A length function for the complex reflection group $G(r, r, n)$

Eli Bagno and Mordechai Novick

SLC 78, March 28, 2017

A length function for the complex reflection group $G(r, r, n)$

General Definitions

- S_{n} is the symmetric group on $\{1, \ldots, n\}$.
- \mathbb{Z}_{r} is the cyclic group of order r.
- ζ_{r} is the primitive r-th root of unity.

Complex reflection groups

- $G(r, n)=$ group of all matrices $\pi=(\sigma, k)$, where:
- $\sigma=a_{1} \cdots a_{n} \in S_{n}$.
- $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{r}^{n}$. (k-vector)
- $\pi=(\sigma, k)$ is the $n \times n$ monomial matrix with non-zero entries $\zeta_{r}^{k_{i}}$ in the $\left(a_{i}, i\right)$ positions.

Example

$(n=3, r=4)$

$$
\pi(312,(1,3,3))=\left(\begin{array}{ccc}
0 & i & 0 \\
0 & 0 & -i \\
-i & 0 & 0
\end{array}\right)
$$

- For $p \mid r, G(r, p, n)$ is the subgroup of $G(r, n)$ consisting of matrices (σ, k) satisfying

$$
\prod_{i=1}^{n}\left(\zeta_{r}^{k_{i}}\right)^{\frac{r}{p}}=1
$$

- Hence $G(r, r, n)$ is the group of such matrices satisfying:

$$
\prod_{i=1}^{n}\left(\zeta_{r}^{k_{i}}\right)=1
$$

One-line notation

We denote an element of $G(r, p, n)$ in a more concise manner:

$$
(\sigma, k)=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}
$$

for $\sigma=a_{1} \cdots a_{n}$ and $k=\left(k_{1}, \ldots, k_{n}\right)$.

Example

$$
\pi(312,(1,3,3))=3^{1} 1^{3} 2^{3}
$$

Our goal

Various sets of generators have been defined for complex reflection groups but (as far as we know), no length function has been formulated.
We provide such a function for the case of $G(r, r, n)$ with a specific choice of generating set proposed by Shi.

Shi's Generators for $G(r, r, n)$

- For each $i \in\{1, \ldots, n-1\}$ let $s_{i}=(i, i+1)$ be the familiar adjacent transpositions generating S_{n}.
- Define $t_{0}=\left(1^{r-1}, n^{1}\right)$.

Theorem

The set $\left\{t_{0}, s_{1}, \ldots, s_{n-1}\right\}$ generates $G(r, r, n)$.

Example of generators acting from the right

Applying s_{1} from the right:

$$
\pi=3^{0} 2^{2} 1^{-1} 4^{-1} \mapsto 2^{2} 3^{0} 1^{-1} 4^{-1}
$$

Applying t_{0} from the right:

$$
\pi=2^{0} 1^{2} 3^{-1} 4^{-1} \mapsto 4^{-2} 1^{2} 3^{-1} 2^{1}
$$

Remark

Places are exchanged, the k - vector is not preserved.

Example of generators acting from the left

Applying s_{1} from the left:

$$
\pi=2^{0} 1^{2} 3^{-1} 4^{-1} \mapsto 1^{0} 2^{2} 3^{-1} 4^{-1}
$$

Applying t_{0} from the left:

$$
\pi=2^{0} 1^{2} 3^{-1} 4^{-1} \mapsto 2^{0} 4^{2} 3^{-1} 1^{-1}
$$

Remark

Numbers are exchanged and the k-vector is preserved.

The affine group

The affine Weyl group \tilde{S}_{n} is defined as follows:

$$
\tilde{S}_{n}=\left\{w: \mathbb{Z} \rightarrow \mathbb{Z} \mid w(i+n)=w(i)+n, \forall i \in\{1, \ldots, n\}, \sum_{i=1}^{n} w(i)=\binom{n+1}{2}\right\} .
$$

Each affine permutation can be written in integer window notation in the form:

$$
\pi=(\pi(1), \ldots, \pi(n))=\left(b_{1}, \ldots, b_{n}\right)
$$

By writing $b_{i}=n \cdot k_{i}+a_{i}$, we can use the residue window notation:

$$
\pi=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} .
$$

where $\left\{a_{1}, \ldots, a_{n}\right\}=\{1, \ldots, n\}$.

Generators for the affine group

- For each $i \in\{1, \ldots, n-1\}$ let $s_{i}=(i, i+1)$ be the known adjacent transpositions generating S_{n}.
- Define $s_{0}=\left(1, n^{-1}\right)$.

Theorem

Let $\pi=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} \in \tilde{S}_{n}$. Then

$$
\ell(\pi)=\sum_{\substack{1 \leq i<j \leq n \\ a_{i}<a_{j}}}\left|k_{j}-k_{i}\right|+\sum_{\substack{1 \leq i<j \leq n \\ a_{i}>a_{j}}}\left|k_{j}-k_{i}-1\right|
$$

Example

If $\pi=3^{-1} 1^{0} 4^{1} 2^{0}$ then:
$\ell(\pi)=|1-(-1)|+|1-0|+|0-(-1)-1|+|0-(-1)-1|+|0-1-1|=5$

Another presentation of \tilde{S}_{n}

Each affine permutation $\pi=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}}$ can also be written as a monomial matrix:

$$
M_{\pi}=\left(m_{i j}\right)= \begin{cases}0 & i \neq \sigma(j) \\ x^{k_{i}} & i=\sigma(j)\end{cases}
$$

Example

$$
\begin{aligned}
& (n=4) \quad \pi=3^{-1} 1^{0} 4^{1} 2^{0}=\left(\begin{array}{cccc}
0 & x^{0} & 0 & 0 \\
0 & 0 & 0 & x^{0} \\
x^{-1} & 0 & 0 & 0 \\
0 & 0 & x^{1} & 0
\end{array}\right), ~
\end{aligned}
$$

Mapping \tilde{S}_{n} to $G(r, r, n)$

- Shi defines a homomorphism $\eta: \tilde{S}_{n} \rightarrow G(r, r, n)$ by substituting a primitive r-th root of unity ζ_{r} in place of x.
- He tried to adapt his length function for the affine groups to the case of $G(r, r, n)$ but did not obtain a closed formula.
- Here we provide such a formula.

Difficulties in adapting Shi's formula

In $G(r, r, n)$ each element does not have a uniquely defined k vector, as adding a multiple of r to any k_{i} does not change π as an element of $G(r, r, n)$.

Example

The permutations $4^{5} 2^{-4} 3^{-2} 1^{1}$ and $4^{0} 2^{-4} 3^{3} 1^{1}$ represent the same element of $G(5,5,4)$.

The normal form

Definition

A permutation $\left(p, k^{0}\right) \in G(r, r, n)$ is said to be in normal form if the following conditions are met:
(1) $\sum_{i=1}^{n} k_{i}^{0}=0$
(2) $\left|\max \left(k^{0}\right)-\min \left(k^{0}\right)\right| \leq r$
(3) If there exist $i<j$ such that $\left|k_{j}^{0}-k_{i}^{0}\right|=r$ then $k_{j}^{0}-k_{i}^{0}=r$. If $\left(p, k^{0}\right)$ is in normal form and is equivalent to (p, k) then we say that $\left(p, k^{0}\right)$ is a normal form of (p, k).

Example

The normal form of $4^{-8} 1^{15} 3^{12} 2^{9} \in G(7,7,4)$ is $4^{-1} 1^{1} 3^{-2} 2^{2}$.

Theorem

- For each $\pi \in G(r, r, n)$ a normal form exists and is unique.
- Shi's length function, when applied to all representatives of a permutation in $G(r, r, n)$, attains its minimum on the normal form representative.

Decomposition Into Right Cosets of S_{n}

- Let $\pi=(k, \sigma) \in G(r, r, n)$.
- As we have seen, for each generator τ of S_{n}, π and $\tau \pi$ have the same k-vector.
- Hence, it is natural and straightforward to decompose $G(r, r, n)$ into right cosets.
- Each right coset has a unique representative $\pi=(k, \sigma)$ which has minimal length.
- This leads us to a new length function for $G(r, r, n)$.

The length function for $G(r, r, n)$

Let $\pi=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} \in G(r, r, n)$.
Write $\pi=u \cdot \sigma$ where $u \in S_{n}$ and σ is the minimal length representative. Then:

Theorem

$$
\ell(\pi)=\sum_{1 \leq i<j \leq n}\left|k_{j}-k_{i}\right|-\operatorname{noninv}(k)+i n v(u)
$$

where

$$
\operatorname{noninv}(k)=\#\{(i, j) \mid i<j, k(i)<k(j)\}
$$

and (as usual)

$$
\operatorname{inv}(u)=\#\{(i, j) \mid i<j, u(i)>u(j)\} .
$$

Length Example

Let $\pi=3^{1} 1^{-2} 2^{0} 4^{1} \in G(4,4,4)$.
Then $\sigma=1^{1} 4^{-2} 3^{0} 2^{1}$, and $u=|\pi||\sigma|^{-1}=3421$.
Hence:
$\sum_{1 \leq i<j \leq n}\left|k_{j}-k_{i}\right|=|-2-1|+|0-1|+|1-1|+|0-(-2)|+|1-(-2)|+|1-0|=10$
And:

$$
\operatorname{noninv}(k)=3
$$

while

$$
i n v(u)=5
$$

so that $\ell(\pi)=10-3+5=12$

Finding the minimal-length representative

The minimal-length element $\sigma=a_{1}^{k_{1}} \cdots a_{n}^{k_{n}} \in G(r, r, n)$ for the k-vector $\left(k_{1}, \ldots, k_{n}\right)$
(abbreviated $a_{1} a_{2} \cdots a_{n} \in S_{n}$)
is the unique one with the following property:
$a_{i}<a_{j}$ iff:

- $k(i)>k(j)$, or
- $k(i)=k(j)$ and $i<j$

Example

If $k=(-2,1,-1,1,2,-1)$ then $\sigma=624315$

Open question: What is the generating function?

$$
\text { Let } G_{r, r, n}(q)=\sum_{\pi \in G_{r, r, n}} q^{\ell(\pi)} \text {. }
$$

From the coset decomposition it is clear that $G_{r, r, n}(q)$ has $[n]_{q}$! as a factor.

Example

$G_{4,4,4}(q)=[4] q^{!}!\left(1+2 q^{2}+3 q^{3}+4 q^{4}+5 q^{5}+7 q^{6}+8 q^{7}+10 q^{8}+12 q^{9}+7 q^{10}+3 q^{11}\right)$
$G_{6,6,3}(q)=[3]_{q}!\left(1+q+2 q^{2}+2 q^{3}+3 q^{4}+3 q^{5}+4 q^{6}+4 q^{7}+5 q^{8}+5 q^{9}+6 q^{10}\right)$

A possible direction...

- There is a bijection between left cosets of S_{n} in the affine group and certain types of partitions (see Bjorner and Brenti (1996) and Eriksson and Eriksson (1998)).
- In B-B, each partition is the inversion table of the corresponding left coset (i.e., of its ascending minimal-length representative)
- The bijection in E-E maps each left coset to the conjugate of its inversion table.

A possible direction...

- There is a bijection between left cosets of S_{n} in the affine group and certain types of partitions (see Bjorner and Brenti (1996) and Eriksson and Eriksson (1998)).
- In B-B, each partition is the inversion table of the corresponding left coset (i.e., of its ascending minimal-length representative).
- The bijection in E-E maps each left coset to the conjugate of its inversion table.

A possible direction...

- There is a bijection between left cosets of S_{n} in the affine group and certain types of partitions (see Bjorner and Brenti (1996) and Eriksson and Eriksson (1998)).
- In B-B, each partition is the inversion table of the corresponding left coset (i.e., of its ascending minimal-length representative).
- The bijection in E-E maps each left coset to the conjugate of its inversion table.
- This correspondence yields the following generating function for length in the affine group:

- A similar approach may work in our case of right cosets in $G(r, r, n)$.
- This correspondence yields the following generating function for length in the affine group:

$$
\tilde{S}_{n}(q)=\frac{[n]_{q}!}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

- A similar approach may work in our case of right cosets in $G(r, r, n)$.
- This correspondence yields the following generating function for length in the affine group:

$$
\tilde{S}_{n}(q)=\frac{[n]_{q}!}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

- A similar approach may work in our case of right cosets in $G(r, r, n)$.
- This correspondence yields the following generating function for length in the affine group:

$$
\tilde{S}_{n}(q)=\frac{[n]_{q}!}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

- A similar approach may work in our case of right cosets in $G(r, r, n)$.

Thank you!!

