
∑
ijk=`

(−1)i−1µ(j)αijkβk, ` ≥ 1. (3.26)

Proof. Formula (3.23) is a direct consequence of formula (3.20) for the cycle index series of
B(X, Y ) together with the substitution formula (1.46), taking into account the notational
convention (1.47)–(1.48). The recursive scheme described by (3.24)–(3.26) is more delicate
and can be established by introducing first an extra weight variable, s, in (3.23) as follows:

B(sα, β) = (1 + sα)↑β =
∏
k≥1

(1 + skαk)
1
k

∑
d|k µ(d)βk/d =

∑
n≥0

(
α, β

n

)
sn, (3.27)

where the last equality is due to the fact that
(
X,Y
n

)
is of degree n in X. Then application

of the differential operator s d
ds

to (3.27) gives∑
n≥1

n

(
α, β

n

)
sn = s

d

ds

∏
k≥1

(1 + skαk)
γ(k) =

∑
m≥1

mγ(m)
αms

m

1 + αmsm
·
∏
k≥1

(1 + skαk)
γ(k)

=
∑
m≥1

mγ(m)
αms

m

1 + αmsm
·
∑
ν≥0

(
α, β

ν

)
sν , (3.28)

where γ(m) = 1
m

∑
d|m µ(d)βm/d. Expanding (3.28) according to powers of s, we obtain∑

n≥1

n

(
α, β

n

)
sn =

∑
i,j,k,ν≥1

(−1)i−1µ(j)αijkβk

(
α, β

ν

)
sijk+ν . (3.29)

We conclude by equating the coefficient of sn in both sides of (3.29) using the fact that
ijk + ν = n if and only if ν = n− ` and ijk = `. �

Note. While summability is needed in the infinite product (3.23), no summability con-
ditions are needed in (3.24) since each

(
X,Y
n

)
is of finite degree in X and Y . Hence the

binomial coefficients
(
α,β
n

)
are always well-defined series. For example, let v be a weight

variable, then taking α = 1 and β = v in (3.23), we have

B(1, v) = (1 + 1)↑v =
∏
k≥1

2
1
k

∑
d|k µ(d)vk/d = 2

∑
n≥1(

∑
i≥1 µ(i)/i)vn/n, (3.30)

and the coefficient of vn on the right-hand side of (3.30) is not a finite sum but a (condi-
tionally convergent) infinite series 1

n

∑
i≥1 µ(i)/i. Hence B(1, v) is not well-defined. How-

ever, the corresponding binomial coefficients
(

1,v
n

)
are well-defined and can be computed
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recursively via(
1, v

0

)
= 1,

(
1, v

n

)
=

1

n

[
θ(1)

(
1, v

n− 1

)
+ · · ·+ θ(`)

(
1, v

n− `

)
+ · · ·

]
, n > 0, (3.31)

in which the θ(`)’s are given by

θ(`) =

{
v`, ` odd ≥ 1,

v` − 2v`/2, ` even ≥ 2.
(3.32)

Example 3.1. The cyclotomic identity reads

1

1− au
=
∏
n≥1

(
1

1− un

)M(a,n)

, (3.33)

where

M(a, n) =
1

n

∑
d|n

µ(n/d)ad, n = 1, 2, . . . (3.34)

are the (aperiodic) necklace polynomials. These polynomials are also called the Lyndon
polynomials since M(a, n) is the number of Lyndon words of length n over an a-letter
ordered alphabet, for a ∈ N (see Example 2.1 above).

Now let a be a complex variable and u be a weight variable. The cyclotomic identity is
a special case of (3.23) of Proposition 3.6, which is seen by taking α = −au and β = −1.
Indeed, we have

1

1− au
= B(−au,−1) = exp

∑
i,j≥1

µ(i)

ij
log

1

1− auij
= exp

∑
i,j,k≥1

µ(i)

ijk
akuijk

= exp

(∑
n≥1

(∑
j≥1

unj

j

)(
1

n

∑
ik=n

µ(i)ak

))
=
∏
n≥1

(
1

1− un

)M(a,n)

.

Stated differently, this is a consequence of the combinatorial identities (see (2.28))

1

1− aX
= L(aX) = B(−aX,−1) = E ◦ Lg

(
1

1− aX

)
= E(Lie(aX)). (3.35)

To see this, take a totally ordered alphabet A of a letters (for a ∈ N). Then upon
evaluation of (3.35) at X = u = u · 1, each singleton becomes unlabelled and assigned a
weight u, and 1/(1− au) = E(Lie(au)). Since Lie = Lconn (see (2.29)), this means that

words over A are multisets of “connected” words over A. (3.36)

This fact was first stated by de Bruijn and Klarner [deBK82]. In their paper, connected
words over A are called aperiodic cycles (see also [FS91]). Since Lyndon words over A
are totally ordered by the induced lexicographic order, multisets of Lyndon words can be
canonically written as weakly decreasing sequences of Lyndon words. This corresponds
to the classical Lyndon theorem.
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Theorem 3.7 (Lyndon [Lyn54]). Every word ω over a totally ordered alphabet A has a
unique factorization

ω = λ1λ2 · · ·λk, (3.37)

where λi is a Lyndon word over A, 1 ≤ i ≤ k, and the sequence (λi)i=1,...,k is lexicograph-
ically weakly decreasing

λ1 ≥ λ2 ≥ · · · ≥ λk. (3.38)

The number k of Lyndon words in factorization (3.37) is called the Lyndon index of the
word ω and is denoted ind(ω).

Since B(−au,−1) = (1− au)−1 is a geometric series, it immediately follows that(
−au,−1

n

)
= anun and

(
−a,−1

n

)
= an. (3.39)

Example 3.2. Using combinatorial arguments, independent from Pólya theory, Strehl
[Str92] proved an unexpected duality between the alphabet size, a, and a Lyndon in-
dex counter, t, about words on a totally ordered alphabet. As a by-product of this fact,
he obtained a more general “symmetric version” of the cyclotomic identity:∏

n≥1

(
1

1− aun

)M(t,n)

=
∏
n≥1

(
1

1− tun

)M(a,n)

. (3.40)

Algebraically speaking, (3.40) can independently be checked by noting that its left-hand
side can be expanded in the form∏

n≥1

(
1

1− aun

)M(t,n)

= exp
∑
i,j,k≥1

aitjµ(k)
uijk

ijk
, (3.41)

which is obviously symmetric in a, t. Identity (3.33) corresponds to the case where t = 1.
From the point of view of species and Pólya theory, the left-hand side of (3.40) follows
from the combinatorial equation(

1

1− aX

)↑
tY = L(aX)↑tY = B(−aX,−tY ) = E ◦ tY Lg

(
1

1− aX

)
= E(tY Lie(aX)),

(3.42)
where a is a complex variable and t is a weight variable. Then upon evaluation of (3.42)
at X = u = u · 1 and Y = 1, this means (see (2.29)) that

words over A with index k are k-multisets of Lyndon words over A. (3.43)

Equivalently, this corresponds to the following “enrichment” of the cyclotomic identity:(
1

1− au

)↑
t =

∏
n≥1

(
1

1− tun

)M(a,n)

=
∑
n≥0

sn(a, t)un, (3.44)
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where the sn(a, t) are the symmetric polynomials in a and t defined by Strehl in [Str92].24

In fact, we have (
−au,−t

n

)
= sn(a, t), n ≥ 0. (3.45)

We now illustrate Proposition 3.6 in very specific simple cases. Let x, y be auxiliary
variables and u, v be weight variables, and consider the four possibilities

(1 + x)↑y, (1 + u)↑y, (1 + x)↑v, (1 + u)↑v, (3.46)

according to the values assigned to α and β.

Example 3.3. Let x and y be auxiliary variables. Then

(1 + x)↑y = (1 + x)y =
∑
n≥0

(
x, y

n

)
,

(
x, y

n

)
=

(
y

n

)
xn,

(
x, y

0

)
= 1, (3.47)(

x, y

n

)
=

1

n

[
xy

(
x, y

n− 1

)
+ · · ·+ (−1)`−1x`y

(
x, y

n− `

)
+ · · ·

]
, n > 0. (3.48)

Proof. Let α = x and β = y in (3.23)–(3.26). Since α1 = x, β1 = y, αk = 0 and βk = 0
for k > 1, it follows that θ(`) = (−1)`−1x`y. This corresponds to the classical version of
the formal binomial expansion in the variables x and y. �

Example 3.4. Let u be a weight variable and y be an auxiliary variable. Then,

(1 + u)↑y =
∏
k≥1

(1 + uk)yµ(k)/k = eu(1−u)y =
∑
n≥0

(
u, y

n

)
, (3.49)(

u, y

0

)
= 1,

(
u, y

1

)
= uy,

(
u, y

n

)
=

1

n

[
uy

(
u, y

n− 1

)
− 2u2y

(
u, y

n− 2

)]
, n > 1. (3.50)

Proof. Let α = u and β = y in (3.23)–(3.26). Since αk = uk for k ≥ 1 and βk = 0 for
k > 1, the first equality in (3.49) follows from the fact that 1

k

∑
d|k µ(d)βk/d = yµ(k)/k.

Taking the analytic logarithm, the second equality in (3.49) is equivalent to∑
k≥1

y
µ(k)

k
log(1 + uk) = y

∑
k,m≥1

(−1)m−1u
km

km
= (u− u2)y,

which is equivalent to the last equality in (2.14b) of Corollary 2.2. Recurrence (3.50) can
be proved via (3.24), or, more simply, by using the fact that

u
∂

∂u
eu(1−u)y = y(1− 2u)eu(1−u)y. �

Example 3.5. Let x be an auxiliary variable and v be a weight variable. Then,

(1 + x)↑v = (1 + x)v =
∑
n≥0

(
x, v

n

)
,

(
x, v

n

)
=

(
v

n

)
xn,

(
x, v

0

)
= 1, (3.51)(

x, v

n

)
=

1

n

[
xv

(
x, v

n− 1

)
+ · · ·+ (−1)`−1x`v

(
x, v

n− `

)
+ · · ·

]
, n > 0. (3.52)

24In his paper, Strehl used the variables q, λ instead of a, t.
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Proof. Let α = x and β = v in (3.23)–(3.26). Since αk = 0 for k > 1 and βk = vk for
k ≥ 1, it follows that θ(`) = (−1)`−1x`v. This again corresponds to the classical version
of the formal binomial expansion in x and v. �

Example 3.6. Let u and v be weight variables. Then,

(1 + u)↑v =
∏
k≥1

(1 + uk)
1
k

∑
d|k µ(d)vk/d =

1− u2v

1− uv
=
∑
n≥0

(
u, v

n

)
, (3.53)(

u, v

0

)
= 1,

(
u, v

1

)
= uv,

(
u, v

n

)
= un(vn − vn−1), n > 1. (3.54)

Proof. Let α = u and β = v in (3.23)–(3.26). Since αk = uk and βk = vk, it follows that

θ(`) =
∑
ijk=`

(−1)i−1µ(j)uijkvk = u`
∑
ijk=`

(−1)i−1µ(j)vk

=

{
u`v`, ` odd ≥ 1,

u`(v` − 2v`/2), ` even ≥ 2.
(3.55)

This implies (3.54), which, in turn, implies (3.53). �

Example 3.7. Of course, (q, t)-analogues of the above four examples follow by suitable
substitutions. For example, the substitution v := v/(1− t) in (3.53) gives

B0,t(u, v) = (1 + u)↑(v/(1− t)) =
∏
i≥0

1− u2vti

1− uvti
=
∑
n≥0

(
u, v

n

)
0,t

. (3.56)

Example 3.8. More generally, let Bq,t(X, Y ) = B( 1
1−qX,

1
1−tY ) =

∑
n≥0

(
X,Y
n

)
q,t

be the

(q, t)-analogue of the binomial species. Then making the substitutions α := α/(1 − q),
β := β/(1− t) in Proposition 3.6, it immediately follows that

Bq,t(α, β) =

(
1 +

α

1− q

)↑(
β

1− t

)
=
∏
k≥1

(
1 +

αk
1− qk

) 1
k

∑
d|k µ(d)

βk/d

1−tk/d

=
∑
n≥0

(
α, β

n

)
q,t

,

(3.57)(
α,β
0

)
q,t

= 1, and, for n > 0,(
α, β

n

)
q,t

=
1

n

[
θq,t(1)

(
α, β

n− 1

)
q,t

+ · · ·+ θq,t(`)

(
α, β

n− `

)
q,t

+ · · ·

]
, (3.58)

θq,t(`) =
∑
ijk=`

(−1)i−1µ(j)

(
αjk

1− qjk

)i
βk

1− tk
, ` ≥ 1. (3.59)

Example 3.9. The classical q-analogue
(
n
k

)
q

appears in expressions of the form (1 + α)↑β

in various “disguises”. For example, let u, v, q be weight variables. Then one can easily
check that

Eq(u)↑(1 + v) =

(
1 + E+

(
u

1− q

))↑
(1 + v) =

∑
n,k≥0

(
n

k

)
q

unvk

(q; q)n
. (3.60)
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Also, a variant of the q-binomial expansion can be written in the form

(En)q(u+ v) =
n∑
k=0

ukvn−k

(q; q)k(q; q)n−k
. (3.61)

Example 3.10. Since B(x, y) = (1 + x)y =
∑

n,k≥0 bn,k x
nyk/n! k!, where bn,k = k! c(n, k),

and c(n, k) are the unsigned Stirling numbers of the first kind. In view of (1.62), the
coefficients bn,k(q, t) in the expansion

Bq,t(u, v) =

(
1 +

u

1− q

)↑(
v

1− t

)
=
∑
n,k≥0

bn,k(q, t)
un

(q; q)n
· vk

(t, t)k
(3.62)

can be considered as (q, t)-analogues of the numbers k! c(n, k).

Remark 1. One must be careful when manipulating equalities involving substitutions of
series into species. Each resulting equality must follow from a corresponding combinatorial
equality about species. For example, given three weight variables, u, v, w,

(1 + u)↑v =
1− u2v

1− uv
does not imply (1 + u)↑(v + w) =

1− u2(v + w)

1− u(v + w)
. (3.63)

The correct equations are

(1 + u)↑(v + w) =
1− u2v

1− uv
· 1− u2w

1− uw
= (1 + u)↑v · (1 + u)↑w, (3.64)

since B(X, Y + Z) = B(X, Y ) · B(X,Z). However, of course, if F (X, Y, Z) = 1−X2(Y+Z)
1−X(Y+Z)

,

then F (u, v, w) = 1−u2(v+w)
1−u(v+w)

.

3.4. The computation of B(X, Y ) to arbitrary large degrees in X. We now de-
scribe an efficient method to compute the species B(X, Y ) up to arbitrary large degrees
in X by “lifting” (3.24) up to a combinatorial scheme which expresses(

X, Y

n

)
in terms of

(
X, Y

n− 1

)
,

(
X, Y

n− 2

)
, . . . , n > 0. (3.65)

Proposition 3.8. The following recursive scheme holds :
(
X,Y

0

)
= 1, and, for n > 1,(

X, Y

n

)
=

1

n

[
Θ(1)

(
X, Y

n− 1

)
+ Θ(2)

(
X, Y

n− 2

)
+ · · ·+ Θ(k)

(
X, Y

n− k

)
+ · · ·

]
, (3.66)

where the coefficients Θ(k) = Θ(k,X, Y ) are species independent of n that are given by

Θ(k) =
∑
d|k

dPk/d ◦ (Y Ωd(X)). (3.67)

Proof. We have (1 + sX)↑Y =
∑

n≥0

(
X,Y
n

)
sn, where s is an extra weight variable. Also,

(1 + sX)↑Y = E(Y Lg(1 + sX)) = exp
∑

m≥1, `≥1

sm`

m
Pm ◦ (Y Ω`(X)), (3.68)
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by (2.40) and plethystic linearity of Pm. Taking the analytic logarithm, we get the identity

∑
k≥1

(∑
m`=k

1

m
Pm ◦ (Y Ω`(X))

)
sk = log

∑
n≥0

(
X, Y

n

)
sn, (3.69)

and we conclude by applying the differential operator s ∂
∂s

on both sides of (3.69).25 �

Example 3.11. Let v be a weight variable and consider the 1-sort species (1 +X)↑v. This
special weighted virtual species has been considered first by Pierre Leroux and the author
in 1996 and was denoted by Λ(v)(X) in their paper [LabLer96]. They used it to put a
weight v on each connected component of structures (see Example 4.3 below). Making
the substitution Y := v in Proposition 3.8, we obtain the new recursive scheme

Λ(v)(X) = (1 +X)↑v =
∑
n≥0

(
X, v

n

)
,

(
X, v

0

)
= 1, (3.70)(

X, v

n

)
=

1

n

[
V (1)

(
X, v

n− 1

)
+ V (2)

(
X, v

n− 2

)
+ · · ·+ V (k)

(
X, v

n− k

)
+ · · ·

]
, n > 1,

(3.71)

where the coefficients V (k) = V (k,X, v) are species independent of n that are given by

V (k) =
∑
d|k

d vk/dPk/d ◦ Ωd(X), (3.72)

since Pk/d ◦ (vΩd(X)) = vk/dPk/d ◦ Ωd(X) due to plethystic linearity (2.41).

Example 3.12. Completely different species arise from the substitutions Y := y and Y := c
in the binomial species B(X, Y ), where y is an auxiliary variable and c ∈ C is a scalar
symbol. A careful analysis shows that

(1 +X)↑y = exp(yΩ(X)) =
∑
n≥0

1
n!
ynΩn(X) ∈ Qy||X||, (3.73)

(1 +X)↑c =
∑
n≥0

c(c−1)(c−2)···(c−n+1)
n!

Xn ∈ C[[X]]. (3.74)

Example 3.13. Further examples of new species are worth mentioning. They arise from
the substitutions of special symbols for the sort X, instead of Y , in the binomial species
B(X, Y ). For example, let u be a weight variable. Then the substitution X := u in

25The author implemented the above computational scheme in Maple to expand (1 + X)↑Y up to
degree 20 in X. It took less than 5 seconds on a MacPro. The expansion contains 131834 terms. The
corresponding expansion for the classical (1 + x)y contains only 211 terms.
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Proposition 3.8 gives rise to the species (compare with Example 3.6 above)

(1 + u)↑Y = E(Y Lg(1 + u)) = E((u− u2)Y ) = E(uY )/E(u2Y ) =
∑
n≥0

(
u, Y

n

)
, (3.75)(

u, Y

n

)
=

1

n

[
U(1)

(
u, Y

n− 1

)
+ U(2)

(
u, Y

n− 2

)
+ · · ·+ U(k)

(
u, Y

n− k

)
+ · · ·

]
, n > 1,

(3.76)

where the coefficients U(k) = U(k, u, Y ) are species independent of n that are given by

U(k) =

{
ukPk(Y ), k odd,

uk(Pk(Y )− 2Pk/2(Y )), k even.
(3.77)

Indeed, by (2.13), Ωn(u) = Ωn(X)|X:=u = [un] Lg(1 + u) are polynomials in u satisfying

Ωn(u) =


u, n = 1,

−u2, n = 2,

0, n > 2,

(3.78)

and (3.77) follows from the fact that, by (3.67) and (2.41), the coefficients U(k) = Θ(k) =
Θ(k, u, Y ) are species in Y given by

U(k) =
∑
d|k

dΩd(u
k/d)Pk/d(Y ). (3.79)

Example 3.14. Note that since (1 + u)↑Y = E(uY )/E(u2Y ), Corollary 3.4 implies via
“telescopic multiplicative cancellations” the remarkable combinatorial equality(

1

1− u

)↑
Y = E(uY ). (3.80)

Stated otherwise, this means that the species E(uY ) of finite sets in which each element
has weight u can be expressed via the binomial species in the somewhat unexpected form

E(uY ) = B(−u,−Y ). (3.81)

4. Combinatorial exponentiation of species

We now use the (virtual) binomial species B(X, Y ) = (1 + X)↑Y to define a new
combinatorial exponentiation operation, F ↑G, between species F and G. Recall that if F
is a species for which F (0) = 1, the species F conn of “connected” F -structures is defined
by F conn = Lg(F ) = Lg(1 + F+), where F = 1 + F+, F+(0) = 0.

Definition 4.1. Let F be a species satisfying F (0) = 1 and G be an arbitrary species.
The species F ↑G, called F raised to the combinatorial power G (or simply F uparrow G)
is defined by

F ↑G =
def
B(X, Y )|X:=F+,Y :=G = E(G · Lg(F )) = E(G · F conn). (4.1)
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Figure 6. Illustration of an F ↑G-structure (that is, an assembly of
G · F conn-structures) on a set of 24 elements, where F and G are “ordi-
nary” species

Proposition 4.1. For species F,G,H, we have

F ↑(G+H) = (F ↑G) · (F ↑H), F ↑(G ·H) = (F ↑G)↑H, if F (0) = 1, (4.2)

(F ·G)↑H = (F ↑H) · (G↑H), F ↑G conn = G ↑F conn, if F (0) = G(0) = 1, (4.3)

∂

∂X
F ↑G = (F ↑G) ·

(
F conn ∂G

∂X
+G

∂F/∂X

F

)
, if F (0) = 1. (4.4)

Proof. Formulas (4.2) and (4.3 left) are easy consequences of Proposition 3.1. Formula
(4.3 right) follows from Definition 4.1, since

F ↑G conn = E(G conn · F conn) = E(F conn ·G conn) = G ↑F conn.

Formula (4.4) is a consequence of the combinatorial chain rule and the fact that ∂ Lg(1 +
X)/∂X = 1/(1 +X):

∂

∂X
F ↑G =

∂

∂X
E(G · Lg(1 + F+))

= E ′(G · Lg(1 + F+)) · (G′ · Lg(1 + F+) +G · Lg′(1 + F+) · (F+)′)

= (F ↑G) ·
(
G′ · Lg(F ) +G · (F+)′

1 + F ′

)
= (F ↑G) ·

(
F conn ∂G

∂X
+G

∂F/∂X

F

)
,

where H ′ denotes ∂H
∂X

and (F+)′ = (F − 1)′ = F ′ = ∂F
∂X

. �

It is important to realize that

F ↑G 6= F G, in general, (4.5)

where F G denotes the “ordinary” or “analytic” exponentiation of species defined by the
summable series

F G = (1 + F+)G =
∑
n≥0

G·(G−1)·(G−2)···(G−n+1)
n!

F n
+ . (4.6)
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We now introduce a new “plethystic” exponential operation, f ↑g, between cycle in-
dex series that reflects the combinatorial exponentiation between species, extending list
(1.21)–(1.22).

Definition 4.2. Let f = f(x1, x2, . . . ; y1, y2, . . . ) and g = g(x1, x2, . . . ; y1, y2, . . . ) be two
(formal) cycle index series, with f = f(0, 0, . . . ; 0, 0, . . . ) = 1. The series f ↑g, called f
raised to the plethystic power g (or simply f uparrow g) is defined by

f ↑g =
∏
n≥1

f
1
n

∑
d|n µ(d)gn/d

n (4.7)

= f g · f
1
2

(g2−g1)

2 · f
1
3

(g3−g1)

3 · f
1
4

(g4−g2)

4 · f
1
5

(g5−g1)

5 · f
1
6

(g6−g3−g2+g1)

6 · · · , (4.8)

where ψω = exp(ω log(ψ)) denotes the ordinary analytic power, and where, as usual,

ψn = ψ(xn, x2n, x3n, . . . ; yn, y2n, y3n, . . . ), n = 1, 2, . . . , (4.9)

for a cycle index series ψ = ψ(x1, x2, x3, . . . ; y1, y2, y3, . . . ).

Corollary 4.2. Let F = F (X, Y, . . . ) be a species satisfying F (0) = 1 and G =
G(X, Y, . . . ) be an arbitrary species. Then the cycle index series ZF ↑G depends only on
the cycle index series ZF and ZG and is given by

ZF ↑G = ZF
↑ZG. (4.10)

In particular, if α, β, . . . are power series in the auxiliary variables x, y, . . . and weight
variables u, v, . . . , then

(F ↑G)(α, β, . . . ) =
∏
n≥1

F (αn, βn, . . . )
1
n

∑
d|n µ(d)G(αn/d,βn/d,... ), (4.11)

(F ↑G)(u, v, . . . ) =
∏
n≥1

F (un, vn, . . . )
1
n

∑
d|n µ(d)G(un/d,vn/d,... ), (4.12)

(F ↑G)(x, y, . . . ) = F (x, y, . . . )G(x,y,... ). (4.13)

Proof. It is sufficient to prove (4.10). To simplify the computations, let f = ZF and
g = ZG. Then, using Tables 1 and 2, we have

ZF ↑G = ZE(G·Lg(F )) = ZE ◦ (ZG · ZLg(F )) = ZE ◦ (g ·
∑

k≥1
µ(k)
k

log(fk))

= exp(
∑

`,k≥1
1
`
g`

µ(k)
k

log(f`k)) = exp(
∑

n≥1(
∑

d|n µ(d)gn/d)
log(fn)
n

)

=
∏
n≥1

fn
1
n

∑
d|n µ(d)gn/d = f ↑g = ZF

↑ZG. �

As in Section 3, special choices of species in Proposition 4.1 and Corollary 4.2 and/or
specializations of variables can be used to obtain a great variety of new formulas and
identities between species and/or power series.

Example 4.1. Let C = C(X), S = S(X) = E(C(X)), L = L(X), A = A(X), Inv =
Inv(X) be the 1-sort species of oriented cycles, permutations, linear orders, rooted trees,
involutions, respectively. Let Φ = Φ(X, Y ) and Bij = Bij(X, Y ) be the 2-sort species of
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functions and bijections mapping sets of elements of sort X to sets of elements of sort Y .
The following small sample of equalities hold.

a) E ↑E = E(XE) = species of equivalence relations with a system of representatives.

Proof. Since connected sets are singletons, E ↑E = E(E · Econn) = E(E ·X). Moreover,
XE is the species of pointed sets, and assemblies of pointed sets are equivalence relations
with a system of representatives (the pointed elements). �

b) S ↑X = E ↑C = E(XC) is the species of assemblies of oriented “wheels”.

Proof. Since oriented cycles are connected permutations and XC-structures can be
thought of as oriented wheels (the X-structure being the center of the wheel, and the
C-structure being the circumference of the wheel), S ↑X = E(X · Sconn) = E(XC) =
species of assemblies of oriented wheels. Moreover, E(XC) = E(C · Econn) = E ↑C. �

c) (A/X)↑(X + E2) = Inv↑A.

Proof. Since involutions are assemblies of fixed points or unordered pairs of interchanged
points, Inv = E(X + E2). Moreover, rooted trees are characterized by the well-known
equation A = XE(A). Hence, (A/X)↑(X + E2) = E((X + E2) · (A/X)conn) = E((X +
E2) · A) = E(A · Invconn) = Inv↑A. �

d) ∂
∂X

(S ↑E) = (S ↑E) · (C + L) · E.

Proof. This is an example of (4.4) with F = S and G = E, since ∂
∂X
E = E and ∂

∂X
S =

S · L. �

e) Φ(X, Y ) = E(Y )↑E(X).

Proof. Since a function from a set of elements of sort X to a set of elements of sort Y can be
thought of as an assembly of E(X)·Y -structures (each E(X)-structure being interpreted as
the possibly empty inverse image of a Y -singleton), we can write Φ(X, Y ) = E(E(X) ·Y ).
On the other hand, E(Y )↑E(X) = E(E(X) · (E(Y ))conn) = E(E(X) · Y ). �

f) Bij(X, Y ) = Φ(X, Y )↑(X/E(X)).

Proof. Since a bijection from a set of elements of sort X to a set of elements of sort
Y can be thought of as an assembly of ordered pairs (x, y), where x is a singleton of
sort X and y is a singleton of sort Y , we can write Bij(X, Y ) = E(XY ). On the other
hand, Φ(X, Y )↑(X/E(X)) = E((X/E(X)) · Φconn(X, Y )) = E((X/E(X)) · E(X)Y ) =
E(XY ).26 �

Of course, the underlying series of a)-f) can also be analyzed as well as their various
weighted versions. The following example illustrates this by assigning weights to the
species Φ(X, Y ) of functions in case e) above.

26Note that X/E(X) = A<−1>(X) = the inverse of the species of rooted trees under substitution.
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Example 4.2. Consider the (q, t)-analogue Φq,t(X, Y ) = Φ( X
1−q ,

Y
1−t) of the species

Φ(X, Y ) = E(Y )↑E(X) of functions mapping sets of elements of sort X to sets of el-
ements of sort Y . Since Φ(X, Y ) = E(E(X) · Y ) and Eq(u) =

∑
i≥0 u

i/(q; q)i, we have,
using Table 1,

Φq,t(u, v) = E

(
v

1− t

)↑
E

(
u

1− q

)
= E

(
E

(
u

1− q

)
· v

1− t

)
(4.14)

= exp

(∑
i,j≥1

1

i
· uijvi

(1− ti)(1− qi)(1− q2i)(1− q3i) · · · (1− qij)

)
(4.15)

=
∑
n,k≥0

φn,k(q, t)
un

(q; q)n
· vk

(t; t)k
, (4.16)

where φn,k(q, t) is a polynomial in (q, t) which is a (q, t)-analogue of the number φn,k = kn

of functions from [n] to [k], i.e., φn,k(1, 1) = kn. On the other hand, φn,k(0, 0) is the number

φ̃n,k of “unlabelled” functions from n indistinguishable white dots to k indistinguishable
black dots given by ∏

m≥0

1

1− umv
=
∑
n,k≥0

φ̃n,k u
nvk. (4.17)

Example 4.3. Let F = F (X, Y, . . . ) be a species satisfying F (0) = 1 and v be an extra
weight variable. Then we can consider the species F ↑v = F ↑Z|Z=v, which can be inter-
preted (when F possesses connected components) as the species of F -structures whose
connected components are each weighted by v (see Figure 6 in which each G-structure
is replaced by a v = v · 1-structure living on the empty set). This kind of species was
considered, using distinct notation, by Leroux and the author (see [LabLer96]). By (3.4),
we have

F ↑v = (1 + F+)↑v =
∑
n≥0

(
Z, v

n

)
Z:=F+

, (4.18)

and the binomial coefficients
(
Z, v
n

)
can be recursively computed as in Example 3.11 above.

This provides an alternate efficient way to compute F ↑v.

Example 4.4. The 2-sort weighted species G(X, Y ) of simple graphs on black and white
nodes of Example 1.1 in the introduction can be written in the form

G(X, Y ) = G(X)↑(u− t) · G(Y )↑(v − t) · G(X + Y )↑t, (4.19)

where G denotes the species of simple graphs. This is a consequence of the more direct
combinatorial equation

G(X, Y ) = E(uGconn(X))E(vGconn(Y ))E(t(Gconn(X+Y )−Gconn(X)−Gconn(Y ))), (4.20)

where Gconn is the species of connected simple graphs. All underlying counting series for
G(X, Y ) can be computed from combinatorial equation (4.19).
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Example 4.5. Let q be a weight variable. Making the substitution X := q in the simple
combinatorial equation

S(X)↑C(X) = E(C 2(X)), (4.21)

using (4.12) (with F = S,G = C, u = q) together with the fact that C(q) = q/(1− q) and
S(q) =

∏
n≥1(qn; qn)−1

∞ , we arrive at the identity∏
n, k≥1

(qn; qn)−M(qk, n)
∞ = exp

(∑
i≥1

1

i

q2i

(1− qi)2

)
, (4.22)

where the M(q, n) = 1
n

∑
d|n µ(d)qn/d, n ≥ 1, are the necklace polynomials evaluated at q.

Example 4.6. The operation ↑ can be used to define an exponentiation operation be-
tween the very general combinatorial differential operators introduced recently by Cédric
Lamathe and the author [LabLam09]. In their simplest form, these differential operators
are of the form Ω(X,D), where Ω(X,T ) is any two-sort species and D = d/dX.27 These
operators act on species F (X) via

Ω(X,D)F (X) =
def

Ω(X,T )×T F (X + T )|T :=1, (4.23)

where ×T denotes the Cartesian product with respect to sort T , and T := 1 means
unlabelling the elements of sort T .

Figure 7 describes this action. The black dots and black squares in this figure are
elements of sorts X and T , respectively, while the white squares are unlabelled elements
of sort T . In [LabLam09], it is shown how to compose (i.e., apply successively) such

Figure 7. Illustration of an Ω(X,D)F (X)-structure on a 9-element set.

operators, how to take their adjoint, and how they behave with respect to the classical

27The classical linear analytic differential operators A0(X) + A1(X) ∂
∂X + A2(X) ∂2

∂X2 + · · · , where
A0(X), A1(X), A2(X), · · · ∈ C[[X]] are power series in X in the usual sense, are special cases of these
combinatorial operators. The combinatorial differential operators Ω(X,D) can take a great variety of
forms. For example, C(X +D + E(XD)) is such an operator, where C(X) and E(X) are the species of
oriented cycles and finite sets, respectively.
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combinatorial operations. The adjoint of Ω(X,D) is the operator Ω∗(X,D) = Ω(D,X),
which is associated to the species Ω(T,X). In particular, the adjoint of the “pure” differ-
ential operator G(D) is the operator G(X) (= multiplication by G(X)). This generalizes
the well-known fact that the adjoint of the “annihilation operator”, D, is the “creation
operator”, X.

The cycle index series of the species Ω(X,D)F (X) can be computed as follows.

Proposition 4.3 ([LabLam09]). Let G(X) = Ω(X,D)F (X). Then

ZG(x1, x2, x3, . . . ) = ZΩ(x1, x2, x3, . . . ;
∂

∂x1

, 2
∂

∂x2

, 3
∂

∂x3

, . . . )ZF (x1, x2, x3, . . . ). (4.24)

The combinatorial exponentiation, Ω ↑Λ, of operators Ω = Ω(X,D) and Λ = Λ(X,D)
is defined in the obvious way.

Definition 4.3. Let Ω = Ω(X,D) and Λ = Λ(X,D) be combinatorial differential oper-
ators associated to species Ω(X,T ) and Λ(X,T ), with Ω(0, 0) = 1. The combinatorial
differential operator (Ω ↑Λ)(X,D) is associated to the species

Ω(X,T ) ↑Λ(X,T ) = E(Λ(X,T ) Lg(Ω(X,T ))) = E(Λ(X,T ) · Ωconn(X,T )). (4.25)

A general study of the combinatorial differential operators Ω ↑Λ should be developed.

5. Conclusion

The main goal of combinatorics is to create, manipulate, combine, analyze, classify, and
enumerate finite discrete structures by making use of a variety of mathematical operations
and tools. The binomial species and combinatorial exponentiation are two such tools to
be exploited further.
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Appendix A. The general substitution formulas for Cu,v,... ‖X, Y, . . .‖

We start by analyzing substitution of ordinary species in the 1-sort case. Let u, v, . . . be
a family of weight variables and F , G be ordinary 1-sort weighted species (i.e., elements
of Nu,v,...‖X ‖). To do this, we first write the molecular species 6= 1 as a list according to
weakly increasing degrees in X,

M ′,M ′′,M ′′′,M (4),M (5),M (6),M (7), . . . , (A.1)

where M ′ = X, M ′′ = X2, M ′′′ = E2(X), M (4) = X3, M (5) = XE2(X), M (6) = C3(X),
M (7) = E3(X), etc. We have two cases to consider: G(0) = 0 and G(0) 6= 0.
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Case 1: G(0) = 0. Assume first that G(0) = 0 (that is, there is no G-structure on the
empty set). In this context, an F ◦ G-structure is an F -assembly of G-structures. This
means that such a structure on a finite set U is a triple

s = (π, φ, γ), (A.2)

where

1) π is a partition of U ,

2) φ is an F -structure on the set of classes of π,

3) γ = (γp)p∈π, where for each class p of π, γp is a G-structure on p.

The weight of s is defined by the product of the weights of φ and of all γp, p ∈ π:

w(s) = w(φ)Πp∈πw(γp). (A.3)

Now, write G and F as combinatorial power series in Nu,v,...‖X ‖:
G = G(X) = α′M ′ + α′′M ′′ + · · · , α′, α′′, · · · ∈ Nu,v,..., (A.4)

F = F (X) = β + β′M ′ + β′′M ′′ + · · · , β, β′, β′′, · · · ∈ Nu,v,.... (A.5)

By (A.4), each G-structure γp in (A.2) is an M ′-structure or an M ′′-structure, etc., with
corresponding weight distribution described by α′ or α′′, etc. In other words, the following
combinatorial equations (due to Yeh) hold:

F ◦G = F (α′M ′ + α′′M ′′ + · · · )
= F (α′X1 + α′′X2 + · · · )|X1:=M ′, X2:=M ′′, ...

= F (X1 +X2 + · · · )× E(α′X1 + α′′X2 + · · · )|X1:=M ′, X2:=M ′′, ... , (A.6)

where X1, X2, . . . are extra sorts of singletons, (×) denotes the Cartesian “superposition”
product, and E is the species of finite sets. This is essentially due to the fact that the
weight assigned to each structure γp can be canonically associated to its underlying set
p instead of being associated to γp itself. In order to explicitly expand (A.6) in terms of
α′1, α

′
2, . . . , α

′′
1, α

′′
2, . . . , etc., and β, β′, β′′, . . . , we need an auxiliary result.

Lemma A.1 ([Lab08]). For every α ∈ Cu,v,... we have an expansion of the form

E(αX) =
∑
λ

ελ(α1, α2, . . . )Eλ(X), (A.7)

where λ runs through all partitions (λ1 ≥ λ2 ≥ · · · ≥ λn) of all integer n ≥ 0,
ελ(α1, α2, . . . ) is a polynomial in (α1, α2, . . . , αn) with rational coefficients, and

Eλ(X) = Eλ1(X) · Eλ2(X) · · ·Eλn(X). (A.8)

Proof. By (2.45) and (2.46), we have, in analogy with the theory of symmetric functions,

E(αX) = exp
∑
m≥1

αm
m
Pm(X) =

∑
k1,k2,k3,...

αk11 α
k2
2 · · ·

1k1k1! 2k2k2! · · ·
P1(X)k1P2(X)k2 · · ·

=
∑
λ

αλ
zλ
Pλ(X),
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where αλ = αλ1αλ2 · · · , Pλ(X) = Pλ1(X)Pλ2(X) · · · , zλ = 1d1d1! 2d2d2! · · · if λ consists
of di parts i, i = 1, 2, . . . . We conclude by expanding the Pλ(X)’s in terms of the
Eλ(X)’s. �

By Lemma A.1, we can write

E(α′X1 + α′′X2 + · · · ) = E(α′X1)E(α′′X2) · · · (A.9)

=
∑
λ′,λ′′,...

ελ′,λ′′,...Eλ′(X1)Eλ′′(X2) · · · , (A.10)

where each λ′, λ′′, . . . runs through all integer partitions, and

ελ′,λ′′,... = ελ′(α
′
1, α

′
2, . . . )ελ′′(α

′′
1, α

′′
2, . . . ) · · · (A.11)

is a polynomial in a finite number of α′1, α
′
2, . . . , α

′′
1, α

′′
2, . . . , . . . with rational coefficients.

By (A.6), F ◦G can be expanded in the form

F ◦G = F (α′M ′ + α′′M ′′ + · · · ) =
∑
λ′,λ′′,...

ελ′,λ′′,...Fλ′,λ′′,...(M
′,M ′′, . . . ), (A.12)

Fλ′,λ′′,...(X1, X2, . . . ) = F (X1 +X2 + · · · )× Eλ′(X1)Eλ′′(X2) · · · . (A.13)

Note that each term in the expansion of (A.13) is of total degree n′ + n′′ + · · · < ∞ in
X1, X2, . . . , where λ′ ` n′, λ′′ ` n′′, . . . . Hence each Fλ′,λ′′,...(M

′,M ′′, . . . ) in (A.12) involves
only a finite number of the unweighted species M ′,M ′′, . . . , and the weight distribution
arising from G in F ◦G is included in the coefficients ελ′,λ′′,.... Moreover, the lower degree
in X in Fλ′,λ′′,...(M

′,M ′′, . . . ) is ≥ n′ + n′′ + · · · since degM ′ > 0, degM ′′ > 0, . . . . It
follows that each coefficient γ, γ′, γ′′, . . . in the full expansion of (A.12),

F ◦G = (F ◦G)(X) = γ + γ′M ′ + γ′′M ′′ + · · · , (A.14)

is a polynomial expression with rational coefficients involving a finite number of coefficients
β, β′, β′′, . . . appearing in the expansion of F and a finite number of α′1, α

′
2, . . . , α

′′
1, α

′′
2, . . . ,

etc., appearing in G. This implies that (A.12) is formally summable, and F ◦G is a well-
defined species in Nu,v,...‖X ‖.
Case 2: G(0) 6= 0. Assume now that G(0) = α 6= 0. In this context, we assume that F is
of finite degree in X for summability reasons. Writing G(X) = α+G+(X), where G+(X)
is of the form (A.4) with G+(0) = 0, and introducing an extra sort T of singletons, we
have

F ◦G = F (α +G+(X)) = F (αT +G+(X))|T :=1 (A.15)

= F (T +G+(X))× E(αT +X)|T :=1 (A.16)

=
∑
λ

ελ(α1, α2, . . . )F (T +G+(X))× Eλ(T )E(X)|T :=1 (A.17)

= δ + δ′M ′ + δ′′M ′′ + · · · , (A.18)

where (since degF <∞) each coefficient δ, δ′, δ′′, . . . in (A.18) is a polynomial expression
with rational coefficients involving a finite number of coefficients β, β′, β′′, . . . appearing in
the expansion of F and a finite number of α1, α2, . . . , α

′
1, α

′
2, . . . , α

′′
1, α

′′
2, . . . , etc., appearing
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in G. This implies that (A.17) is formally summable, and F ◦ G is again a well-defined
species in Nu,v,...‖X ‖.

More generally, replacing Nu,v,... by Cu,v,..., we define F ◦ G for F,G ∈ Cu,v,... ‖ X ‖,
with G(0) = 0 or degF < ∞, by formula (A.14) or (A.18) by making use of the same
expressions for γ, γ′, γ′′, . . . or δ, δ′, δ′′, . . . as polynomials with rational coefficients involv-
ing a finite number of β, β′, β′′, . . . appearing in the expansion of F and a finite number
of α1, α2, . . . , α

′
1, α

′
2, . . . , α

′′
1, α

′′
2, . . . , etc., appearing in G .

General substitutions in the case of species on sorts X, Y, . . . are treated in a similar
way.

Appendix B. Formal summability in Cx,y,...;u,v,... ‖X, Y, . . .‖

In what follows, the groups H run through fixed systems of representatives of conjugacy
classes of subgroups of Sn,k,..., where n, k, · · · ≥ 0. A species F ∈ Cx,y,...;u,v,... ‖X, Y, . . . ‖
can be canonically fully expanded in the form

F = F (X, Y, . . . ) =
∑
µ,H

cµ,H µX
nY k · · · /H, (B.1)

where µ = xpyq · · ·uivj · · · runs through all power products in Cx,y,...;u,v,.... By analogy
with the usual notation for classical power series, the coefficient cµ,n,k,...,H in (B.1) is also
denoted by

[µXnY k · · · /H ]F = cµ,H . (B.2)

Definition B.1. Let (Fι)ι∈I be a family of species indexed by a (finite or infinite) set I,
where

Fι =
∑
µ,H

cι,µ,H µX
nY k · · · /H ∈ Cx,y,...;u,v,... ‖X, Y, . . .‖, ι ∈ I. (B.3)

For every µ and H, denote by

Iµ,H = {ι ∈ I : [µXnY k · · · /H ]Fι 6= 0} (B.4)

the subset of indices ι for which the coefficient cι,µ,H of Fι is not 0. The family (Fι)ι∈I is
formally summable if

Iµ,h is finite for every µ and H. (B.5)

Note. This definition of summability for families of species includes the special case of fam-
ilies of formal power series (simply take cι,µ,H = 0 whenever XnY k · · · 6= 1 = X0Y 0 · · · ).
Summability in the case of families of formal cycle index series is defined similarly by
adding the extra variables x1, x2, . . . ; y1, y2, . . . ; . . . .

Example B.1. A special case of summability is implicit in (B.1): the family

(cµ,H µX
nY k · · · /H)µ,H (B.6)

of its terms is summable with sum F .

Example B.2. Formula (1.12) above, for the multiplicative inverse 1/F of a species F ,

1/F = 1− F+ + F 2
+ − F 3

+ + · · ·+ (−1)nF n
+ + · · · , (B.7)

is obviously summable since F+(0) = 0.
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Example B.3. The expansion of a species F = F (X, Y, . . . ) into its homogeneous compo-
nents provides another instance of summable series:

F =
∑

n,k,···≥0

Fn,k,..., (B.8)

where Fn,k,... is the (finite) sum of the terms of degrees n in X, k in Y , . . . in the full
expansion of F . Other important cases are

F =
∑
n≥0

Fn,−,−,..., F =
∑
k≥0

F−,k,−,..., . . . , (B.9)

where Fn,−,−,... is the sum of terms of degree n in X in the expansion of F , F−,k,−,... is
the sum of terms of degree k in Y in the expansion of F , etc. The generalized binomial
coefficients (3.4) are special instances of such a notation:(

X, Y

n

)
= Bn,−(X, Y ) = [(1 +X)↑Y ]n,−. (B.10)
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[Joy85] A. Joyal. Règle des signes en algèbre combinatoire. C. R. Math. Rep. Acad. Sci. Canada, 7(5):285–

290, 1985.
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