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General Definitions

Sn is the symmetric group on {1, . . . , n}.
Zr is the cyclic group of order r .

ζr is the primitive r − th root of unity.
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Complex reflection groups

G (r , n) = group of all matrices π = (σ, k), where:

σ = a1 · · · an ∈ Sn.

k = (k1, . . . , kn) ∈ Zn
r . (k-vector)

π = (σ, k) is the n × n monomial matrix with non-zero entries
ζkir in the (ai , i) positions.

Example

(n = 3, r = 4)

π(312, (1, 3, 3)) =

 0 i 0
0 0 −i
−i 0 0
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For p|r , G (r , p, n) is the subgroup of G (r , n) consisting of
matrices (σ, k) satisfying

n∏
i=1

(ζkir )
r
p = 1.

Hence G (r , r , n) is the group of such matrices satisfying:

n∏
i=1

(ζkir ) = 1
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One-line notation

We denote an element of G (r , p, n) in a more concise manner:

(σ, k) = ak11 · · · a
kn
n

for σ = a1 · · · an and k = (k1, . . . , kn).

Example

π(312, (1, 3, 3)) = 311323
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Our goal

Various sets of generators have been defined for complex reflection
groups but (as far as we know), no length function has been
formulated.
We provide such a function for the case of G (r , r , n) with a
specific choice of generating set proposed by Shi.
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Shi’s Generators for G (r , r , n)

For each i ∈ {1, . . . , n − 1} let si = (i , i + 1) be the familiar
adjacent transpositions generating Sn.

Define t0 = (1r−1, n1).

Theorem

The set {t0, s1, . . . , sn−1} generates G (r , r , n).
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Example of generators acting from the right

Applying s1 from the right:

π = 30221−14−1 7→ 22301−14−1

Applying t0 from the right:

π = 20123−14−1 7→ 4−2123−121

Remark

Places are exchanged, the k− vector is not preserved.
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Example of generators acting from the left

Applying s1 from the left:

π = 20123−14−1 7→ 10223−14−1

Applying t0 from the left:

π = 20123−14−1 7→ 20423−11−1

Remark

Numbers are exchanged and the k-vector is preserved.
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The affine group

The affine Weyl group S̃n is defined as follows:

S̃n = {w : Z→ Z | w(i+n) = w(i)+n,∀i ∈ {1, . . . , n},
n∑

i=1

w(i) =

(
n + 1

2

)
}.
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Each affine permutation can be written in integer window notation
in the form:

π = (π(1), . . . , π(n)) = (b1, . . . , bn).

By writing bi = n · ki + ai , we can use the residue window notation:

π = ak11 · · · a
kn
n .

where {a1, . . . , an} = {1, . . . , n}.
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Generators for the affine group

For each i ∈ {1, . . . , n − 1} let si = (i , i + 1) be the known
adjacent transpositions generating Sn.
Define s0 = (1, n−1).

generators.PNG generators.PNG

Figure:
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Theorem

Let π = ak11 · · · aknn ∈ S̃n. Then

`(π) =
∑

1≤i<j≤n
ai<aj

|kj − ki |+
∑

1≤i<j≤n
ai>aj

|kj − ki − 1|

Example

If π = 3−1104120 then:

`(π) = |1−(−1)|+ |1−0|+ |0−(−1)−1|+ |0−(−1)−1|+ |0−1−1| = 5
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Another presentation of S̃n

Each affine permutation π = ak11 · · · aknn can also be written as a
monomial matrix:

Mπ = (mij) =

{
0 i 6= σ(j)

xki i = σ(j)

Example

(n = 4)

π = 3−1104120 =


0 x0 0 0
0 0 0 x0

x−1 0 0 0
0 0 x1 0
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Mapping S̃n to G (r , r , n)

Shi defines a homomorphism η : S̃n → G (r , r , n) by
substituting a primitive r -th root of unity ζr in place of x .

He tried to adapt his length function for the affine groups to
the case of G (r , r , n) but did not obtain a closed formula.

Here we provide such a formula.
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Difficulties in adapting Shi’s formula

In G (r , r , n) each element does not have a uniquely defined k-
vector, as adding a multiple of r to any ki does not change π as an
element of G (r , r , n).

Example

The permutations 452−43−211 and 402−43311 represent the same
element of G (5, 5, 4).
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The normal form

Definition

A permutation (p, k0) ∈ G (r , r , n) is said to be in normal form if
the following conditions are met:

1

n∑
i=1

k0i = 0

2 |max(k0)−min(k0)| ≤ r

3 If there exist i < j such that |k0j − k0i | = r then k0j − k0i = r .

If (p, k0) is in normal form and is equivalent to (p, k) then we say
that (p, k0) is a normal form of (p, k).
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Example

The normal form of 4−811531229 ∈ G (7, 7, 4) is 4−1113−222.

Theorem

For each π ∈ G (r , r , n) a normal form exists and is unique.

Shi’s length function, when applied to all representatives of a
permutation in G (r , r , n), attains its minimum on the normal
form representative.
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Decomposition Into Right Cosets of Sn

Let π = (k, σ) ∈ G (r , r , n).

As we have seen, for each generator τ of Sn , π and τπ have
the same k-vector.

Hence, it is natural and straightforward to decompose
G (r , r , n) into right cosets.

Each right coset has a unique representative π = (k, σ) which
has minimal length.

This leads us to a new length function for G (r , r , n).
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The length function for G (r , r , n)

Let π = ak11 · · · aknn ∈ G (r , r , n).
Write π = u · σ where u ∈ Sn and σ is the minimal length
representative. Then:

Theorem

`(π) =
∑

1≤i<j≤n
|kj − ki | − noninv(k) + inv(u)

where
noninv(k) = #{(i , j) | i < j , k(i) < k(j)}

and (as usual)

inv(u) = #{(i , j) | i < j , u(i) > u(j)}.
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Length Example

Let π = 311−22041 ∈ G (4, 4, 4).
Then σ = 114−23021, and u = |π||σ|−1 = 3421.
Hence:

∑
1≤i<j≤n

|kj − ki | = |−2−1|+|0−1|+|1−1|+|0−(−2)|+|1−(−2)|+|1−0| = 10

And:
noninv(k) = 3

while
inv(u) = 5

so that `(π) = 10− 3 + 5 = 12
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Finding the minimal-length representative

The minimal-length element σ = ak11 · · · aknn ∈ G (r , r , n) for the
k-vector (k1, . . . , kn)
(abbreviated a1a2 · · · an ∈ Sn)
is the unique one with the following property:
ai < aj iff:

k(i) > k(j), or

k(i) = k(j) and i < j

Example

If k = (−2, 1,−1, 1, 2,−1) then σ = 624315
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Open question: What is the generating function?

Let Gr ,r ,n(q) =
∑

π∈Gr,r,n

q`(π).

From the coset decomposition it is clear that Gr ,r ,n(q) has [n]q! as
a factor.

Example

G4,4,4(q) = [4]q!(1+2q2+3q3+4q4+5q5+7q6+8q7+10q8+12q9+7q10+3q11)

G6,6,3(q) = [3]q!(1+q+2q2+2q3+3q4+3q5+4q6+4q7+5q8+5q9+6q10)
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A possible direction...

There is a bijection between left cosets of Sn in the affine
group and certain types of partitions (see Bjorner and Brenti
(1996) and Eriksson and Eriksson (1998)).

In B-B, each partition is the inversion table of the
corresponding left coset (i.e., of its ascending minimal-length
representative).

The bijection in E-E maps each left coset to the conjugate of
its inversion table.
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This correspondence yields the following generating function
for length in the affine group:

S̃n(q) =
[n]q!

(1− q)(1− q2) · · · (1− qn)

A similar approach may work in our case of right cosets in
G (r , r , n).
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Thank you!!
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